Topics in Sparse Recovery via Constrained Optimization: Least Sparsity, Solution Uniqueness, and Constrained Exact Recovery

Ahmad Mousavi

Institute for Mathematics and its Applications University of Minnesota Minneapolis, MN 55455, USA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

かくで 1/30

Introduction to Compressed Sensing

(T1) Least Sparse Solution of *p*-norm Optimization with p > 1

(T2) Solution Uniqueness to Problems Involving Convex PA Functions with Applications to Constrained ℓ_1 -Minimization

- Solution Uniqueness Conditions to Basis Pursuit-like, LASSO-like and Other Important Problems
- Verification of Solution Uniqueness Conditions

$(\top 3)$ Exact Recovery over Constraint Sets using Matching Pursuit Algorithm

- Constrained Matching Pursuit
- Coordinate-Projection Admissible Sets
- Exact Recovery Conditions on Coordinate-Projection Admissible Sets

Sparsity Model and Original Compressed Sensing Problem

Sparsity: Sparsity Level: Compressiblity: Most of components are zero Number of nonzero entries Well-approximated by sparse signals

Compressed Sensing

To recover a sparse vector $x \in \mathbb{R}^N$ from a measurement vector $y \in \mathbb{R}^m$ with y = Ax (possibly subject to errors) and $A \in \mathbb{R}^{m \times N}$ $(m \ll N)$ is a measurement matrix.

Problem Formulation

Let $||x||_0 := Card(x)$, the original CS problem can be modeled below:

$$\min_{x \in \mathbb{R}^N} \|x\|_0 \quad \text{ subject to } \quad y = Ax \quad (P_0).$$

Applications

Engineering, Statistics, Signal and Image Processing, and etc.

Algorithms in Compressed Sensing

Sparsity based Optimization Algorithms

Since $\ell_p \to \ell_0$ as $p \downarrow 0$, one can approximate (P_0) by the following:

$$\min_{x \in \mathbb{R}^N} \|x\|_p \quad \text{ subject to } \quad y = Ax.$$

Greedy Algorithms

They directly tackle the original problem by making a local optimal decision at each step with an attempt to find a global optimal solution.

Thresholding based Algorithms

Most of them solve the square system $A^T A x = A^T y$ through a fixed-point method and exploit hard thresholding operator.

Least Sparse Solution of $p\operatorname{-norm}$ based Problems with p>1

(Topic 1) Main Problems Used in Sparse Optimization

Generalized Basis-Pursuit

$$\min_{x \in \mathbb{R}^N} \|x\|_p \quad \text{subject to} \quad Ax = y$$

Generalized Basis-Pursuit Denoising I

$$\min_{x \in \mathbb{R}^N} \ \|x\|_p \quad \text{subject to} \quad \|Ax - y\|_2 \leq \epsilon$$

Generalized Basis-Pursuit Denoising II

$$\min_{x \in \mathbb{R}^N} \ \|Ax - y\|_2 \quad \text{subject to} \quad \|x\|_p \leq \eta$$

Generalized Ridge Regression

$$\min_{x \in \mathbb{R}^N} \ \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|x\|_p^p$$

Generalized Elastic Net

$$\min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - y\|_2^2 + \lambda_1 \|x\|_p^r + \lambda_2 \|x\|_2^2$$

Least Sparse Solution of $p\operatorname{-norm}$ based Problems with p>1

Geometry of BP_p and $BPDN_p$ for Different p's

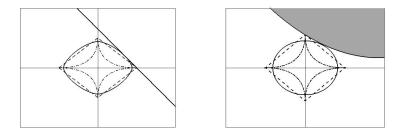


Figura: Geometries of BP and BPDN for different values of \boldsymbol{p}

A Geometrical Illustration

- 0
- p > 1 \longrightarrow Not a good choice! How bad?

Main Results on Least Sparsity with p > 1

Proposition

Let $p > 1, 0 < \eta < \min_{Ax=y} ||x||_p, \lambda > 0, r \ge 1, \lambda_1 > 0$ and $\lambda_2 > 0$. Each of the above optimization problems attains a unique optimal solution for any A and y as long as the associated constraint sets are nonempty.

