

Introduction to Optimization for

Machine Learning

Hossein Moosaei, PhD
Postdoctoral Researcher
Department of Applied Mathematics School of Computer Sc ience Charles University

4 November 2019

Optimization

- Finding the minimizer of a function subject to constraints:

$$
\begin{array}{cl}
\underset{x}{\operatorname{minimize}} & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, i=\{1, \ldots, k\} \\
& h_{j}(x)=0, j=\{1, \ldots, l\}
\end{array}
$$

Some different types of
 optimization problems

Applic ations of Optimization

Karush-Kuhn-Tucker Optimality Conditions

Optima lity C riteria

- Big question: How do we know that we have found the "optimum" for min $f(x)$?

Answer: Test the solution for the "necessary and sufficient conditions"

Optimality Conditions - Unconstrained

Case

- Let x^{*} be the point that we think is the minimum for $f(x)$ Necessa ry c ondition (for optima lity):

$$
\nabla f\left(x^{*}\right)=0
$$

- A point that satisfies the necessary condition is a stationary point lt can be a minimum, maximum, or saddle point
- How do we know that we have a minimum?
- Answer: Suffic iency C ondition:

The suffic ient conditions for x^{*} to be a strict local minimum are:
$\nabla f\left(x^{*}\right)=0$
$\nabla^{2} f\left(x^{*}\right)$ is positive definite

Constrained Case - KKTConditions

- To proof a claim of optima lity in constrained minimization (or maximization), we have to check the found point with respect to the (Karesh) Kuhn Tucker conditions.
- Kuhn and Tuckerextended the Lagrangian theory to include the general classical single-objective nonlinear programming problem:
minimize $\quad f(x)$
Subject to $g_{j}(x) \geq 0$ for $j=1,2, \ldots$, ,

$$
\begin{aligned}
& h_{k}(\mathbf{x})=0 \quad \text { for } k=1,2, \ldots, k \\
& x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)
\end{aligned}
$$

Necessary KKTC onditions

For the problem:
Min $f(x)$
s.t. $g(x) \leq 0$
(n variables, m constra ints)
The necessary conditions are:
$\nabla f(x)+\Sigma \mu_{i} \nabla g_{i}(x)=0$ (optima lity)
$\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \leq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{~m} \quad$ (feasibility)
$\mu_{i} g_{i}(x)=0$ for $i=1,2, \ldots, m$ (complementary slackness condition)
$\mu_{i} \geq 0 \quad$ for $i=1,2, \ldots, m$ (non-negativity)
Note that the first condition gives n equations.

Necessary KKTC onditions (General Case)

- Forgeneral case (n variables, M Inequalities, Lequalities): Min $f(x)$ s.t.

$$
\begin{aligned}
& g_{i}(x) \leq \text { Ofor } i=1,2, \ldots, M \\
& h_{j}(x)=0
\end{aligned} \quad \text { for } J=1,2, \ldots, L
$$

- In all this, the assumption is that $\nabla g_{j}\left(x^{*}\right)$ forj belonging to a ctive constra ints and $\nabla h_{k}\left(x^{*}\right)$ fork $=1, \ldots, K$ a re line anty independent
- The necessary conditions are:
$\nabla \mathrm{f}(\mathrm{x})+\Sigma \mu_{\mathrm{i}} \nabla \mathrm{g}_{\mathrm{i}}(\mathrm{x})+\Sigma \lambda_{\mathrm{j}} \nabla \mathrm{h}_{\mathrm{i}}(\mathrm{x})=0$ (optima lity)
$g_{i}(x) \leq 0 \quad$ for $i=1,2, \ldots, M$ (feasibility)
$h_{j}(x)=0 \quad$ for $j=1,2, \ldots, L$ (feasibility)
$\mu_{\mathrm{i}} \mathrm{g}_{\mathrm{i}}(\mathrm{x})=0$ for $\mathrm{i}=1,2, \ldots, \mathrm{M}$ (complementary
sla ckness c ondition)
$\mu_{\mathrm{i}} \geq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M}$ (non-negativity)
(Note: λ_{j} is unrestricted in sign)

