Separation of convex polyhedral sets with uncertain data

Milan Hladík¹

¹ Charles University, Faculty of Mathematics and Physics

Outline

- Introduction
 - Separation of convex polyhedral sets
 - Interval matrices and systems
- Separation of interval convex polyhedral sets
 - Separation for some realization
 - Separation for all realizations
- Separation of interval convex polytopes
 - Separation for some realization
 - Separation for all realizations

Separation of polyhedral sets

Introduce two convex polyhedral sets ($\mathbf{A} \in \mathbb{R}^{m imes n}$, $\mathbf{C} \in \mathbb{R}^{l imes n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{d} \in \mathbb{R}^l$):

$$\mathcal{M}_1 \equiv \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \le \mathbf{b} \},\tag{1}$$

$$\mathcal{M}_2 \equiv \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{C}\mathbf{x} \le \mathbf{d} \}.$$
(2)

• Weak separation of
$$\mathcal{M}_1$$
, \mathcal{M}_2
exists a hyperplane $\mathcal{R} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} = s\}$ such that
 $\mathcal{M}_1 \subseteq \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} \leq s\}, \mathcal{M}_2 \subseteq \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} \geq s\}.$

• Strong separation of $\mathcal{M}_1, \mathcal{M}_2$

 \mathcal{M}_1 , \mathcal{M}_2 are weak separable and $\dim \mathcal{M}_1 = \dim \mathcal{M}_2 = n$.

Theorem 1. Convex sets $\mathcal{M}_1, \mathcal{M}_2 \subset \mathbb{R}^n$ are strongly separable if and only if $\dim \mathcal{M}_1 = \dim \mathcal{M}_2 = n$, and $\inf \mathcal{M}_1 \cap \inf \mathcal{M}_2 = \emptyset$.

Separation theorems

$$\mathcal{Q}^* \equiv \left\{ (\mathbf{u}, \mathbf{v}, v_{l+1}) \in \mathbb{R}^{m+l+1}_+ \mid \begin{pmatrix} \mathbf{A}^T & \mathbf{C}^T & \mathbf{0} \\ \mathbf{b}^T & \mathbf{d}^T & \mathbf{1} \\ \mathbf{1}^T & \mathbf{1}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Theorem 2. Suppose that $\dim \mathcal{M}_1 = \dim \mathcal{M}_2 = n$, $\inf \mathcal{M}_1 \cap \inf \mathcal{M}_2 = \emptyset$. Let $(\mathbf{u}, \mathbf{v}, v_{l+1}) \in \mathcal{Q}^*$, $\mathbf{u}^T \mathbf{A} \neq \mathbf{0}^T$, and $\eta \in \langle 0, v_{l+1} \rangle$ is arbitrary. Then

$$\mathcal{R} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{u}^T (\mathbf{A}\mathbf{x} - \mathbf{b}) = \eta \}$$
(3)

represents a separating hyperplane of the convex polyhedral sets \mathcal{M}_1 , \mathcal{M}_2 . Conversely, any separating hyperplane \mathcal{R} of \mathcal{M}_1 , \mathcal{M}_2 can be expressed in the form of (3) for a certain $(\mathbf{u}, \mathbf{v}, v_{l+1}) \in \mathcal{Q}^*$, $\mathbf{u}^T \mathbf{A} \neq \mathbf{0}^T$, and $\eta \in \langle 0, v_{l+1} \rangle$.

Theorem 3. Let $\dim \mathcal{M}_1 = \dim \mathcal{M}_2 = n$. Then the convex sets \mathcal{M}_1 , \mathcal{M}_2 are strongly separable if and only if $\mathcal{Q}^* \neq \emptyset$.

Interval matrices, iquations and inequalities

Interval matrix is defined as $\mathbf{M}^I = {\mathbf{M} \in \mathbb{R}^{m \times n} \mid \underline{\mathbf{M}} \leq \mathbf{M} \leq \overline{\mathbf{M}}}$. Next introduce

$$\mathbf{M}^{c} \equiv \frac{1}{2} \cdot (\overline{\mathbf{M}} + \underline{\mathbf{M}}), \quad \mathbf{M}^{\Delta} \equiv \frac{1}{2} \cdot (\overline{\mathbf{M}} - \underline{\mathbf{M}}).$$