Consider this open set in $\mathbb{R}^{m \times N} \times \mathbb{R}^m$ whose complement has measure zero: $S := \{(A, y) \mid \text{each } m \times m \text{ submatrix of A is invertible and } y \neq 0\}.$

Theorem

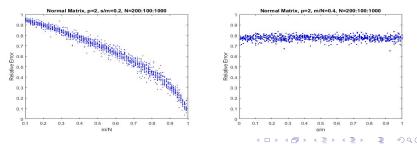
Let $p > 1, N \ge 2m - 1, 0 < \epsilon < \|y\|_2, 0 < \eta < \min_{Ax=y} \|x\|_p, \lambda > 0$, $r \ge 1, \lambda_1 > 0$ and $\lambda_2 > 0$. For almost all $(A, y) \in \mathbb{R}^{m \times N}$, the unique optimal solution to the any of the above problems has a support size of N.

Methodologies and Compressibility

Summary of Methodologies

- Using KKT conditions and implicit function theorem, we prove that x^* , possibly along with a Lagrange multiplier is a C^1 function of (A, y) on the set S.
- For each i = 1, ..., N, if x_i^* is vanishing at $(A, y) \in S$, then its gradient evaluated at (A, y) is nonzero.
- The zero set of each component x_i^* has zero measure.

Compressiblity



(Topic 2) ℓ_1 -Norm based Optimization

In sparse recovery, the desired vector is often a solution for one of the following problems:

$$\begin{split} & \min_{x \in \mathbb{R}^N} \|x\|_1 \quad \text{subject to} \quad Ax = y \qquad \qquad \text{(BP)} \\ & \min_{x \in \mathbb{R}^N} \|x\|_1 \quad \text{subject to} \quad \|Ax - y\|_2 \leq \epsilon \qquad \qquad \text{(BPD I)} \\ & \min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - y\|_2^2 \quad \text{subject to} \quad \|x\|_1 \leq \eta \qquad \qquad \text{(BPD II)} \\ & \min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|x\|_1 \qquad \qquad \text{(LASSO)} \end{split}$$

Note that $\|.\|_1$ is not strictly convex \implies nonunique solution!

Is this important?

If not, recovery process is not successful!

▲■▶ ▲■▶ ▲■▶ = 差 = のへで

A Review on Solution Uniqueness (Individual Recovery)

- Foucart established some results for the problems (BP) and (BPD I).
- Zhang et al. established necessary and sufficient conditions for the mentioned problems when ||.||²₂ is replaced with a strictly convex smooth function. Later, they replaced ||x||₁ by ||Ex||₁.
- Gilbert replaced ||.||₁ with a polyhedral gauge function: A convex piecewise affine function that is nonnegative, positively homogeneous of degree 1, and vanishes at 0.
- Zhao established necessary and sufficient conditions for nonnegative sparse vectors that satisfy an equality linear system.

Is there a room to improve?

Yes!

イロト イポト イモト イモト 二日

Motivations and Contributions

Motivations

 $\bullet\,$ To add general linear inequality constraints \longrightarrow Dantzig selector:

$$\min_{x \in \mathbb{R}^N} \|x\|_1 \quad \text{subject to} \quad \|A^T (Ax - y)\|_{\infty} \le \epsilon.$$

• To go beyond $||x||_1$ and $||Ex||_1 \rightarrow$ fused LASSO:

$$\min_{x \in \mathbb{R}^N} \|Ax - y\|_2^2 + \lambda_1 \cdot \|x\|_1 + \lambda_2 \cdot \|D_1x\|_1.$$

- Explicit dual-based conditions \rightarrow easy and computationally favorable.

Contributions

- Added general linear inequality constraints.
- Considered convex piecewise affine functions, including $\ell_1\text{-norm}.$
- Developed a unifying approach that recovers all the known results and enables us to tackle new problems.

General Framework

Let $A \in \mathbb{R}^{m \times N}, C \in \mathbb{R}^{p \times N}$ and $f : \mathbb{R}^m \to \mathbb{R}$ be a C^1 strictly convex function. Further, assume g(x) is a convex piecewise affine function.

