Homeworks from Fundamentals of Nonlinear Optimization (Milan Hladík, November 7, 2022)

For tutorial credits, it is needed at least 30% of points of each series.

(\mathbf{A})	Series: Generalized convex functions	44
1	. Classify the following functions (check if they are convex, quasiconvex, pseudoconvex, quasilinear, concave,):	
	(a) xy on \mathbb{R}^2_+ ,	4
	(b) $\frac{1}{xy}$ on \mathbb{R}^2_+ ,	4
	(c) $\frac{x}{y}$ on \mathbb{R}^2_+ ,	4
	(d) $\sqrt{x}e^{-x}$ on \mathbb{R}_+ ,	4
	Find the most precise classification (for example, show that a given function is quasiconvex, but not explicitly quasiconvex).	
2	. Find an interesting example of a quasiconvex function.	4
3	. Show this characterization of quasiconvexity of a function $f \colon \mathbb{R} \to \mathbb{R}$: There exists $a \in \mathbb{R} \cup \{\pm \infty\}$ such that $f(x)$ is	
	• either nonincreasing on $(-\infty, a)$ and nondecreasing on $[a, \infty)$,	
	• or nonincreasing on $(-\infty, a]$ and nondecreasing on (a, ∞) .	6
4	. Let $M \subseteq \mathbb{R}^n$ be convex and let $f, g \colon M \to \mathbb{R}$. Consider the product $f(x) \cdot g(x)$.	
	(a) What we get if f, g are both concave and nonnegative?	4
	(b) What we get if f, g are both convex and nonnegative?	4
5	. For differentiable functions, compare explicitly quasiconvex and pseudoconvex func- tions.	6
6	. Decide if the following statement is true: If $f \colon \mathbb{R} \to \mathbb{R}$ is pseudolinear and invertible, then $f^{-1}(x)$ is pseudolinear as well.	4

(B) Series: Optimality conditions

1. Generalize Karush-Kuhn-Tucker conditions for the optimization problems having also equality constraints

min
$$f(s)$$
; $g(x)_i \leq 0$, $h_j(x) = 0$, $i = 1, \dots, m, j = 1, \dots, k$.

Do it step by step:

- (a) Extend the Gordan theorem to the form: Ax < 0, Bx = 0 unsolvable $\Leftrightarrow B^T y + A^T z = 0$, $z \ge 0$, $z \ne 0$ solvable. 4
- (b) Generalize the lemma: If x^0 is a local minimum, then there is no $d \in \mathbb{R}^n$ such that $d^T \nabla f(x^0) < 0, d^T \nabla g_i(x^0) < 0 \ \forall i \in I(x^0), \ d^T \nabla h_j(x^0) = 0 \ \forall j = 1, \dots, k.$ 4
- (c) Generalize the Fritz John conditions: If x^0 is a local minimum, then there is $\mu \in \mathbb{R}, \lambda \in \mathbb{R}^n \ a \ \nu \in \mathbb{R}^k$ such that

$$(\mu, \lambda) \ge 0, \ (\mu, \lambda) \ne 0,$$
$$\lambda^T g(x^0) = 0,$$
$$\mu \nabla f(x^0) + \lambda^T \nabla g(x^0) + \nu^T \nabla h(x^0) = 0.$$

(d) Generalize the Karush-Kuhn-Tucker conditions: Let x^0 be a local minimum, and let the vectors $\nabla g_i(x^0)$, $i \in I(x^0)$, $\nabla h_j(x^0)$, $j = 1, \ldots, k$, be linearly independent. Then there are $\lambda \in \mathbb{R}^n$ and $\nu \in \mathbb{R}^k$ such that

$$\lambda \ge 0,$$

$$\lambda^T g(x^0) = 0,$$

$$\nabla f(x^0) + \lambda^T \nabla g(x^0) + \nu^T \nabla h(x^0) = 0.$$
4

- 2. Prove the observation mentioned in the lecture: $T \subseteq G$. 6
- 3. Prove the observation mentioned in the lecture: $int G \subseteq int T$. 6
- 4. By using KKT conditions, solve the problems