Restating the Optimization Problem

- Kuhn Tucker Optimization Problem: Find vectors $X_{(N \times 1)}, \mu_{(1 \times M)}$ and $\lambda_{(1 \times K)}$ that satisfy:
$\nabla f(x)+\Sigma \mu_{i} \nabla g_{i}(x)+\Sigma \lambda_{j} \nabla h_{j}(x)=0$ (optima lity)
$\mathrm{g}_{\mathrm{i}}(\mathrm{x}) \leq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M}$ (feasibility)
$h_{j}(x)=0 \quad$ for $\mathrm{j}=1,2, \ldots, \mathrm{~L}$ (feasibility)
$\mu_{i} g_{i}(x)=0$ for $\mathrm{i}=1,2, \ldots, \mathrm{M}$ (complementary slackness condition)
$\mu_{i} \geq 0 \quad$ for $\mathrm{i}=1,2, \ldots, \mathrm{M}$ (non-negativity)
\Rightarrow If x^{*} is a n optimal solution to NLP, then there exists a (μ^{*}, λ^{*}) such that ($x^{*}, \mu^{*}, \lambda^{*}$) solves the Kuhn-Tucker problem.
> Above equations not only give the necessary conditionsfor optimality, but also provide a way of finding the optimal point.

Limitations

- Necessity theorem helps identify points that are not optimal. A point is not optimal if it does not satisfy the Kuhn-Tucker cond itions.
o On the other hand, not all points that satisfy the Kuhn-Tucker conditions a re optimal points.
- The Kuhn-Tuc ker suffic iency theorem gives conditions under which a point becomes an optimal solution to a single-objective NLP.

Suffic iency Condition

- Sufficient conditionsthat a point x^{*} is a strict local minimum of the NLP problem, where f, g_{j}, and h_{k} are twice differentiable functions are that

1) The necessary KKTconditions are met.
2) The Hessian matrix $\nabla^{2} \mathrm{~L}\left(x^{*}\right)=\nabla^{2 f}\left(x^{*}\right)+\Sigma \mu_{i} \nabla^{2} g_{i}\left(x^{*}\right)+$ $\Sigma \lambda_{j} \nabla^{2} h_{j}\left(x^{*}\right)$ is positive definite on a subspace of R^{n} as defined by the condition:
$y^{\top} \nabla^{2} L\left(x^{*}\right) y \geq 0$ is met for every vector $y_{(1 x N)}$ satisfying:

$$
\begin{aligned}
& \nabla g_{j}\left(x^{*}\right) y<0 \text { forj belonging to } I_{1}=\left\{j \mid g_{j}\left(x^{*}\right)=\right. \\
& \left.0, u_{j}^{*}>0\right\} \text { (active constraints) } \\
& \nabla h_{k}\left(x^{*}\right) y=0 \text { fork }=1, \ldots, K \\
& y \neq 0
\end{aligned}
$$

KKT Suffic iency Theorem (Special

Case)

- Consider the classic al single objective NLP problem.

minimize $f(x)$

Subject to $g_{j}(x) \leq 0 \quad$ for $j=1,2, \ldots, J$
$h_{k}(\mathbf{x})=0 \quad$ fork $=1,2, \ldots, K$

- Let the objective function $f(x)$ be convex, the inequal lity constra ints $g_{j}(x)$ be all c onvex func tions for $j=1, \ldots, J$, a nd the equality constra ints $h_{k}(x)$ for $k=1, \ldots$, K'bé linear.
- If this is true, then the necessary KKTc ond itions a re a lso suffic ient.
- Therefore, in this case, if there exists a solution x^{*} that sa tisties the KKT nec essa ry c ond itions, then x^{*} is a n optimal solution to the NTP problem.
o In fact, it is a global optimum.