Main Question

Given a feasible point x^* for any of the below problems, under which conditions this vector is the **unique solution**?

$$\begin{split} \min_{x \in \mathbb{R}^N} g(x) & \text{subject to} \quad Ax = y \text{ and } Cx \geq d & (\text{BP-like}) \\ \min_{x \in \mathbb{R}^N} g(x) & \text{subject to} \quad f(Ax - y) \leq \epsilon \text{ and } Cx \geq d & (\text{BPD I-like}) \\ \min_{x \in \mathbb{R}^N} f(Ax - y) & \text{subject to} \quad g_1(x) \leq \eta_1, \dots, \ g_r(x) \leq \eta_r \text{ and } Cx \geq d & (\text{BPD II-like}) \\ \min_{x \in \mathbb{R}^N} f(Ax - y) + g(x) & \text{subject to} \quad Cx \geq d & (\text{LASSO-like}) \end{split}$$

Preliminaries (Convex Piecewise Affine Functions)

Let $g : \mathbb{R}^N \to \mathbb{R}$ be a convex piecewise affine (PA) function:

$$g(x) = \max_{i=1,2,\dots,l} \left(p_i^T x + \gamma_i \right).$$

For $x^* \in \mathbb{R}^N$ with $Cx^* \ge d$, define $\alpha := \{i \in \{1, \dots, p\} \mid (Cx^* - d)_i = 0\}$,

$$\mathcal{I} := \left\{ i \in \{1, \dots, l\} \mid p_i^T x^* + \gamma_i = g(x^*) \right\} \text{ and } W := \begin{bmatrix} p_{i_1}^T \\ \vdots \\ p_{i_{|\mathcal{I}|}}^T \end{bmatrix} \in \mathbb{R}^{|\mathcal{I}| \times N}.$$

Finding the matrix W is equivalent to finding the convex hull generators of $\partial g(x^*).$

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミークへで 13/30

A Key Lemma

Lemma

Let $A \in \mathbb{R}^{m \times N}$ and $H \in \mathbb{R}^{r \times N}$. Then,

$$\{u \in \mathbb{R}^N \mid Au = 0, Hu \ge 0\} = \{0\}$$

if and only if the following conditions hold: (i) $\{u \in \mathbb{R}^N \mid Au = 0, Hu = 0\} = \{0\}$; and (ii) There exist $z \in \mathbb{R}^m$ and $z' \in \mathbb{R}^r_{++}$ such that $A^T z = H^T z'$.

Main Idea of Proof

Define the linear program:

$$\max \ 1^T Hu \quad \text{subject to} \quad Au = 0, \ Hu \ge 0. \tag{LP}$$

Then, $\{u \in \mathbb{R}^N \mid Au = 0, \ Hu \ge 0\} = \{0\}$ if and only if
(i) $\{u \in \mathbb{R}^N \mid Au = 0, \ Hu = 0\} = \{0\}$; and
(ii') zero is the optimal value of (LP).

Basis Pursuit-like Problem

Theorem

Let x^* be a feasible point of the optimization problem (BP-like). Then x^* is its unique minimizer if and only if the following conditions hold:

(i) $\{v \in \mathbb{R}^N \mid Av = 0, \ C_{\alpha \bullet}v = 0, \ Wv = 0\} = \{0\}; \text{ and }$

(ii) There exist $w \in \mathbb{R}^m, w' \in \mathbb{R}^{|\alpha|}_{++}$, and $w'' \in \mathbb{R}^{|\mathcal{I}|}$ with 0 < w'' < 1 and $1^T w'' = 1$ such that $A^T w - C^T_{\alpha \bullet} w' + W^T w'' = 0$

Main Steps of Proof

1. For sufficiently small ||v||, we have $g(x^* + v) = g(x^*) + \max_{i \in \mathcal{I}} p_i^T v$. 2. x^* is the unique solution if and only if $v^* = 0$ for

$$\min_{v \in \mathbb{R}^N} \left(\max_{i \in \mathcal{I}} p_i^T v \right) \quad \text{subject to} \quad Av = 0, \quad C_{\alpha \bullet} v \ge 0.$$

3. $v^* = 0$ is the unique solution of this problem if and only if

$$\{v \in \mathbb{R}^N \mid Av = 0, \ C_{\alpha \bullet} v \ge 0, \ \max_{i \in \mathcal{I}} p_i^T v \le 0 \ [\text{or } Wv \le 0]\} = \{0\}.$$

How to Verify These Conditions?