The system of interval linear inequalities

$$\mathbf{M}^{I}\mathbf{x} \leq \mathbf{m}^{I}$$

- is strongly solvable, if $\mathbf{M}\mathbf{x} \leq \mathbf{m}$ is solvable for all $\mathbf{M} \in \mathbf{M}^I$, $\mathbf{m} \in \mathbf{m}^I$. A vector \mathbf{x}^0 is a strong solution, if $\mathbf{M}\mathbf{x}^0 \leq \mathbf{m}$ holds for all $\mathbf{M} \in \mathbf{M}^I$, $\mathbf{m} \in \mathbf{m}^I$.
- is weakly solvable, if $\mathbf{M}\mathbf{x}^0 \leq \mathbf{m}$ holds for a certain vector \mathbf{x}^1 and $\mathbf{M} \in \mathbf{M}^I$, $\mathbf{m} \in \mathbf{m}^I$ (such a vector \mathbf{x}^0 is called a weak solution).

Separation of interval convex polyhedral sets

Let us consider two families of convex polyhedral sets

$$\mathcal{M}_1^I \equiv \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}^I \mathbf{x} \le \mathbf{b}^I \}, \tag{4}$$

$$\mathcal{M}_2^I \equiv \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{C}^I \mathbf{x} \le \mathbf{d}^I \}, \tag{5}$$

Assuptions for \mathcal{M}_1^I (similarly for \mathcal{M}_2^I):

- no matrix $\mathbf{A} \in \mathbf{A}^I$ contain the zero row
- $\dim \mathcal{M}_1 = n$ holds for all $\mathcal{M}_1 \in \mathcal{M}_1^I$ (i.e., the interval system $\mathbf{A}^I \mathbf{x} < \mathbf{b}^I$ is strongly solvable or, equivalently, the system $\overline{\mathbf{A}}\mathbf{x}^1 - \underline{\mathbf{A}}\mathbf{x}^2 < \underline{\mathbf{b}}, \ \mathbf{x}^1, \mathbf{x}^2 \ge \mathbf{0}$ is solvable)

Separability for some realization

According to Theorem 3, there exists two convex polyhedral sets $\mathcal{M}_1 \in \mathcal{M}_1^I$, $\mathcal{M}_2 \in \mathcal{M}_2^I$ which are strongly separable if and only if the interval system

$$\begin{pmatrix} (\mathbf{A}^{I})^{T} & (\mathbf{C}^{I})^{T} & \mathbf{0} \\ (\mathbf{b}^{I})^{T} & (\mathbf{d}^{I})^{T} & 1 \\ \mathbf{1}^{T} & \mathbf{1}^{T} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix} \ge \mathbf{0}.$$
(6)

is weakly solvable. From Oettli-Prager Theorem we have that interval system (6) is weakly solvable if and only if the system

$$\begin{pmatrix} \underline{\mathbf{A}}^T & \underline{\mathbf{C}}^T & \mathbf{0} \\ \underline{\mathbf{b}}^T & \underline{\mathbf{d}}^T & 1 \\ \mathbf{1}^T & \mathbf{1}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix} \leq \begin{pmatrix} \mathbf{0} \\ 0 \\ 1 \end{pmatrix} \leq \begin{pmatrix} \overline{\mathbf{A}}^T & \overline{\mathbf{C}}^T & \mathbf{0} \\ \overline{\mathbf{b}}^T & \overline{\mathbf{d}}^T & 1 \\ \mathbf{1}^T & \mathbf{1}^T & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix}, \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ v_{l+1} \end{pmatrix} \geq \mathbf{0}$$

is solvable.

Separability for all realizations

To verify whether all convex polyhedral sets $\mathcal{M}_1 \in \mathcal{M}_1^I$, $\mathcal{M}_2 \in \mathcal{M}_2^I$ are strongly separable, it is equivalent to verify whether interval system (6) is strongly solvable.

Theorem 4. An interval system $\mathbf{M}^I \mathbf{x} = \mathbf{m}^I$, $\mathbf{x} \ge \mathbf{0}$ is strongly solvable if and only the system

$$(\mathbf{M}^{c} - diag(\mathbf{z})\mathbf{M}^{\Delta})\mathbf{x} = \mathbf{m}^{c} + diag(\mathbf{z})\mathbf{m}^{\Delta}, \ \mathbf{x} \ge \mathbf{0}$$

is solvable for each $\mathbf{z} \in \{\pm 1\}^m$.

Theorem 5. Let $\mathbf{N}^I \subset \mathbb{R}^{n \times 2n}$. Checking strong solvability of the interval system

$$\mathbf{N}^{I}\mathbf{x} = \mathbf{0}, \ \mathbf{x} \geqq \mathbf{0} \tag{7}$$

is an NP-hard problem.

