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Outline

Outline

Introduction to Compressed Sensing

(T1) Least Sparse Solution of p-norm Optimization with p > 1

(T2) Solution Uniqueness to Problems Involving Convex PA
Functions with Applications to Constrained `1-Minimization

• Solution Uniqueness Conditions to Basis Pursuit-like, LASSO-like and

Other Important Problems

• Verification of Solution Uniqueness Conditions

(T3) Exact Recovery over Constraint Sets using Matching Pursuit
Algorithm

• Constrained Matching Pursuit

• Coordinate-Projection Admissible Sets

• Exact Recovery Conditions on Coordinate-Projection Admissible Sets
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Introduction to Compressed Sensing

Sparsity Model and Original Compressed Sensing Problem

Sparsity: Most of components are zero

Sparsity Level: Number of nonzero entries

Compressiblity: Well-approximated by sparse signals

Compressed Sensing
To recover a sparse vector x ∈ RN from a measurement vector y ∈ Rm
with y = Ax (possibly subject to errors) and A ∈ Rm×N (m� N) is a

measurement matrix.

Problem Formulation
Let ‖x‖0 := Card(x), the original CS problem can be modeled below:

min
x∈RN

‖x‖0 subject to y = Ax (P0).

Applications
Engineering, Statistics, Signal and Image Processing, and etc.
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Introduction to Compressed Sensing

Algorithms in Compressed Sensing

Sparsity based Optimization Algorithms
Since `p → `0 as p ↓ 0, one can approximate (P0) by the following:

min
x∈RN

‖x‖p subject to y = Ax.

Greedy Algorithms
They directly tackle the original problem by making a local optimal

decision at each step with an attempt to find a global optimal solution.

Thresholding based Algorithms
Most of them solve the square system ATAx = AT y through a fixed-point

method and exploit hard thresholding operator.
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Least Sparse Solution of p-norm based Problems with p > 1

(Topic 1) Main Problems Used in Sparse Optimization

Generalized Basis-Pursuit

min
x∈RN

‖x‖p subject to Ax = y

Generalized Basis-Pursuit Denoising I

min
x∈RN

‖x‖p subject to ‖Ax− y‖2 ≤ ε

Generalized Basis-Pursuit Denoising II

min
x∈RN

‖Ax− y‖2 subject to ‖x‖p ≤ η

Generalized Ridge Regression

min
x∈RN

1

2
‖Ax− y‖22 + λ‖x‖pp

Generalized Elastic Net

min
x∈RN

1

2
‖Ax− y‖22 + λ1‖x‖rp + λ2‖x‖22
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Least Sparse Solution of p-norm based Problems with p > 1

Geometry of BPp and BPDNp for Different p’s

Figura: Geometries of BP and BPDN for different values of p

A Geometrical Illustration
0 < p < 1 −→ A good choice but nonconvex!

p = 1 −→ A good choice and results in a convex program!

p > 1 −→ Not a good choice! How bad?

Ahmad Mousavi (UMN) Topics in Sparse Recovery via Constrained Optimization: Least Sparsity, Solution Uniqueness, and Constrained Exact Recovery6 / 30



7/30

Least Sparse Solution of p-norm based Problems with p > 1 Results on Least Sparse Solution of p-norm Problems with p > 1

Main Results on Least Sparsity with p > 1

Proposition

Let p > 1, 0 < η < minAx=y ‖x‖p, λ > 0, r ≥ 1, λ1 > 0 and λ2 > 0. Each

of the above optimization problems attains a unique optimal solution for

any A and y as long as the associated constraint sets are nonempty.

Consider this open set in Rm×N × Rm whose complement has measure

zero: S := {(A, y) | each m×m submatrix of A is invertible and y 6= 0}.