Dual Problem

Generalized Lagrangian Function

- Consider the general (primal) optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(w) \\
\text { subject to } & g_{i}(w) \leq 0, i=1, \cdots, k \\
& h_{j}(w)=0, j=1, \cdots, m
\end{array}
$$

where the functions $f, g_{i}, i=1, \cdots, k$, and $h_{i}, i=1, \cdots, m$, are defined on a doma in Ω. The generalized Lagrangian was defined as

$$
\begin{aligned}
L(w, \alpha, \beta) & =f(w)+\sum_{i=1}^{k} \alpha_{i} g_{i}(w)+\sum_{j=1}^{m} \beta_{j} h_{j}(w) \\
& =f(w)+\alpha^{T} g(w)+\beta^{T} h(w)
\end{aligned}
$$

Dual Problem and Strong Duality Theorem

- Given the primal optimization problem, the dual problem of it was defined as

$$
\text { maximize } \theta(\alpha, \beta)=\inf _{w \in \Omega} L(w, \alpha, \beta)
$$

$$
\text { subject to } \quad \alpha>0
$$

- Strong Duality Theorem: Given the primal optimization problem, where the domain Ω is convexand the constraints g_{i} and h_{i} a re affine functions. Then the optimum of the primal problem occurs at the same values as the optimum of the dual problem.

Machine Leaming

Machine Learning

Supervised learning

Unsupervised learning

Dimensionality reduction

Unsupervised Leaming

What is Clustering?

Also called unsupervised leaming, sometimes called c la ssific ation by sta tistic ia ns a nd sorting by psyc hologists a nd segmentation by people in marketing

Organizing data into classes such that there is•
high intra-c la ss simila rity•
low inter-class simila nity •
Finding the classlabels and the number of classes directly from • the data (in contrast to classific ation).

What is a natural grouping among these objects?

What is a natural grouping among these objects?

Simpson's Fa mily School Employees

Females

Males

A data set with clearcluster

 structure

Supervised Leaming

General Approach for Building Classific ation Model

Tid		Attrib1	Attrib2	Attrib3
Class				
1	Yes	Large	125 K	No
2	No	Medium	100 K	No
3	No	Small	70 K	No
4	Yes	Medium	120 K	No
5	No	Large	95 K	Yes
6	No	Medium	60 K	No
7	Yes	Large	220 K	No
8	No	Small	85 K	Yes
9	No	Medium	75 K	No
10	No	Small	90 K	Yes

Training Set

Tid		Attrib1	Attrib2	Attrib3
11	Class			
12	No	Small	55 K	$?$
12	Yes	Medium	80 K	$?$
13	Yes	Large	110 K	$?$
14	No	Small	95 K	$?$
15	No	Large	67 K	$?$

Supervised vs. Unsupervised Lea ming

- Supervised leaming (classification)
- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indic ating the class of the observations
- New data isclassified based on the tra ining set
- Unsupervised leaming (clustering)
- The classlabels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Classific ation Techniques

- Base Classifiers
- Decision Tree based Methods
- Rule-based Methods
- Nearest-neighbor
- Neural Networks
- Deep Leaming
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines
- Ensemble Classifiers
- Boosting, Bagging, Random Forests

Support Vector Machine (SVM)

What is a good Decision Boundary?

- Consider a two-class, linearly separable classific ation problem. Construct the hyperplane $w^{T} x+b=0, \quad x \in R^{n}$
to make

$$
\begin{array}{ccc}
w^{T} x_{i}+b>0, & \text { for } & y_{i}=+1 \\
w^{T} x_{i}+b<0, & \text { for } & y_{i}=-1
\end{array}
$$

- Many decision boundaries! Are all decision boundaries equally good?

Examples of Bad Decision Boundaries

Optimal separating hyperplane

- The optimal separating hyperplane

- For the hyperplane, it can be proved that the margin mis

$$
m=\frac{1}{\|w\|^{2}}
$$

Hence, maximizing margin is equivalent to minimizing the square of the norm of w.

Finding the optimal decision boundary

- Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be ourdata set and let $y_{i} \in\{1,-1\}$ be the classlabel of x_{i}
- The optimal decision boundary should classify all points correctly $\Rightarrow y_{i}\left(w^{T} x_{i}+b\right) \geq 1, \quad \square i$
- The decision boundary can be found by solving the following constrained optimization problem
minimize $\frac{1}{2}\|w\|^{2}$
subject to $y_{i}\left(w^{T} x_{i}+b\right) \geq 1 \quad \forall i$

La grangian of the optimization

 problem$$
\text { minimize } \quad \frac{1}{2}\|w\|^{2}
$$

$$
\text { subject to } y_{i}\left(w^{T} x_{i}+b\right) \geq 1 \quad \forall i
$$