Separability for all realizations (2)

Sufficient condition: Each two convex polyhedral sets $\mathcal{M}_1 \in \mathcal{M}_1^I$, $\mathcal{M}_2 \in \mathcal{M}_2^I$ are strongly separable, if convex hulls $conv \left(\bigcup_{\mathcal{M}_1 \in \mathcal{M}_1^I} \mathcal{M}_1 \right)$, $conv \left(\bigcup_{\mathcal{M}_2 \in \mathcal{M}_2^I} \mathcal{M}_2 \right)$ are strongly separable. From Gerlach Theorem it follows that a vector $\mathbf{x} \in \mathbb{R}^n$ is a weak solution of $\mathbf{A}^I \mathbf{x} \leq \mathbf{b}^I$ if and only if the vector \mathbf{x} solves

$$(\mathbf{A}^{c} - \mathbf{A}^{\Delta} diag(\mathbf{z}))\mathbf{x} \leq \overline{\mathbf{b}}$$

for some $\mathbf{z} \in \{\pm 1\}^n$. Hence

$$\bigcup_{\mathcal{M}_1 \in \mathcal{M}_1^I} \mathcal{M}_1 = \bigcup_{\mathbf{z} \in \{\pm 1\}^n} \left\{ \mathbf{x} \in \mathbb{R}^n \mid (\mathbf{A}^c - \mathbf{A}^\Delta diag(\mathbf{z})) \mathbf{x} \le \overline{\mathbf{b}} \right\}.$$

Separation of interval convex polytopes

Convex polytopes \mathcal{M}_1 , \mathcal{M}_2 are described by the lists of their vertices as follows

$$\mathcal{M}_1$$
 has vertices $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n, \ m \ge 1$,
 \mathcal{M}_2 has vertices $\mathbf{c}_1, \ldots, \mathbf{c}_l \in \mathbb{R}^n, \ l \ge 1$.

Denote as $\mathbf{A} \in \mathbb{R}^{m \times n}$ such a matrix, for which $\mathbf{A}_{i,\cdot} = \mathbf{a}_i^T$, $i \in \{1, \ldots, m\}$ and analogously $\mathbf{C} \in \mathbb{R}^{l \times n}$ is such a matrix for which $\mathbf{C}_{j,\cdot} = \mathbf{c}_j^T$, $j \in \{1, \ldots, l\}$. We will also use the more transparent notation $\mathcal{M}_1 \equiv \mathcal{M}_1(\mathbf{A})$, $\mathcal{M}_2 \equiv \mathcal{M}_2(\mathbf{C})$.

The convex polytopes $\mathcal{M}_1(\mathbf{A})$, $\mathcal{M}_2(\mathbf{C})$ are weakly separable if and only if

$$\left\{ (\mathbf{r}, s) \in \mathbb{R}^{n+1} \mid \begin{pmatrix} \mathbf{A} & -\mathbf{1} \\ -\mathbf{C} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{r} \\ s \end{pmatrix} \leq \mathbf{0}, \ \mathbf{r} \neq \mathbf{0} \right\} \neq \emptyset.$$

For interval analysis assume that $\mathbf{A} \in \mathbf{A}^{I}$, $\mathbf{C} \in \mathbf{C}^{I}$.

Separability for some realization

The convex polytopes $\mathcal{M}_1(\mathbf{A})$, $\mathcal{M}_2(\mathbf{C})$ are weakly separable for some $\mathbf{A} \in \mathbf{A}^I$, $\mathbf{C} \in \mathbf{C}^I$ if and only if the interval system

$$\begin{pmatrix} \mathbf{A}^{I} & -\mathbf{1} \\ -\mathbf{C}^{I} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{r} \\ s \end{pmatrix} \leq \mathbf{0}, \ \mathbf{r} \neq \mathbf{0}$$
(8)

is weakly solvable. But according to Theorem 6 this is NP-hard problem.

Theorem 6. Given an interval matrix $\mathbf{M}^I \subset \mathbb{R}^{m imes n}$. Checking weak solvability of an interval system

$$\mathbf{M}^{I}\mathbf{x} \leq \mathbf{0}, \ \mathbf{x} \neq \mathbf{0}$$

is NP-hard problem.

Separability for some realization (2)

For checking (with exponential complexity) weak solvability of (8) we can use Theorem 7.