Theorem

Let p > 1, N ≥ 2m− 1, 0 < ε < ‖y‖2, 0 < η < minAx=y ‖x‖p, λ > 0,

r ≥ 1, λ1 > 0 and λ2 > 0. For almost all (A, y) ∈ Rm×N , the unique

optimal solution to the any of the above problems has a support size of N .
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Least Sparse Solution of p-norm based Problems with p > 1 Results on Least Sparse Solution of p-norm Problems with p > 1

Methodologies and Compressibility

Summary of Methodologies

• Using KKT conditions and implicit function theorem, we prove that

x∗, possibly along with a Lagrange multiplier is a C1 function of

(A, y) on the set S.

• For each i = 1, . . . , N , if x∗i is vanishing at (A, y) ∈ S, then its

gradient evaluated at (A, y) is nonzero.

• The zero set of each component x∗i has zero measure.

Compressiblity
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Solution Uniqueness to Convex PA Functions

(Topic 2) `1-Norm based Optimization

In sparse recovery, the desired vector is often a solution for one of the

following problems:

min
x∈RN

‖x‖1 subject to Ax = y (BP)

min
x∈RN

‖x‖1 subject to ‖Ax− y‖2 ≤ ε (BPD I)

min
x∈RN

1

2
‖Ax− y‖22 subject to ‖x‖1 ≤ η (BPD II)

min
x∈RN

1

2
‖Ax− y‖22 + λ‖x‖1 (LASSO)

Note that ‖.‖1 is not strictly convex =⇒ nonunique solution!

Is this important?

If not, recovery process is not successful!
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Solution Uniqueness to Convex PA Functions

A Review on Solution Uniqueness (Individual Recovery)

• Foucart established some results for the problems (BP) and (BPD I).

• Zhang et al. established necessary and sufficient conditions for the

mentioned problems when ‖.‖22 is replaced with a strictly convex

smooth function. Later, they replaced ‖x‖1 by ‖Ex‖1.

• Gilbert replaced ‖.‖1 with a polyhedral gauge function:

A convex piecewise affine function that is nonnegative, positively

homogeneous of degree 1, and vanishes at 0.

• Zhao established necessary and sufficient conditions for nonnegative

sparse vectors that satisfy an equality linear system.

Is there a room to improve?

Y es!

Ahmad Mousavi (UMN) Topics in Sparse Recovery via Constrained Optimization: Least Sparsity, Solution Uniqueness, and Constrained Exact Recovery10 / 30



11/30

Solution Uniqueness to Convex PA Functions

Motivations and Contributions

Motivations

• To add general linear inequality constraints −→ Dantzig selector:

min
x∈RN

‖x‖1 subject to ‖AT (Ax− y)‖∞ ≤ ε.

• To go beyond ‖x‖1 and ‖Ex‖1 → fused LASSO:

min
x∈RN

‖Ax− y‖22 + λ1 · ‖x‖1 + λ2 · ‖D1x‖1.

• Explicit dual-based conditions → easy and computationally favorable.

Contributions

• Added general linear inequality constraints.

• Considered convex piecewise affine functions, including `1-norm.

• Developed a unifying approach that recovers all the known results and

enables us to tackle new problems.
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Solution Uniqueness to Convex PA Functions

General Framework

Let A ∈ Rm×N , C ∈ Rp×N and f : Rm → R be a C1 strictly convex

function. Further, assume g(x) is a convex piecewise affine function.

Main Question
Given a feasible point x∗ for any of the below problems, under which

conditions this vector is the unique solution?

min
x∈RN

g(x) subject to Ax = y and Cx ≥ d (BP-like)

min
x∈RN

g(x) subject to f(Ax− y) ≤ ε and Cx ≥ d (BPD I-like)

min
x∈RN

f(Ax− y) subject to g1(x) ≤ η1, . . . , gr(x) ≤ ηr and Cx ≥ d

(BPD II-like)

min
x∈RN

f(Ax− y) + g(x) subject to Cx ≥ d (LASSO-like)
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Solution Uniqueness to Convex PA Functions

Preliminaries (Convex Piecewise Affine Functions)

Let g : RN → R be a convex piecewise affine (PA) function:

g(x) = max
i=1,2,...,l

(
pTi x+ γi

)
.

