
Homeworks from Fundamentals of Nonlinear Optimization

(Milan Hladík, November 7, 2022)

For tutorial credits, it is needed at least 30% of points of each series.

(A) Series: Generalized convex functions 44

1. Classify the following functions (check if they are convex, quasiconvex, pseudocon-
vex, quasilinear, concave, . . . ):

(a) xy on R
2
+, 4

(b) 1

xy
on R

2
+, 4

(c) x
y

on R
2
+, 4

(d)
√
xe−x on R+, 4

Find the most precise classification (for example, show that a given function is
quasiconvex, but not explicitly quasiconvex).

2. Find an interesting example of a quasiconvex function. 4

3. Show this characterization of quasiconvexity of a function f : R → R: There exists
a ∈ R ∪ {±∞} such that f(x) is

• either nonincreasing on (−∞, a) and nondecreasing on [a,∞),

• or nonincreasing on (−∞, a] and nondecreasing on (a,∞). 6

4. Let M ⊆ R
n be convex and let f, g : M → R. Consider the product f(x) · g(x).

(a) What we get if f, g are both concave and nonnegative? 4

(b) What we get if f, g are both convex and nonnegative? 4

5. For differentiable functions, compare explicitly quasiconvex and pseudoconvex func-
tions. 6

6. Decide if the following statement is true: If f : R → R is pseudolinear and invertible,
then f−1(x) is pseudolinear as well. 4
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(B) Series: Optimality conditions 38

1. Generalize Karush-Kuhn-Tucker conditions for the optimization problems having
also equality constraints

min f(s); g(x)i ≤ 0, hj(x) = 0, i = 1, . . . , m, j = 1, . . . , k.

Do it step by step:

(a) Extend the Gordan theorem to the form: Ax < 0, Bx = 0 unsolvable ⇔
BT y + AT z = 0, z ≥ 0, z 6= 0 solvable. 4

(b) Generalize the lemma: If x0 is a local minimum, then there is no d ∈ R
n such

that dT∇f(x0) < 0, dT∇gi(x
0) < 0 ∀i ∈ I(x0), dT∇hj(x

0) = 0 ∀j = 1, . . . , k. 4

(c) Generalize the Fritz John conditions: If x0 is a local minimum, then there is

µ ∈ R, λ ∈ R
n a ν ∈ R

k such that

(µ, λ) ≥ 0, (µ, λ) 6= 0,

λTg(x0) = 0,

µ∇f(x0) + λT∇g(x0) + νT∇h(x0) = 0. 4

(d) Generalize the Karush-Kuhn-Tucker conditions: Let x0 be a local minimum,

and let the vectors ∇gi(x
0), i ∈ I(x0), ∇hj(x

0), j = 1, . . . , k, be linearly

independent. Then there are λ ∈ R
n and ν ∈ R

k such that

λ ≥ 0,

λTg(x0) = 0,

∇f(x0) + λT∇g(x0) + νT∇h(x0) = 0. 4

2. Prove the observation mentioned in the lecture: T ⊆ G. 6

3. Prove the observation mentioned in the lecture: int G ⊆ int T . 6

4. By using KKT conditions, solve the problems

(a) max cTx; xTAx ≤ 1, x ∈ R
n, where c 6= 0 and A is positive definite. 4

(b) max xy; x+ y2 ≤ 2, x, y ≥ 0. (Hint. By analysis of the cases.) 6
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(C) Series: Lagrange duality 26

1. Consider the problem

min xTQx+ qTx; xTAix+ aTi x+ bi ≤ 0, i = 1, . . . , m,

where Q,A1, . . . , Am ∈ R
n×n, q, a1, . . . , am ∈ R

n, b1, . . . , bm ∈ R, and in addition Q

is positive definite and Ai are positive semidefinite. Find the Lagrange dual problem
and categorize it. 6

2. Decide about validity of the statements:

(a) The dual problem to the dual problem is always the primal problem. 2

(b) The above statement holds for every convex programming problem. 4

3. Let A ∈ R
m×n and b ∈ R

n. Consider the optimization problem

min
x∈Rn

max
i=1,...,m

(Ai∗x+ bi).

(a) Reformulate the problem as a linear program and find the standard dual prob-
lem. 2

(b) Find the Lagrange dual problem for the equivalent form

min
x∈Rn

max
i=1,...,m

yi; y = Ax+ b. 4

(c) Compare the optimal value (of the primal or dual problem) with the approxi-
mate value computed by solving

min
x∈Rn

ln(
∑n

i=1
exp(Ai∗x+ bi)). 4

(d) Compare the optimal value with the approximate value computed by solving
the problem with parameter γ > 0

min
x∈Rn

1

γ
ln(

∑m

i=1
exp(γ(Ai∗x+ bi))). 4
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(D) Series: Semidefinite programming 32

1. Formulate the constraints as constraints from a semidefinite program

(a) xy ≥ 1, x, y ≥ 0 2

(b) x4 + y4 ≤ 1 4

2. Consider undirected graph G = (V,E), V = {1, . . . , n}, with interval weights on
edges [aij , bij ], (i, j) ∈ E, representing uncertain distances between objects i, j ∈ V .
Formulate semidefinite program deciding whether there exists points x1, . . . , xn ∈
R

d such that the distance between xi and xj lies in the interval [aij , bij ], (i, j) ∈ E. 4

3. Formulate as semidefinite program the problem of finding an ellipse containing the
points x1, . . . , xn ∈ R

d, and not containing the points y1, . . . , ym ∈ R
d such that the

ellipse (a) is as round as possible (in some sense), or (b) has minimal sum of the
lengths of semiaxes. 4

4. Formulate as a semidefinite program the problem

min
x∈Rn

max
i=1,...,m

| log(aTi x)− log(bi)|,

which is a linear regression problem with maximum norm after taking the logarithm
of the data. 4

5. Formulate as semidefinite program and its solution the condition that a polynomial
p(x) = anx

n+ · · ·+a1x+a0 can be expressed as a sum of squares of some polynoms.
Hint: Cholesky decomposition of the solution of a suitable SDP. 6

6. Consider 2-SAT problem, where each clause is a disjunction of exactly two literals.
Find 0.878-approximation algorithm to maximize the number of simultaneously
satisfiable clauses. 8
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