Solution uniqueness criteria that we found consist of: (a) full column rank condition for a matrix \longrightarrow Linear Algebra (b) consistency of a linear system with non-strict inequalities \longrightarrow LP (c) consistency of another linear system with strict inequality \longrightarrow ?

Lemma

Let $A \in \mathbb{R}^{m \times N}$, $y \in \mathbb{R}^m$ be given. Then, the linear inequality system

$$Ax = y, \quad x > 0;$$

has a solution if and only if the following linear program is solvable and attains a positive optimal value:

 $\max \epsilon \quad \text{subject to} \quad Ax = y, \quad x \ge \epsilon.1, \quad \epsilon \le 1.$

◆□▶ ◆母▶ ◆ ミ▶ ◆ ミ▶ ミークへで 16/30

(Topic 3) Orthogonal Matching Pursuit (OMP)

The orthogonal matching pursuit is a greedy algorithm to tackle the following problem on \mathbb{R}^N :

$$\min_{x \in \mathbb{R}^N} \ \|x\|_0 \qquad \text{subject to} \qquad Ax = y.$$

Idea

Starting with $x_0 = 0$ (set the initial support set $S_0 = \emptyset$), in the *n*th step, let:

$$j^* \in \operatorname{Argmin}_j \min_t \|y - A(x_n + t\mathbf{e}_j)\|_2^2.$$

Add this j^* to the current support index approximation set S_n and then update the iteration by defining:

$$x_{n+1} \in \operatorname{Argmin}_{z} \|y - Az\|_{2}^{2}$$
 subject to $\operatorname{supp}(z) \subseteq \mathcal{S}_{n+1}$.

・ロト ・ 伊ト ・ ヨト ・ ヨト ・ ヨー ・ のへで

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Input:	measurement matrix A , and measurement vector y
Initialization:	$x_0=0$ and $\mathcal{S}_0=\emptyset$
Iteration:	repeat until a stopping criteria is met at $n = k$:
	$S_{n+1} = S_n \cup \{j_{n+1}\}$ where $j_{n+1}^* \in \operatorname{Argmax}_j (A^T(y - Ax_n))_j $
	$x_{n+1} \in \operatorname{Argmin}_{z} \ y - Az\ _{2}^{2}$ s.t. $\operatorname{supp}(z) \subseteq S_{n+1}$.
Output:	the k-sparse vector $x^* = x_k$.

Advantage

Fast at least for relatively small sparsity levels if A is well-chosen.

Theorem

The OMP recovers any k-sparse signal x from the measurement y = Ax in at most k iterations if $\delta_k + \sqrt{k}\theta_{k,1} < 1$ (Mo and Shen [2012]).

Definition

Given a matrix $A \in \mathbb{R}^{m \times N}$ and a constraint set \mathcal{P} , we say that **the** exact support recovery of a vector $x^* \in \Sigma_k \cap \mathcal{P}$ is achieved from $y = Ax^*$ via the OMP (or the CMP), if along an *arbitrary* sequence $((x_n, j_n^*, S_n))_{n \in \mathbb{N}}$ for the given x^* , there exists an index $s \in \mathbb{N}$ such that $S_s = \operatorname{supp}(x^*)$. If the exact support recovery of any vector of $\Sigma_k \cap \mathcal{P}$ is achieved, then we call the exact support recovery on $\Sigma_k \cap \mathcal{P}$ is achieved.

Definition

Given a matrix $A \in \mathbb{R}^{m \times N}$ and a constraint set \mathcal{P} , we say that **the** exact vector recovery of x^* is achieved from $y = Ax^*$ via the OMP (or the CMP) if (i) the exact support recovery of x^* is achieved, and (ii) along *any* sequence $((x_n, j_n^*, \mathcal{S}_n))_{n \in \mathbb{N}}$ for the given x^* , once $\mathcal{S}_s = \operatorname{supp}(x^*)$ is reached, then the projection step has a *unique* solution $x_s = x^*$.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э.