- The Lagrangian is

$$
L=\frac{1}{2} w^{T} w+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(w^{T} x_{i}+b\right)\right)
$$

- Setting the gradient of L w.r.t. w and be to zero, we have

$$
\begin{gathered}
w+\sum_{i=1}^{n} \alpha_{i}\left(-y_{i}\right) x_{i}=0 \Rightarrow w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{gathered}
$$

The Dual Problem

- If we substitute $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$ into Lagrangian L, we
have

$$
L=\frac{1}{2} \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}+\sum_{i=1}^{n} \alpha_{i}\left(1-y_{i}\left(\sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i}+b\right)\right)
$$

$$
=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}+\sum_{i=1}^{n} \alpha_{i}-\sum_{i=1}^{n} \alpha_{i} y_{i} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}^{T} x_{i}-b \sum_{i=1}^{n} \alpha_{i} y_{i}
$$

$$
=-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}+\sum_{i=1}^{n} \alpha_{i}
$$

- Note that $\sum_{i=1}^{n} \alpha_{i} y_{i}=0$, and the data points appear in terms of their inner product; this is a quadratic function of α_{i} only.

The Dual Problem

- The dual problem is therefore:
$\operatorname{maxmize} \quad W(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$
subject to $\quad \alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

The Dual Problem

minimize $\quad W(\alpha)=\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}-\sum_{i=1}^{n} \alpha_{i}$
subject to $\alpha_{i} \geq 0, \quad \sum_{i=1}^{n} \alpha_{i} y_{i}=0$

- This is a quadratic programming (QP) problem, and therefore a global minimum of α_{i} can always be found
- w can be recovered by $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$, and

$$
b=y_{k}-\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x_{k} \quad \text { for any } \alpha_{k}>0
$$

o so the decision function can be written

$$
f(x)=\operatorname{sign}\left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x+b\right)
$$

The use of slack variables

- We allow "errors" ξ_{i} in classific ation for noisy data

Soft Margin Hyperplane

- The use of slack variables ξ_{i} enable the soft margin classifier

$$
\left\{\begin{array}{cc}
w^{T} x_{i}+b \geq 1-\xi_{i} & y_{i}=1 \\
w^{T} x_{i}+b \leq-1+\xi_{i} & y_{i}=-1 \\
\xi_{i} \geq 0 & \forall i
\end{array}\right.
$$

- ξ_{i} are "slack variables" in optimization
- Note that $\xi_{\mathrm{i}}=0$ if there is no error for x_{i}
- The objective function $\quad \frac{1}{2}\|\omega\|^{2}+C \sum_{i=1}^{n} \xi_{i}$

C : tradeoff parameter between error and margin

- The primal optimization problem becomes

$$
\begin{array}{ll}
\text { minimize } & \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { subject to } y_{i}\left(w^{T} x_{i}+b\right) \geq 1-\xi_{i}, \quad \xi_{i} \geq 0
\end{array}
$$

Dual Soft-Margin Optimization Problem

- The dual of this new constra ined optimization problem is

$$
\begin{aligned}
& \operatorname{maxmize} W(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j} \\
& \text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{aligned}
$$

- ${ }^{w}$ can be recovered as $w=\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$
- This is very similar to the optimization problem in the hard-margin case, except that there is an upper bound C on α_{i} now.
- Once again, a QP solvercan be used to find α_{i}

Nonlinearseparable problems

Non-linear SVMs: Feature spaces

Proximal Support Vector Machine

The algorithm finds two non-parallel hyperplanes one foreach class, each hyperplane should be asclose as possible to one class and asfaraspossible from the other class.

$$
\min \frac{\left\|A W^{1}+b^{1}\right\|}{\left\|B W^{1}+b^{1}\right\|}
$$

$$
\min \frac{\left\|B W^{2}+b^{2}\right\|}{\left\|A W^{2}+b^{2}\right\|}
$$

Twin Support Vector Machines for Pattern Classification

Jayadeva, Senior Member, IEEE, R. Khemchandani, Student Member, IEEE, and Suresh Chandra

Abstract-We propose Twin SVM, a binary SVM classifier that determines two nonparallel planes by solving two related SVM-type problems, each of which is smaller than in a conventional SVM. The Twin SVM formulation is in the spirit of proximal SVMs via generalized eigenvalues. On several benchmark data sets, Twin SVM is not only fast, but shows good generalization. Twin SVM is also useful for automatically discovering two-dimensional projections of the data.