For x∗ ∈ RN with Cx∗ ≥ d, define α := {i ∈ {1, . . . , p} | (Cx∗−d)i = 0},

I :=
{
i ∈ {1, . . . , l} | pTi x∗ + γi = g(x∗)

}
and W :=

 pTi1
...

pTi|I|

 ∈ R|I|×N .

Finding the matrix W is equivalent to finding the convex hull generators of

∂g(x∗).
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Solution Uniqueness to Convex PA Functions

A Key Lemma

Lemma

Let A ∈ Rm×N and H ∈ Rr×N . Then,

{u ∈ RN | Au = 0, Hu ≥ 0} = {0}

if and only if the following conditions hold:

(i) {u ∈ RN | Au = 0, Hu = 0} = {0}; and
(ii) There exist z ∈ Rm and z′ ∈ Rr++ such that AT z = HT z′.

Main Idea of Proof
Define the linear program:

max 1THu subject to Au = 0, Hu ≥ 0. (LP )

Then, {u ∈ RN | Au = 0, Hu ≥ 0} = {0} if and only if

(i) {u ∈ RN | Au = 0, Hu = 0} = {0}; and

(ii’) zero is the optimal value of (LP).
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Solution Uniqueness to Convex PA Functions Unique Solution to the Basis Pursuit-like Problem

Basis Pursuit-like Problem

Theorem

Let x∗ be a feasible point of the optimization problem (BP-like). Then x∗

is its unique minimizer if and only if the following conditions hold:

(i) {v ∈ RN | Av = 0, Cα•v = 0, Wv = 0} = {0}; and
(ii) There exist w ∈ Rm, w′ ∈ R|α|++, and w

′′ ∈ R|I| with 0 < w′′ < 1 and

1Tw′′ = 1 such that ATw − CTα•w′ +W Tw′′ = 0

Main Steps of Proof
1. For sufficiently small ‖v‖, we have g(x∗ + v) = g(x∗) + maxi∈I p

T
i v.

2. x∗ is the unique solution if and only if v∗ = 0 for

min
v∈RN

(
max
i∈I

pTi v
)

subject to Av = 0, Cα•v ≥ 0.

3. v∗ = 0 is the unique solution of this problem if and only if

{v ∈ RN | Av = 0, Cα•v ≥ 0, max
i∈I

pTi v ≤ 0 [or Wv ≤ 0]} = {0}.
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Solution Uniqueness to Convex PA Functions Numerical Verification of the Solution Uniqueness Conditions

How to Verify These Conditions?

Solution uniqueness criteria that we found consist of:

(a) full column rank condition for a matrix −→ Linear Algebra

(b) consistency of a linear system with non-strict inequalities −→ LP

(c) consistency of another linear system with strict inequality −→ ?

Lemma

Let A ∈ Rm×N , y ∈ Rm be given. Then, the linear inequality system

Ax = y, x > 0;

has a solution if and only if the following linear program is solvable and

attains a positive optimal value:

max ε subject to Ax = y, x ≥ ε.1, ε ≤ 1.
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Exact Support Recovery with CP Admissible Constraints Orthogonal Matching Pursuit

(Topic 3) Orthogonal Matching Pursuit (OMP)

The orthogonal matching pursuit is a greedy algorithm to tackle the

following problem on RN :

min
x∈RN

‖x‖0 subject to Ax = y.

Idea
Starting with x0 = 0 (set the initial support set S0 = ∅), in the nth step,

let:

j∗ ∈ Argminj min
t
‖y −A(xn + tej)‖22.

Add this j∗ to the current support index approximation set Sn and then

update the iteration by defining:

xn+1 ∈ Argminz ‖y −Az‖22 subject to supp(z) ⊆ Sn+1.

