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(T1) Least Sparse Solution of p-norm Optimization with p > 1

(T2) Solution Uniqueness to Problems Involving Convex PA
Functions with Applications to Constrained /;-Minimization

e Solution Uniqueness Conditions to Basis Pursuit-like, LASSO-like and
Other Important Problems

e Verification of Solution Uniqueness Conditions

(T3) Exact Recovery over Constraint Sets using Matching Pursuit
Algorithm

e Constrained Matching Pursuit
e Coordinate-Projection Admissible Sets

e Exact Recovery Conditions on Coordinate-Projection Admissible Sets
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Introduction to Compressed Sensing

Sparsity Model and Original Compressed Sensing Problem

Sparsity: Most of components are zero
Sparsity Level: Number of nonzero entries
Compressiblity: Well-approximated by sparse signals

Compressed Sensing

To recover a sparse vector z € RV from a measurement vector y € R™
with y = Az (possibly subject to errors) and A € R™*N (m < N) is a
measurement matrix.

Problem Formulation
Let ||z|lo := Card(x), the original CS problem can be modeled below:

min ||z||o subject to y = Az (o).
zERN

Applications
Engineering, Statistics, Signal and Image Processing, and. etc.
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Introduction to Compressed Sensing
Algorithms in Compressed Sensing

Sparsity based Optimization Algorithms
Since ¢, = ¢y as p | 0, one can approximate () by the following:

min ||z subject to = Ax.

min [l subj y
Greedy Algorithms

They directly tackle the original problem by making a local optimal
decision at each step with an attempt to find a global optimal solution.

Thresholding based Algorithms

Most of them solve the square system AT Az = ATy through a fixed-point
method and exploit hard thresholding operator.
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Least Sparse Solution of p-norm based Problems with p > 1

(Topic 1) Main Problems Used in Sparse Optimization

Generalized Basis-Pursuit

min ||z subject to Az =
min izl subj y

Generalized Basis-Pursuit Denoising |

min |z|, subjectto ||Az —y|2<e
xERN

Generalized Basis-Pursuit Denoising |l

min [|Az —yll2 subject to |z, <7
zeRN
Generalized Ridge Regression
1
in —||Az —y||3 + \||z|?
min >z = yl}3 + Al
Generalized Elastic Net

!
min o f| Az = yl3 + M|zl + Aol|]2

z€RN
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Least Sparse Solution of p-norm based Problems with p > 1

Geometry of BP, and BPDN,, for Different p's

Figura: Geometries of BP and BPDN for different values of p

A Geometrical lllustration

0<p<1l — A good choice but nonconvex!

p=1 — A good choice and results in a convex program!
p>1 —  Not a good choice! How bad?
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Results on Least Sparse Solution of p-norm Problems with p > 1

Least Sparse Solution of p-norm based Problems with p > 1

Main Results on Least Sparsity with p > 1

Proposition

Let p> 1,0 <n < mingz—y ||z|lp, A >0, »>1,A1 >0 and Ay > 0. Each
of the above optimization problems attains a unique optimal solution for
any A and y as long as the associated constraint sets are nonempty.

Consider this open set in R™*N x R™ whose complement has measure
zero: S := {(A4,y) | each m x m submatrix of A is invertible and y # 0}.

Letp>1,N>2m—1,0 < e <|yll2,0 <n < mingg—y ||2]p, A >0,
r>1, A\ >0 and Ay > 0. For almost all (A,y) € R™*N | the unique
optimal solution to the any of the above problems has a support size of N.
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Least Sparse Solution of p-norm based Problems with p > 1 Results on Least Sparse Solution of p-norm Problems with p > 1

Methodologies and Compressibility

Summary of Methodologies
e Using KKT conditions and implicit function theorem, we prove that
x*, possibly along with a Lagrange multiplier is a C! function of
(A,y) on the set S.
e Foreachi=1,...,N, if z is vanishing at (A4, y) € S, then its
gradient evaluated at (A, y) is nonzero.
e The zero set of each component x has zero measure.
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Solution Uniqueness to Convex PA Functions

(Topic 2) ¢1-Norm based Optimization

In sparse recovery, the desired vector is often a solution for one of the
following problems:

min ||x||; subjectto Ax =y (BP)
zCRN
min ||lz||; subject to |[Az —yls <e (BPD 1)
xzCRN

1
min —||Az —y||3 subjectto |z|1 <7 (BPD 1)
zERN 2

1
min — || Az —y||3 + A= LASSO
nin, 5 yllz + Allz(lx ( )

Note that ||.||1 is not strictly convexr = nonunique solution!
Is this important?