Motivations and Contributions

Motivations

- Using greedy algorithm for constrained recovery.
- Identifying conditions for exact support and vector recovery.
- Developing verifiable sufficient conditions for uniform recovery.

Contributions

- Introduced a greedy algorithm for constrained problems.
- Defined rigorous notions of exact and vector recovery.
- Analyzed necessary and sufficient conditions for constrained recovery and showed that they critically depend on constraint sets, so we introduced CP admissible sets.
- Used properties of CP admissible to develop verifiable recovery conditions based on RI and RO-like constants.

Constrained Matching Pursuit

Our goal is to extend the OMP algorithm to solve the following problem:

$$\min_{x \in \mathbb{R}^N} \ \|x\|_0 \ \text{ subject to } \ Ax = y \quad \text{and} \quad x \in \mathcal{P}.$$

	Constrained Matching Pursuit (CMP)
Input:	measurement matrix A , and measurement vector y , and
	constraint set ${\mathcal P}$ containing the zero vector.
Initialization:	$x_0 = 0$ and $S_0 = \emptyset$.
Iteration:	repeat until a stopping criteria is met at $n = k$:
	$\mathcal{S}_{n+1} = \mathcal{S}_n \cup \{j_{n+1}\}$ with $j^*_{n+1} \in \operatorname{Argmin}_{j \in \mathcal{S}_n^c} f^*_j;$
	where $f_j^* = \min_t \ y - A(x_n + t\mathbf{e}_j)\ _2^2$ s.t. $x_n + t\mathbf{e}_j \in \mathcal{P}$.
	$x_{n+1} \in \operatorname{Argmin}_{z \in \mathcal{P}} \ y - Az\ _2^2 s.t. \operatorname{supp}(z) \subseteq \mathcal{S}_{n+1}.$
Output:	the k-sparse vector $x^* := x_k$.

Recovery Conditions for CMP

For any $u, v \in \mathcal{P}, j \in \{1, \dots, N\}$, and $\mathbb{I}_j(x) := \{t \in \mathbb{R} \mid x + t\mathbf{e}_j \in \mathcal{P}\}$ let

$$f_j^*(u,v) := \min_{t \in \mathbb{I}_j(v)} \|Au - A(v + t \mathbf{e}_j)\|_2^2.$$

A Key Condition (for a given matrix A and a closed convex set \mathcal{P}) For any $0 \neq u \in \Sigma_k \cap \mathcal{P}$, any index set $\mathcal{S} \subset \operatorname{supp}(u)$ and an arbitrary optimal solution v of $\min_{z \in \mathcal{P}, \operatorname{supp}(z) \subseteq \mathcal{S}} ||A(u-z)||_2^2$, the following holds:

$$\mathbf{H}: \min_{j \in \mathsf{supp}(u) \setminus \mathcal{S}} f_j^*(u, v) < \min_{j \in [\mathsf{supp}(u)]^c} f_j^*(u, v).$$

Theorem

Given a matrix $A \in \mathbb{R}^{m \times N}$ and a constraint set \mathcal{P} , suppose condition (**H**) holds. Then the exact support recovery is achieved on $\Sigma_k \cap \mathcal{P}$.

Remarks on Condition H

It is computationally costly.

It does not only depend on A but also critically relies on constraint set \mathcal{P} :

Example

Let $d = (d_1, \ldots, d_N)^T \in \mathbb{R}^N$ with $d_i \neq 0$ for each *i*. Consider the set $\mathcal{P} := \{x \in \mathbb{R}^N \mid d^T x = 0\}$. For any $u, v \in \mathcal{P}$ and any index *j*, $f_j^*(u, v) = ||A(u-v)||_2^2$ for any matrix *A*. Thus, for $x^* \in \Sigma_k \cap \mathcal{P}$, we have $\operatorname{Argmin}_{j \in \{1, \ldots, N\}} f^*(x^*, 0) = \{1, \ldots, N\}$, so it is possible that $j_1^* \notin \operatorname{supp}(x^*)$. Hence, no matrix *A* can achieve exact support recovery on the set \mathcal{P} .