(a) max
$$c^T x$$
; $x^T A x \leq 1$, $x \in \mathbb{R}^n$, where $c \neq 0$ and A is positive definite. 4

(b) max xy; $x + y^2 \le 2$, $x, y \ge 0$. (*Hint.* By analysis of the cases.) 6

(C) Series: Lagrange duality

1. Consider the problem

min
$$x^T Q x + q^T x$$
; $x^T A_i x + a_i^T x + b_i \le 0, \ i = 1, \dots, m$,

where $Q, A_1, \ldots, A_m \in \mathbb{R}^{n \times n}$, $q, a_1, \ldots, a_m \in \mathbb{R}^n$, $b_1, \ldots, b_m \in \mathbb{R}$, and in addition Q is positive definite and A_i are positive semidefinite. Find the Lagrange dual problem and categorize it.

- 2. Decide about validity of the statements:
 - (a) The dual problem to the dual problem is always the primal problem. 2
 - (b) The above statement holds for every convex programming problem. 4
- 3. Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^n$. Consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \max_{i=1,\dots,m} (A_{i*}x + b_i).$$

- (a) Reformulate the problem as a linear program and find the standard dual problem. ${\bf 2}$
- (b) Find the Lagrange dual problem for the equivalent form

$$\min_{x \in \mathbb{R}^n} \max_{i=1,\dots,m} y_i; \ y = Ax + b.$$

(c) Compare the optimal value (of the primal or dual problem) with the approximate value computed by solving

$$\min_{x \in \mathbb{R}^n} \ln(\sum_{i=1}^n \exp(A_{i*}x + b_i)).$$
4

(d) Compare the optimal value with the approximate value computed by solving the problem with parameter $\gamma > 0$

$$\min_{x \in \mathbb{R}^n} \frac{1}{\gamma} \ln(\sum_{i=1}^m \exp(\gamma(A_{i*}x + b_i)))).$$
4

6

(D) Series: Semidefinite programming

1. Formulate the constraints as constraints from a semidefinite program

(a)
$$xy \ge 1, x, y \ge 0$$
 2

(b)
$$x^4 + y^4 \le 1$$

- 2. Consider undirected graph $G = (V, E), V = \{1, ..., n\}$, with interval weights on edges $[a_{ij}, b_{ij}], (i, j) \in E$, representing uncertain distances between objects $i, j \in V$. Formulate semidefinite program deciding whether there exists points $x_1, ..., x_n \in \mathbb{R}^d$ such that the distance between x_i and x_j lies in the interval $[a_{ij}, b_{ij}], (i, j) \in E$. 4
- 3. Formulate as semidefinite program the problem of finding an ellipse containing the points $x_1, \ldots, x_n \in \mathbb{R}^d$, and not containing the points $y_1, \ldots, y_m \in \mathbb{R}^d$ such that the ellipse (a) is as round as possible (in some sense), or (b) has minimal sum of the lengths of semiaxes.
- 4. Formulate as a semidefinite program the problem

$$\min_{x \in \mathbb{R}^n} \max_{i=1,\dots,m} |\log(a_i^T x) - \log(b_i)|,$$

which is a linear regression problem with maximum norm after taking the logarithm of the data.

- 5. Formulate as semidefinite program and its solution the condition that a polynomial $p(x) = a_n x^n + \cdots + a_1 x + a_0$ can be expressed as a sum of squares of some polynoms. *Hint:* Cholesky decomposition of the solution of a suitable SDP.
- 6. Consider 2-SAT problem, where each clause is a disjunction of exactly two literals. Find 0.878-approximation algorithm to maximize the number of simultaneously satisfiable clauses.

6

8

 $\mathbf{4}$

32

4

4