1f not, recovery process is not successful!
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Solution Uniqueness to Convex PA Functions

A Review on Solution Uniqueness (Individual Recovery)

e Foucart established some results for the problems (BP) and (BPD I).

e Zhang et al. established necessary and sufficient conditions for the
mentioned problems when |.||3 is replaced with a strictly convex
smooth function. Later, they replaced ||z||1 by ||Ex|:.

e Gilbert replaced ||.||; with a polyhedral gauge function:
A convex piecewise affine function that is nonnegative, positively
homogeneous of degree 1, and vanishes at 0.

e Zhao established necessary and sufficient conditions for nonnegative
sparse vectors that satisfy an equality linear system.

Is there a room to improve?

Yes!
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Solution Uniqueness to Convex PA Functions

Motivations and Contributions

Motivations

e To add general linear inequality constraints — Dantzig selector:
min [|z||; subject to ||AT(Az —y)||le < e
zeRN
e To go beyond ||z||; and ||Ez||; — fused LASSO:
min [|[Az — yl3 + A1 - [lzlli + A2 - | Dizi.
z€RN

e Explicit dual-based conditions — easy and computationally favorable.
Contributions

e Added general linear inequality constraints.
e Considered convex piecewise affine functions, including ¢;-norm.

e Developed a unifying approach that recovers all the known results and
enables us to tackle new problems.
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Solution Uniqueness to Convex PA Functions
General Framework

Let A c R™N C e RP*N and f: R™ — R be a C! strictly convex
function. Further, assume g(x) is a convex piecewise affine function.

Main Question

Given a feasible point z* for any of the below problems, under which
conditions this vector is the unique solution?

zrgﬁr}v g(x) subjectto Ax=y and Czx>d (BP-like)
zrélﬁ&r}v g(x) subjectto f(Ax —y)<e and Cx>d (BPD I-like)
xrélﬂlgl}v f(Ax —y) subjectto gi(z) <n1,..., gr(z) <m and Cz>d

(BPD Il-like)
;21}@ f(Ax —y) +g(x) subjectto Cz>d (LASSO-like)
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Solution Uniqueness to Convex PA Functions

Preliminaries (Convex Piecewise Affine Functions)

Let g : RY — R be a convex piecewise affine (PA) function:

g(r) = max l (plTa; + %).

i=12,..,
For z* € RY with Cz* > d, define o := {i € {1,...,p} | (Cz* —d); = 0},
P

1:= {iE{l,...,l} |p?x*+7i:g(x*)} and W = c RIZIXN
T
Pz,

Finding the matrix W is equivalent to finding the convex hull generators of
dg(x*).
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Solution Uniqueness to Convex PA Functions
A Key Lemma

Lemma
Let A e R™*N and H € R™*N. Then,

{ueRY | Au=0, Hu> 0} = {0}

if and only if the following conditions hold:
(i) {u € RY | Au=0, Hu = 0} = {0}; and
(i) There exist z € R™ and 2’ € R, | such that ATz = HT2',

Main Idea of Proof
Define the linear program:

max 17 Hu subject to  Au =0, Hu > 0. (LP)
Then, {u € RN | Au =0, Hu > 0} = {0} if and only if
(i) {u e RN | Au=0, Hu =0} = {0}; and
(ii") zero is the optimal value of (LP).
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Solution Uniqueness to Convex PA Functions Unique Solution to the Basis Pursuit-like Problem

Basis Pursuit-like Problem

Theorem

Let x* be a feasible point of the optimization problem (BP-like). Then z*
is its unique minimizer if and only if the following conditions hold:
(i) {veRYN | Av =0, Cpev =0, Wv =0} = {0}, and

|al

ii) There exist w € R™, w' € R | and w” € R with 0 < w” < 1 and
++
1Tw"” =1 such that ATw — CLaw' + WTw" =0

Main Steps of Proof
1. For sufficiently small ||v]|, we have g(z* 4+ v) = g(2*) + max;ez pl v.
2. z* is the unique solution if and only if v* = 0 for
min (maxp?v) subject to  Av =0, Cguev > 0.
veERN \ i€l
3. v* = 0 is the unique solution of this problem if and only if

{veRY | Av =0, Cpev >0, ma,zxplTU <0 [or Wov < 0]} = {0}.
1€
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Solution Uniqueness to Convex PA Functions Numerical Verification of the Solution Uniqueness Conditions

How to Verify These Conditions?