Ahmad Mousavi (UMN) Topics in Sparse Recovery via Constrained Optimization: Least Sparsity, Solution Uniqueness, and Constrained Exact Recovery17 / 30



18/30

Exact Support Recovery with CP Admissible Constraints Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Orthogonal Matching Pursuit

Input: measurement matrix A, and measurement vector y

Initialization: x0 = 0 and S0 = ∅
Iteration: repeat until a stopping criteria is met at n = k:

Sn+1=Sn ∪ {jn+1} where j∗n+1 ∈ Argmaxj |(AT (y −Axn))j |
xn+1 ∈ Argminz‖y −Az‖22 s.t. supp(z) ⊆ Sn+1.

Output: the k-sparse vector x∗ = xk.

Advantage
Fast at least for relatively small sparsity levels if A is well-chosen.

Theorem

The OMP recovers any k-sparse signal x from the measurement y = Ax in

at most k iterations if δk +
√
kθk,1 < 1 (Mo and Shen [2012]).

Ahmad Mousavi (UMN) Topics in Sparse Recovery via Constrained Optimization: Least Sparsity, Solution Uniqueness, and Constrained Exact Recovery18 / 30



19/30

Exact Support Recovery with CP Admissible Constraints Orthogonal Matching Pursuit

Definition

Given a matrix A ∈ Rm×N and a constraint set P, we say that the
exact support recovery of a vector x∗ ∈ Σk ∩ P is achieved from

y = Ax∗ via the OMP (or the CMP), if along an arbitrary sequence(
(xn, j

∗
n,Sn)

)
n∈N for the given x∗, there exists an index s ∈ N such that

Ss = supp(x∗). If the exact support recovery of any vector of Σk ∩ P is

achieved, then we call the exact support recovery on Σk ∩P is achieved.

Definition

Given a matrix A ∈ Rm×N and a constraint set P, we say that the
exact vector recovery of x∗ is achieved from y = Ax∗ via the OMP (or

the CMP) if (i) the exact support recovery of x∗ is achieved, and (ii)

along any sequence
(
(xn, j

∗
n,Sn)

)
n∈N for the given x∗, once

Ss = supp(x∗) is reached, then the projection step has a unique

solution xs = x∗.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Motivations and Contributions

Motivations

• Using greedy algorithm for constrained recovery.

• Identifying conditions for exact support and vector recovery.

• Developing verifiable sufficient conditions for uniform recovery.

Contributions

• Introduced a greedy algorithm for constrained problems.

• Defined rigorous notions of exact and vector recovery.

• Analyzed necessary and sufficient conditions for constrained recovery

and showed that they critically depend on constraint sets, so we

introduced CP admissible sets.

• Used properties of CP admissible to develop verifiable recovery

conditions based on RI and RO-like constants.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Constrained Matching Pursuit

Our goal is to extend the OMP algorithm to solve the following problem:

min
x∈RN

‖x‖0 subject to Ax = y and x ∈ P.

Constrained Matching Pursuit (CMP)

Input: measurement matrix A, and measurement vector y, and

constraint set P containing the zero vector.

Initialization: x0 = 0 and S0 = ∅.
Iteration: repeat until a stopping criteria is met at n = k:

Sn+1 = Sn ∪ {jn+1} with j∗n+1 ∈ Argminj∈Scn f
∗
j ;

where f∗j = mint ‖y −A(xn + tej)‖22 s.t. xn + tej ∈ P.

xn+1 ∈ Argminz∈P ‖y −Az‖22 s.t. supp(z) ⊆ Sn+1.

Output: the k-sparse vector x∗ := xk.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Recovery Conditions for CMP

For any u, v ∈ P, j ∈ {1, . . . , N}, and Ij(x) := {t ∈ R |x+ tej ∈ P} let

f∗j (u, v) := min
t∈Ij(v)

‖Au−A(v + t ej)‖22.

A Key Condition (for a given matrix A and a closed convex set P)

For any 0 6= u ∈ Σk ∩ P, any index set S ⊂ supp(u) and an arbitrary

optimal solution v of minz∈P, supp(z)⊆S ‖A(u− z)‖22, the following holds:

H : min
j∈supp(u)\S

f∗j (u, v) < min
j∈[supp(u)]c

f∗j (u, v).