Standard SVM :

Why TWSVM?

This quadratic programming problem (QPP) is expensive to solve forlarge dimensions because all data points appear in the constraints.

How does it works?

Instead of solving one large QPP, TWSVM solve two smaller QPP each of them has the formulation of standard SVM except that not all data pattemsappear in the constraint at the same time.
The algorithm finds two non-parallel hyperplanes one foreach class, each hyperplane should be asclose as possible to one class and as far as possible from the otherclass.

Linear Classifier

TWSVM is obtained by solving the following pair of QPPs:
$\left(\right.$ TWSVM1) $\underset{w^{(1)}, b^{(1)}, q}{\operatorname{Min}} \quad \frac{1}{2}\left(A w^{(1)}+e_{1} b^{(1)}\right)^{T}\left(A w^{(1)}+e_{1} b^{(1)}\right)+c_{1} e_{2}^{T} q$
subject to $\quad-\left(B w^{(1)}+e_{2} b^{(1)}\right)+q \geq e_{2}, \quad q \geq 0$,
$(T W S V M 2) \underset{w^{(2)}, b^{(2)}, q}{\operatorname{Min}} \quad \frac{1}{2}\left(B w^{(2)}+e_{2} b^{(2)}\right)^{T}\left(B w^{(2)}+e_{2} b^{(2)}\right)+c_{2} e_{1}^{T} q$
subject to

$$
\left(A w^{(2)}+e_{1} b^{(2)}\right)+q \geq e_{1}, \quad q \geq 0
$$

The first term of the objective function represents the sum of square distance from the hyperplane to each pattem of one class, therefore minimizing it keeps the hyperplane close to the pattems of one class.

The constra ints require the hyperplane to be far from the other class pattems at least with distance 1.

The second term of the objective function minimize the sum of error variables to minimize miss c lassific ation of pattems belongs to other class.

The Wolfe dual can be obtain asfollows

$$
\begin{aligned}
& \max _{\alpha} e_{2}^{T} \alpha-\frac{1}{2} \alpha^{T} G\left(H^{\left.H^{T} H\right)-1} G^{T} \alpha, \quad G=\left[\begin{array}{ll}
B & e_{2}
\end{array}\right] \text { and } H=\left[\begin{array}{ll}
A & e_{1}
\end{array}\right]\right. \\
& \quad \text { subject to } 0 \leq \alpha \leq c_{1} \\
& u=-\left(H^{T} H\right)^{-1} G^{T} \alpha \text { where } u=\left[\begin{array}{ll}
w_{1}^{T}, & b_{1}
\end{array}\right]^{T} .
\end{aligned}
$$

$$
\begin{aligned}
& \max _{\alpha} e_{1}^{T} \gamma-\frac{1}{2} \gamma^{T} P\left(Q^{T} Q\right)-1 P^{T} \gamma, \quad \mathrm{P}=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{e}_{-} 1
\end{array}\right] \text { and } \mathrm{Q}=\left[\begin{array}{ll}
\mathrm{B} & \mathrm{e}_{-}
\end{array}\right] \\
& \text {subject to } 0 \leq \gamma \leq c_{2}
\end{aligned}
$$

$$
v=\left(Q^{T} Q\right)^{-1} P^{T} \gamma \text { where } v=\left[w_{2}^{T}, \quad b_{2}\right]^{T}
$$

The first QPP TWSVM can be modified as follow:

$$
\begin{gathered}
\min _{w_{1}, b_{1}, q_{1}}\left\|A w_{1}+e_{1} b_{1}\right\|^{2}+c_{1} q^{T} q \\
\text { subject to }-\left(B w_{1}+e_{2} b_{1}\right)+q \geq e_{2} \\
q \geq 0
\end{gathered}
$$