Solution uniqueness criteria that we found consist of:

(a) full column rank condition for a matrix — Linear Algebra

(b) consistency of a linear system with non-strict inequalities — LP
(c) consistency of another linear system with strict inequality — 7

Lemma

Let A c R™*N 4 € R™ be given. Then, the linear inequality system
Az =y, x> 0;

has a solution if and only if the following linear program is solvable and
attains a positive optimal value:

max € subject to Ar =y, xz>el, e€<I1.
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Exact Support Recovery with CP Admissible Constraints Orthogonal Matching Pursuit

(Topic 3) Orthogonal Matching Pursuit (OMP)

The orthogonal matching pursuit is a greedy algorithm to tackle the
following problem on R™V:

min ||z||o subject to Az =y.
ERN

Idea
Starting with 2o = 0 (set the initial support set Sy = ), in the nth step,
let:

j* € Argmin, mtin |y — A(x, + tej)]|3.

Add this j* to the current support index approximation set S,, and then
update the iteration by defining:

Tni1 € Argmin, ||y — Az||3  subject to  supp(z) € Syi1.
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Exact Support Recovery with CP Admissible Constraints Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Input: measurement matrix A, and measurement vector y
Initialization: 29 =0 and Sy =0
Iteration: repeat until a stopping criteria is met at n = k:

Snt1=8n U {jns1} where j* | € Argmaxj](AT(y — Axy,));|
Tpi1 € Argmin,|ly — Az|3 st supp(2) C Spt1.
Output: the k-sparse vector z* = xy,.

Advantage
Fast at least for relatively small sparsity levels if A is well-chosen.

The OMP recovers any k-sparse signal x from the measurement y = Az in
at most k iterations if 5, + k61 < 1 (Mo and Shen [2012]).
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Exact Support Recovery with CP Admissible Constraints  Orthogonal Matching Pursuit
Definition

Given a matrix A € R™*" and a constraint set P, we say that the
exact support recovery of a vector z* € ¥ NP is achieved from

y = Azx* via the OMP (or the CMP), if along an arbitrary sequence
((@n, 7, Sn))neN for the given x*, there exists an index s € N such that
Ss = supp(z*). If the exact support recovery of any vector of ¥ NP is
achieved, then we call the exact support recovery on 3, NP is achieved.)

Given a matrix A € R™*Y and a constraint set P, we say that the
exact vector recovery of z* is achieved from y = Az* via the OMP (or
the CMP) if (i) the exact support recovery of z* is achieved, and (ii)
along any sequence ((azn, j,’;,Sn))n ¢y for the given z*, once

Ss = supp(z*) is reached, then the projection step has a unique
solution x5 = z*.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Motivations and Contributions

Motivations

e Using greedy algorithm for constrained recovery.

e |dentifying conditions for exact support and vector recovery.

e Developing verifiable sufficient conditions for uniform recovery.

Contributions

e Introduced a greedy algorithm for constrained problems.

e Defined rigorous notions of exact and vector recovery.

e Analyzed necessary and sufficient conditions for constrained recovery
and showed that they critically depend on constraint sets, so we
introduced CP admissible sets.

e Used properties of CP admissible to develop verifiable recovery
conditions based on Rl and RO-like constants.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Constrained Matching Pursuit

Our goal is to extend the OMP algorithm to solve the following problem:

min ||z||p subjectto Ax=y and =xz€P.
zeRN

Constrained Matching Pursuit (CMP)
Input: measurement matrix A, and measurement vector y, and
constraint set P containing the zero vector.
Initialization: 29 =0 and Sy = 0.
Iteration: repeat until a stopping criteria is met at n = k:
Spt1=8p U {jns1} with ji.4 € Argmin;cse f7;
where 7 = min ||y — A(z, + te;)|3 st. x,+te; €P.
Tpt1 € Argmin,ep |ly — Az||3 s.t. supp(z) C Snt1-
Output: the k-sparse vector o* := xy.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Recovery Conditions for CMP

