Homeworks from Fundamentals of Nonlinear Optimization
(Milan Hladik, November 7, 2022)

For tutorial credits, it is needed at least 30% of points of each series.

(A) Series: Generalized convex functions

1. Classify the following functions (check if they are convex, quasiconvex, pseudocon-
vex, quasilinear, concave, ...):

b) L on R?

a) xy on R7,
Ty +
c

(c) £ on B2,

d) Vze " on Ry,

Find the most precise classification (for example, show that a given function is
quasiconvex, but not explicitly quasiconvex).

(
(
(

2. Find an interesting example of a quasiconvex function.

3. Show this characterization of quasiconvexity of a function f: R — R: There exists
a € RU{+£oo} such that f(z) is

e cither nonincreasing on (—oo, a) and nondecreasing on [a, 00),

e or nonincreasing on (—oo, a| and nondecreasing on (a, 00).
4. Let M C R"™ be convex and let f,g: M — R. Consider the product f(z) - g(x).

(a) What we get if f, g are both concave and nonnegative?

(b) What we get if f, g are both convex and nonnegative?

5. For differentiable functions, compare explicitly quasiconvex and pseudoconvex func-
tions.

6. Decide if the following statement is true: If f: R — R is pseudolinear and invertible,
then f~!(z) is pseudolinear as well.
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(B) Series: Optimality conditions

1. Generalize Karush-Kuhn-Tucker conditions for the optimization problems having
also equality constraints

min f(s); g(x); <0, hj(x)=0, i=1,...,m, j=1,... k.
Do it step by step:
(a) Extend the Gordan theorem to the form: Ax < 0, Bx = 0 unsolvable <

BTy+ ATz =0, 2> 0, z # 0 solvable.

(b) Generalize the lemma: If 2° is a local minimum, then there is no d € R"™ such
that d*V f(z°) < 0, d*Vg;(2°) <0 Vi € I(2°), d*'Vh;(2°) =0Vj=1,...,k.

(c) Generalize the Fritz John conditions: If 2V is a local minimum, then there is
pER, NeR” av e RF such that

(1, A) 2 0, (1, A) # 0,
Ng(a") =0,
uVf(2%) + A\'Vg(2°) + T Vh(2%) = 0.
(d) Generalize the Karush-Kuhn-Tucker conditions: Let 2° be a local minimum,

and let the vectors Vg;(a°), i € I(z"), Vh;(z°), j = 1,...,k, be linearly
independent. Then there are X\ € R and v € R* such that

v

A
Mg (2
%)

0,
0,
V") +2\'Vg(2°) + v ' Vh(x 0.

2. Prove the observation mentioned in the lecture: T' C G.
3. Prove the observation mentioned in the lecture: int G C int T.
4. By using KKT conditions, solve the problems

(a) max cl'z; 2TAz <1, 2 € R", where ¢ # 0 and A is positive definite.

(b) max xy; = +y* <2, x,y > 0. (Hint. By analysis of the cases.)
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(C)

Series: Lagrange duality

. Consider the problem

min 27 Qx +¢'x; 2T Ax+alr +b;<0,i=1,...,m,

where O, Ay,..., A, € R"™" q,a1,...,a, € R", by,...,b, € R, and in addition Q)
is positive definite and A; are positive semidefinite. Find the Lagrange dual problem
and categorize it.

Decide about validity of the statements:

(a) The dual problem to the dual problem is always the primal problem.

(b) The above statement holds for every convex programming problem.

Let A € R™™ and b € R™. Consider the optimization problem

min max (A;x+ b;).
z€R™ i=1,...m

(a) Reformulate the problem as a linear program and find the standard dual prob-
lem.

(b) Find the Lagrange dual problem for the equivalent form

min  max y; y = Ax +0.
z€R™ i1=1,....m

(¢) Compare the optimal value (of the primal or dual problem) with the approxi-
mate value computed by solving

min In(}"" | exp(Ainz + b;)).

PISIING

(d) Compare the optimal value with the approximate value computed by solving
the problem with parameter v > 0

1 m
min =I5 exp(y (i + b))
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(D) Series: Semidefinite programming

1.

Formulate the constraints as constraints from a semidefinite program

(a) 2y > 1, 2,y > 0
(b) 2* +y* <1

Consider undirected graph G = (V, E), V = {1,...,n}, with interval weights on
edges [aij, bij], (i,7) € E, representing uncertain distances between objects i,j € V.
Formulate semidefinite program deciding whether there exists points x1,...,x, €
R? such that the distance between z; and z; lies in the interval [a;;, b;], (i, ) € E.

Formulate as semidefinite program the problem of finding an ellipse containing the
points 1, ..., z, € R? and not containing the points y1, . .., ¥, € R? such that the
ellipse (a) is as round as possible (in some sense), or (b) has minimal sum of the
lengths of semiaxes.

Formulate as a semidefinite program the problem

min max |log(a! x) — log(b;)|,

zeR™ 1=1,...,m
which is a linear regression problem with maximum norm after taking the logarithm
of the data.

Formulate as semidefinite program and its solution the condition that a polynomial
p(z) = apa™+- - -+ a1+ ap can be expressed as a sum of squares of some polynoms.
Hint: Cholesky decomposition of the solution of a suitable SDP.

Consider 2-SAT problem, where each clause is a disjunction of exactly two literals.
Find 0.878-approximation algorithm to maximize the number of simultaneously
satisfiable clauses.
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