Motivations to Identify a Practical Class of Sets

- (i) Each set in this class contains sufficiently many sparse vectors.
- (ii) It includes important sets arising from applications like \mathbb{R}^N and \mathbb{R}^N_+ .
- (iii) Relatively easily verifiable sufficient recovery conditions can be established using general properties of this class of sets.

Coordinate-Projection Admissible Sets

Definition

A set $\mathcal{P} \subseteq \mathbb{R}^N$ is coordinate-projection (CP) admissible if for every $u \in \mathcal{P}$ and $\mathcal{S} \subset \operatorname{supp}(u)$, the vector $(u_{\mathcal{S}}; 0) \in \mathcal{P}$.

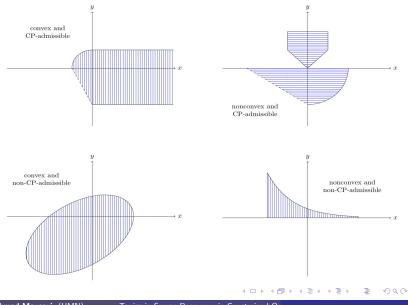
Some Important Examples

 $\mathbb{R}^N, \mathbb{R}^N_+$, unit ℓ_p -ball with $p \ge 0$, and more.

Some Interesting Properties

1. A set $C \subseteq \mathbb{R}^N$ is a CP admissible closed convex cone if and only if $C = \mathbb{R}_{\mathcal{I}_1} \times (\mathbb{R}_+)_{\mathcal{I}_+} \times (\mathbb{R}_-)_{\mathcal{I}_-} \times \{0\}_{\mathcal{I}_0}$ such that $\mathcal{I}_1, \mathcal{I}_+, \mathcal{I}_+$ and \mathcal{I}_0 construct a partition of $\{1, \ldots, N\}$. Hence, the conic hull of a closed CP admissible set \mathcal{P} is of form $\operatorname{cone}(\mathcal{P}) = \mathbb{R}_{\mathcal{I}_1} \times (\mathbb{R}_+)_{\mathcal{I}_+} \times (\mathbb{R}_-)_{\mathcal{I}_-} \times \{0\}_{\mathcal{I}_0}$. 2. A set $\mathcal{P} \subseteq \mathbb{R}^N$ is CP admissible, closed and convex if and only if $\mathcal{P} = \mathcal{W} + \mathcal{C}$ where \mathcal{W} is a CP admissible convex and compact set, and \mathcal{C} is a CP admissible closed convex cone. (similar to Minkowski-Weyl) Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Examples to Clarify Geometry of CP-admissible Sets



Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Generalization of Restricted Isometry and Orthogonality Constants

Definition

For a given (possibly non-CP admissible) set \mathcal{P} , a matrix $A \in \mathbb{R}^{m \times N}$, and disjoint index sets $\mathcal{I}_1, \mathcal{I}_+, \mathcal{I}_-$ whose union is $\{1, \ldots, N\}$, we say that • A real number δ is of Property RI on \mathcal{P} if $(1-\delta) ||u-v||_2^2 \leq ||A(u-v)||_2^2$ for all $u, v \in \Sigma_k \cap \mathcal{P}$ with $\operatorname{supp}(v) \subset \operatorname{supp}(u)$, and $0 < \delta < 1$.

• A real number θ is of Property RO on \mathcal{P} corresponding to $\mathcal{I}_1, \mathcal{I}_+, \mathcal{I}_-$ if $\theta > 0$ and for all $u, v \in \Sigma_K \cap \mathcal{P}$ with $\operatorname{supp}(v) \subset \operatorname{supp}(u)$, we have $\max\left(\max_{j \in [\operatorname{supp}(u)]^c \cap \mathcal{I}_1} |\langle A(u-v), A_{\bullet j} \rangle|, \max_{j \in [\operatorname{supp}(u)]^c \cap \mathcal{I}_+} \langle A(u-v), A_{\bullet j} \rangle_+, \max_{j \in [\operatorname{supp}(u)]^c \cap \mathcal{I}_-} \langle A(u-v), A_{\bullet j} \rangle_-\right) \leq \theta \cdot ||u-v||_2.$

We also denote these two constants by $\delta_{k,\mathcal{P}}$ and $\theta_{k,\mathcal{P}}$ respectively.