Theorem 7. An interval system $\mathbf{M}^I \mathbf{x} \leq \mathbf{0}, \ \mathbf{x} \neq \mathbf{0}$ is weakly solvable if and only if the system

$$(\mathbf{M}^{c} - \mathbf{M}^{\Delta} diag(\mathbf{z}))\mathbf{x} \leq \mathbf{0}, \ \mathbf{x} \neq \mathbf{0}$$

is solvable for some $\mathbf{z} \in \{\pm 1\}^n$.

Separability for all realizations

The convex polytopes $\mathcal{M}_1(\mathbf{A})$, $\mathcal{M}_2(\mathbf{C})$ are weakly separable for all $\mathbf{A} \in \mathbf{A}^I$ and $\mathbf{C} \in \mathbf{C}^I$ if and only if the interval system

$$\begin{pmatrix} \mathbf{A}^{I} & -\mathbf{1} \\ -\mathbf{C}^{I} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{r} \\ s \end{pmatrix} \leq \mathbf{0}, \ \mathbf{r} \neq \mathbf{0}$$
(9)

is strongly solvable. If the interval system (9) has a strong solution (\mathbf{r}, s) , then simply (9) is strongly solvable and for the hyperplane $\mathcal{R} = {\mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} = s}$ we have

$$\mathcal{M}_1(\mathbf{A}) \subset \overline{\mathcal{R}^-} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} \le s \} \quad \forall \mathbf{A} \in \mathbf{A}^I, \\ \mathcal{M}_2(\mathbf{C}) \subset \overline{\mathcal{R}^+} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{r}^T \mathbf{x} \ge s \} \quad \forall \mathbf{C} \in \mathbf{C}^I.$$

Theorem 8. Let $\dim \mathcal{M}_1(\mathbf{A}) = \dim \mathcal{M}_2(\mathbf{C}) = n$ for all $\mathbf{A} \in \mathbf{A}^I$, $\mathbf{C} \in \mathbf{C}^I$. Then the interval system (9) has a strong solution iff (9) is strongly solvable.

Separability for all realizations (2)

 $\bullet\,$ The interval system (9) has a strong solution if and only if the system

$$\begin{pmatrix} \overline{\mathbf{A}} & -\underline{\mathbf{A}} & -1 \\ -\underline{\mathbf{C}} & \overline{\mathbf{C}} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{r}^1 \\ \mathbf{r}^2 \\ s \end{pmatrix} \leq \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \quad \mathbf{r}^1 \neq \mathbf{r}^2, \quad \mathbf{r}^1, \mathbf{r}^2 \geq \mathbf{0}$$
(10)

is solvable. Moreover, if $(\mathbf{r}^1, \mathbf{r}^2, s)$ solves (10), then the vector $(\mathbf{r}^1 - \mathbf{r}^2, s)$ is the required strong solution of the interval system (9).

• Compute $\bigcup_{\mathbf{A}\in\mathbf{A}^{I}}\mathcal{M}_{1}(\mathbf{A}), \bigcup_{\mathbf{C}\in\mathbf{C}^{I}}\mathcal{M}_{2}(\mathbf{C})$ and check their weak separability. Denoting by $\mathbf{a}_{i}^{j}, i \in \{1, \dots, m\}, j \in J \ (|J| = 2^{n})$, vertices of $\mathbf{A}_{i,\cdot}^{I}$ we have $\bigcup_{\mathbf{A}\in\mathbf{A}^{I}}\mathcal{M}_{1}(\mathbf{A}) = conv \left(\bigcup_{i\in\{1,\dots,m\}}\bigcup_{j\in J} \{\mathbf{a}_{i}^{j}\}\right).$

References

- Fiedler M., Nedoma J., Ramik J., Rohn J., Zimmermann K. (2006): *Linear optimization problems with inexact data*, Springer, New York.
- Grygarová, L. (1998): On a calculation of an arbitrary separating hyperplane of convex polyhedral sets, Optimization, 43, 93–112.
- Kemp, M. C. and Kimura, Y. (1978): Introduction to mathematical economics, Springer, New York.
- Klee, V. (1969): Separation and support properties of convex sets a survey, in:
 A. V. Balakrishnan, ed., Control theory and the calculus of variations, Academic Press, New York, 235–303.
- Rohn, J. (2000): Computing the norm $||A||_{\infty,1}$ is NP-hard, Linear and Multilinear Algebra **47**, No. 3, 195–204.