Theorem

Given a matrix A ∈ Rm×N and a constraint set P, suppose condition (H)

holds. Then the exact support recovery is achieved on Σk ∩ P.
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Exact Support Recovery with CP Admissible Constraints Constrained Matching Pursuit

Remarks on Condition H

It is computationally costly.

It does not only depend on A but also critically relies on constraint set P:

Example

Let d = (d1, . . . , dN )T ∈ RN with di 6= 0 for each i. Consider the set

P := {x ∈ RN | dTx = 0}. For any u, v ∈ P and any index j,

f∗j (u, v) = ‖A(u− v)‖22 for any matrix A. Thus, for x∗ ∈ Σk ∩ P, we

have Argminj∈{1,...,N}f
∗(x∗, 0) = {1, . . . , N}, so it is possible that

j∗1 /∈ supp(x∗). Hence, no matrix A can achieve exact support

recovery on the set P.

Motivations to Identify a Practical Class of Sets

(i) Each set in this class contains sufficiently many sparse vectors.

(ii) It includes important sets arising from applications like RN and RN+ .

(iii) Relatively easily verifiable sufficient recovery conditions can be

established using general properties of this class of sets.
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Coordinate-Projection Admissible Sets

Definition

A set P ⊆ RN is coordinate-projection (CP) admissible if for every u ∈ P
and S ⊂ supp(u), the vector (uS ; 0) ∈ P.

Some Important Examples
RN ,RN+ , unit `p-ball with p ≥ 0, and more.

Some Interesting Properties
1. A set C ⊆ RN is a CP admissible closed convex cone if and only if
C = RI1 × (R+)I+ × (R−)I− × {0}I0 such that I1, I+, I, and I0
construct a partition of {1, . . . , N}. Hence, the conic hull of a closed CP

admissible set P is of form cone(P) = RI1 × (R+)I+ × (R−)I− × {0}I0 .

2. A set P ⊆ RN is CP admissible, closed and convex if and only if
P =W + C where W is a CP admissible convex and compact set, and C is

a CP admissible closed convex cone. (similar to Minkowski-Weyl)
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Examples to Clarify Geometry of CP-admissible Sets
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Generalization of Restricted Isometry and Orthogonality

Constants

Definition

For a given (possibly non-CP admissible) set P, a matrix A ∈ Rm×N , and

disjoint index sets I1, I+, I− whose union is {1, . . . , N}, we say that

• A real number δ is of Property RI on P if (1− δ)‖u− v‖22 ≤ ‖A(u− v)‖22
for all u, v ∈ Σk ∩ P with supp(v) ⊂ supp(u), and 0 < δ < 1.

• A real number θ is of Property RO on P corresponding to I1, I+, I− if

θ > 0 and for all u, v ∈ ΣK ∩ P with supp(v) ⊂ supp(u), we have

max
(

maxj∈[supp(u)]c∩I1 |〈A(u− v), A•j〉|, maxj∈[supp(u)]c∩I+〈A(u−

v), A•j〉+, maxj∈[supp(u)]c∩I−〈A(u− v), A•j〉−
)
≤ θ · ‖u− v‖2.

We also denote these two constants by δk,P and θk,P respectively.
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Exact Support Recovery with CP Admissible Constraints Coordinate-Projection Admissible Sets

Uniform Recovery Condition

Theorem

Let A ∈ Rm×N be a matrix with unit columns, and P be an irreducible,

closed, convex, and CP admissible set in RN whose conic hull is given by

cone(P) = RI1 × (R+)I+ × (R−)I− , where I1, I+ and I− form a disjoint

union of {1, . . . , N}. Then condition (H) holds on P if

(i) There exist constants δk,P of Property RI and θk,P of Property RO

corresponding to I1, I+ and I− such that 1− δk,P >
√
k · θk,P ; or

(ii) There exist constants δk,cone(P) of Property RI and θk,cone(P) of

Property RO corresponding to I1, I+ and I− such that

1− δk,cone(P) >
√
k · θk,cone(P).

Remark

Condition (ii) is easier to check due to simple structure of cone(P).
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