Forany u,v € P,j € {l,...,N}, and [;(z) :== {t e R|x + te; € P} let

*(u,v) == min ||Au— A(v +te;)||3
f5 (u, ) in [Au — A(v +tej)l2
A Key Condition (for a given matrix A and a closed convex set P)
For any 0 # u € ¥} N P, any index set S C supp(u) and an arbitrary
optimal solution v of min,cp, supp(z)cs [[A(u — 2)||2, the following holds:

: min u,v) < min *(u,v).
jESUPP(u)\Sf]( ) je[sur)p(u)]cfj( )

Given a matrix A € R™*N and a constraint set P, suppose condition (H)
holds. Then the exact support recovery is achieved on i N P.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Remarks on Condition H
It is computationally costly.
It does not only depend on A but also critically relies on constraint set P:

Example

Let d = (dy,...,dy)T € RN with d; # 0 for each 4. Consider the set
P :={x € RN |d'z = 0}. For any u,v € P and any index j,
fi(u,v) = || A(u — v)||3 for any matrix A. Thus, for z* € X, NP, we
have Argmin;cgy Ny f*(2*,0) = {1,..., N}, so it is possible that
Ji ¢ supp(z*). Hence, no matrix A can achieve exact support
recovery on the set P.

Motivations to ldentify a Practical Class of Sets
(i) Each set in this class contains sufficiently many sparse vectors.
(ii) It includes important sets arising from applications like R" and Rﬂy.

(iii) Relatively easily verifiable sufficient recovery conditions can be
established using general properties of this class of sets.
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Coordinate-Projection Admissible Sets

Definition

A set P C RY is coordinate-projection (CP) admissible if for every u € P
and S C supp(u), the vector (ug;0) € P.

Some Important Examples
RN R+, unit £,-ball with p > 0, and more.

Some Interesting Properties

1. Aset C C R" is a CP admissible closed convex cone if and only if

C =Rz x (Ry)z, x (R_)z_ x {0}z, such that Zy,7Z,,7 and Zy
construct a partition of {1,..., N}. Hence, the conic hull of a closed CP
admissible set P is of form cone(P) = Rz, x (Ry)z, x (R_)z_ x {0}z,.
2. A set P C RY is CP admissible, closed and convex if and only if

P =W +C where W is a CP admissible convex and compact set, and C is
a CP admissible closed convex cone. (similar to Minkowski-Weyl)
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Examples to Clarify Geometry of CP-admissible Sets

Yy Yy
convex and
CP-admissible %g
x xr
q
nonconvex and F
CP-admissible
y Yy
convex and
non-CP-admissible nonconvex and
non-CP-admissible
—————————————————— AT @ ‘ ‘ T x
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Generalization of Restricted Isometry and Orthogonality

Constants

Definition

For a given (possibly non-CP admissible) set P, a matrix A € R™*N and
disjoint index sets Z1,Z,,Z_ whose union is {1,..., N}, we say that

e A real number § is of Property Rl on P if (1—0)|lu—v||3 < ||A(u—v)]3
for all u,v € ¥ NP with supp(v) C supp(u), and 0 < 6 < 1.

e A real number 6 is of Property RO on P corresponding to 71,Z,,7_ if
6 > 0 and for all u,v € X NP with supp(v) C supp(u), we have

max (maxje[supp(u)]chl [(A(u — v), Aej)|, maXje[supp(u))enz, (Alu —

v), Aej)+, MaXjesupp(u)enz_ (A(u — v), A-j>—) < 0 flu—vl2.

We also denote these two constants by d; p and 0, p respectively.
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Uniform Recovery Condition

Theorem

Let A € R™*N be a matrix with unit columns, and P be an irreducible,
closed, convex, and CP admissible set in RN whose conic hull is given by
cone(P) = Rz, x (Ry)z, x (R_)z_, where Iy, Z, and I_ form a disjoint
union of {1,...,N}. Then condition (H) holds on P if

(i) There exist constants 0y p of Property Rl and 6y p of Property RO
corresponding to 11,7, and I_ such that 1 — 0, p > V- Orp, or
(i) There exist constants 0y, cone(p) of Property Rl and 0, cone(p) of
Property RO corresponding to Z;,Z. and Z_ such that
1 — Ok, cone(p) > Vk - Ok, cone(p)-

Condition (ii) is easier to check due to simple structure of cone(P).
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