We combine constraint together, then we have

$$
q=\left(e_{2}-B w_{1}-e_{2} b_{1}\right)_{+}
$$

Then the above problem change to following unconstrained problem:

$$
\min _{w_{1}, b_{1}, q_{1}}\left\|A w_{1}+e_{1} b_{1}\right\|^{2}+c_{1}\left\|\left(e_{2}-B w_{1}-e_{2} b_{1}\right)_{+}\right\|^{2} .
$$

Similarly, the second QPP TWSVM can be modified as follow:

$$
\min _{w_{2}, b_{2}, q_{2}}\left\|B w_{2}+e_{2} b_{2}\right\|^{2}+c_{2}\left\|\left(e_{1}-A w_{2}-e_{1} b_{2}\right)_{+}\right\|^{2}
$$

The above problems are piecewise, quadratic, convex, and once differentiable. The generalized Newton method can be used for solving them.

Algorithm : Generalized Newton Method with the Stepsize Armijo Rule
Choose any vector p_{0} and $\epsilon>0, i=0$;

$$
\text { while }\left\|\nabla g\left(p_{i}\right)\right\|_{\infty} \geq \epsilon
$$

Choose $\alpha_{i}=\max \left\{s, s \delta, s \delta^{2}, \ldots\right\}$ such that

$$
g\left(p_{i}\right)-g\left(p_{i}+\alpha_{i} d_{i}\right) \geq-\delta \mu \nabla g\left(p_{i}\right)^{T} d_{i},
$$

where $d_{i}=-\partial^{2} g\left(p_{i}\right)^{-1} \nabla g\left(p_{i}\right), s>0$ is a constant, $\delta \in(0,1)$ and $\mu \in(0,1)$.

$$
\begin{aligned}
& p_{i+1}=p_{i}+\alpha_{i} d_{i} \\
& i=i+1 ;
\end{aligned}
$$

Numerical Experiments

Data set	Twin SVM	New Method
ionosphere	$0.8346+0.0617$	$\begin{aligned} & \text { 0.92024e-001+ } \\ & 3.9924 e-002 \end{aligned}$
WPBC	$0.6511+0.2512$	0.8792+0.0757
WDBC	$0.5778+0.1128$	0.9526+0.0468
Pima Indians	$\begin{aligned} & 0.36309+4.3776 e- \\ & 002 \end{aligned}$	$\begin{aligned} & 0.69672+7.4829 e- \\ & 002 \end{aligned}$
Soanr	$\begin{aligned} & 0.61524+7.1800 e- \\ & 002 \end{aligned}$	$\begin{aligned} & 0.85024+6.0008 e- \\ & 002 \end{aligned}$
Heartstatlog	$\begin{aligned} & .57407+8.4186 e- \\ & 002 \end{aligned}$	$\begin{aligned} & 0.67778+6.0607 e- \\ & 002 \end{aligned}$

We can extend this method to Nonlinear Classifier

One of the hardest parts of writing a research papercan be just finding a good topic to write about.

Some ideas:

1. Finding a new method to separate data sets
2. New effic ient optimization model for the previous ideas.
3. Solving the existence ideas with a new method.
4. Extending the currents methods for bina ry classific ation to

Multi-c lass c la ssific a tion

Resources: Datasets

- UCI Repository:
http://www.ics.uci.edu/~mleam/MLRepository.htm !
- UCI KDD Archive:
http://kdd.ics.uci.edu/summary.data.application. html
- Sta tlib: http:// lib.stat.cmu.edu/
- Delve: http://www.cs.utoronto.ca/~delve/

Resources: J oumals

- Joumal of Machine Leaming Research Machine Leaming
- IEEE Transa ctions on Neural Networks
- IEEE Transa ctions on Pattem Analysis and Machine Intelligence
- Annals of Statistics
- J oumal of the Americ an Statistic al Association
- ...

Resources: Conferences

- Intemational Conference on Machine Lea ming (ICML)
- European Conference on Machine Leaming (ECML)
- Neural Information Processing Systems(NIPS)
- Computational Lea ming
- Intemational J oint C onference on Artific ial Intelligence (IJ CAI)
- ACM SIG KDD Conference on Knowledge Disc overy and Data Mining (KDD)
- IEEE Int. Conf. on Data Mining (ICDM)
$\$$
 hronimint

C harles Bridge Prague