Uniform Recovery Condition

Theorem

Let $A \in \mathbb{R}^{m \times N}$ be a matrix with unit columns, and \mathcal{P} be an irreducible, closed, convex, and CP admissible set in \mathbb{R}^N whose conic hull is given by $\operatorname{cone}(\mathcal{P}) = \mathbb{R}_{\mathcal{I}_1} \times (\mathbb{R}_+)_{\mathcal{I}_+} \times (\mathbb{R}_-)_{\mathcal{I}_-}$, where $\mathcal{I}_1, \mathcal{I}_+$ and \mathcal{I}_- form a disjoint union of $\{1, \ldots, N\}$. Then condition (**H**) holds on \mathcal{P} if

- (i) There exist constants $\delta_{k,\mathcal{P}}$ of Property RI and $\theta_{k,\mathcal{P}}$ of Property RO corresponding to $\mathcal{I}_1, \mathcal{I}_+$ and \mathcal{I}_- such that $1 \delta_{k,\mathcal{P}} > \sqrt{k} \cdot \theta_{k,\mathcal{P}}$; or
- (ii) There exist constants $\delta_{k,CONE(\mathcal{P})}$ of Property RI and $\theta_{k,CONE(\mathcal{P})}$ of Property RO corresponding to $\mathcal{I}_1, \mathcal{I}_+$ and \mathcal{I}_- such that $1 - \delta_{k,CONE(\mathcal{P})} > \sqrt{k} \cdot \theta_{k,CONE(\mathcal{P})}.$

Remark

Condition (ii) is easier to check due to simple structure of $\operatorname{cone}(\mathcal{P})$.

References

- S. FOUCART, AND H. RAUHUT. A Mathematical Introduction to Compressed Sensing, *Basel: Birkhäuser*, 2013.
- J. C. GILBERT. On the Solution Uniqueness Characterization in the ℓ_1 Norm and Polyhedral Gauge Recovery, *Journal of Optimization Theory and Applications*, Vol. 172(1), pp. 70-101, 2017.

S. MOUSAVI, AND SHEN. Solution Uniqueness of Convex Piecewise Affine Functions Based Optimization with Applications to Constrained ℓ_1 Minimization. *ESAIM: Control, Optimisation, and Calculus of Variations*, Vol. 25, pp. 56, 2019.

Q. MO AND Y. SHEN. A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit. *IEEE Transactions on Information Theory*, Vol. 58(6), pp. 3654–3656, 2012.

J. SHEN, AND S. MOUSAVI. Least Sparsity of *p*-Norm Based Optimization Problems with p > 1. SIAM Journal on Optimization, Vol 28(3), pp. 2721-2751, 2018.

J. SHEN AND S. MOUSAVI. Exact Support and Vector Recovery of Constrained Sparse Vectors via Constrained Matching Pursuit. *arXiv preprint arXiv:1903.07236*, 2019.

SAC

References

- H. ZHANG, M. YAN, AND W. YIN. One Condition for Solution Uniqueness and Robustness of both ℓ 1-Synthesis and ℓ 1-Analysis Minimizations, *Advances in Computational Mathematics*, Vol. 42(6), pp. 1381-1399, 2016.
- H. ZHANG, W. YIN, AND L. CHENG. Necessary and Sufficient Conditions of Solution Uniqueness in 1-Norm Minimization, *Journal of Optimization Theory and Applications*, Vol. 164(1), pp. 109-122, 2015.
- Y. B. ZHAO. RSP-Based Analysis for Sparsest and Least ℓ₁-Norm Solutions to Underdetermined Linear Systems, *IEEE Transactions on Signal Processing*, Vol. 61(2), pp. 5777-5788, 2013.

A (10) × (10)

Thank You For Your Attention!

(日) (型) (三) (三) (三) (○) (○)