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Optimization




Optimization Problem

» Finding the minimizer of a function subject to constraints:

minignize folx)
s.t. filx) <0, i={1,...,k}
hj[ﬁ} =0, j= {11“*1‘{}




Some different types
of
optimization problems

?




Optimization Taxonomy

A
Multiobjective Optimization

. N\

Stochastic Programming | | Robust Optimization i Discrete

N

Combinatorial
Optimization

/ l ~—_

Nonlinear Nondifferentiable

Least Squares Nonlinear Equations Optimization (lobal Optimization Network Optimization | | Bound Constrained | | Linearly Constrained

RN

Semiinfinite Mathematical Programs Mixed Integer Derivative-Free Quadratic Linear
Programming | | with Equilibrium Constraints | | Nonlinear Programming Optimization Programming Programming

Semidefinite Programming

/ /
Second-Order Complementarity
Cone Programming Problems

i
Quadratically-Constrained
Quadratic Programming




Applications of Optimization




Optimality Conditions




Optimality Criteria )

o Big question: How do we know that we have
found the “optimum” for min f(x)?

Answer: Test the solution for the “necessary and sufficient conditions”




|
Optimality Conditimj

Case

o Let x* be the point that we think is the minimum for f(x)
Necessary condition (for optimality):

Vi(x*) =0
o A point that satisfies the necessary condition is a

stationary point It can be a minimum, maximum, or
saddle point

o How do we know that we have a minimum?
o Answer: Sufficiency Condition:

The sufficient conditions for x* to be a strict local
minimum are:

Vi(x*) =0
V2f(x*) is positive definite




Constrained Case — KKT Conditions

o To proof a claim of optimality in constrained
minimization (or maximization), we have to check

the found point with respect to the (Karesh) Kuhn
Tucker conditions.

o Kuhn and Tucker extended the Lagrangian theory
to include the general classical single-objective
nonlinear programming problem:

minimize f(x)
Subjectto gj(x) >0forj=1,2,..,J

h(x) =0 fork=1,2,..,K
X = (X1, Xoy weey XN)




Necessary KKT Conditions

For the problem:
Min f(x)
s.t.g(x) <0
(n variables, m constraints)

The necessary conditions are:
VIi(x) + Z u; Vgi(x) = 0 (optimality)
gi(x) <0 fori=1, 2,.., m (feasibility)

wgix) =0 fori=1,2,..., m(complementary slackness
condition)

=0 fori=1, 2, ..., m (non-negativity)

Note that the first condition gives n equations.




Necessary KKT Conditions (General
Case)

o For general case (n variables, M Inequalities, L equalities):
Min f(x)
s.t.
gi(x) <0Ofori=1,2,..,. M
h(x) =0 ford=1,2,..1L

o In all this, the assumption is that V%-(x? for | belonging to
active constraints and Vh,(x*) fork'= 1, ...,K are linearly
iIndependent

o The necessary conditions are:
VI(x) + Z w Vgi(x) + £ 4; Vhi(x) = 0 (optimality)
gi(x) <0 fori=1, 2, .., M (feasiblility)
hj(x) =0 forj=1, 2, ..., L (feasibllity)

wgix)=0 fori=1, 2, ..., M (complementary
slackness condition)

w>0 fori=1, 2, ..., M (hon-negativity)
Note: A, Is unrestricted in sign




|
Restating the OpM

o Kuhn Tucker Optimization Problem: Find vectors
X1y My @Nd A 1, that satisfy:
VI(X) + 2w Vgi(x) + £ 2, Vh(x) = 0 (optimality)
gi(x) <0 fori=1, 2, ..., M (feasibility)
h(x) =0 forj=1, 2, ..., L (feasibility)

wgx) =0 fori=1,2, ..., M (complementary slackness
Condmon)

=0 fori=1, 2, ..., M (hon-negativity)

» If x* Is an optimal solution to NLP, then there exists a

(u*, A*) such that (x*, u*, A*) solves the Kuhn-Tucker
problem.

» Above equations not only give the necessary

conditions for optimality, but also provide a way of
finding the optimal point.




Limitations

o Necessity theorem helps identify points that
are not optimal. A pointis not optimal if it
does not satisfy the Kuhn-Tucker conditions.

o On the other hand, not all points that satisfy
the Kuhn-Tucker conditions are optimal points.

o The Kuhn-Tucker sufficiency theorem gives

conditions under which a point becomes an
optimal solution to a single-objective NLP.




Sufficiency Condition

o Sufficient conditions that a point x* is a strict local g
minimum of the NLP problem, where f, g;, and h,
are twice differentiable functions are that

1) The necessary KKT conditions are met.

2) The Hessian matrix V2L(x*) = V4f(x*) + Zu,V2gi(x*) +
XA V2h(x*) is positive definite on a subspace of
R" as defined by the condition:

y' VZL(x*) y > 0 is met for every vector y i,
satisfying:

Vg(x*)y <0 forjbelongingtol; ={] | gj(x*) =
0, u* > 0} (active constraints)

Vh(x*)y=0fork=1, .., K

y#0




KKT Sufficiency Thm

Case)

o Consider the classical single objective NLP
problem.

minimize f(x)
Subject to gi(x) <0 forj=1,2,..,J
h(x) =0 fork=1,2,..,K

o Let the objective function f(x) be convex, the
inequality constraints g;(x) be all convex functions
forj=1, .., J, and the @quality constraints h,(x) for
k=1, .., Kbelnear.

o If this is true, then the necessary KKT conditions are
also sufficient.

o Therefore, in this case, if there exists a solution x*
that satisfies the KKT necessar{ conditions, then x*
Is an optimal solution to the NLP problem.

o In fact, it is a global optimum.




Dual Problem




Generalized Lagrangian Function

o Consider the general (primal) optimization

problem
minimize f(w)

subjectto g.(w)< 0,1=1,---,K
hJ(W):()! J :111m

where the functions f, g;,i=1,---,k,and h;, i =1,---,m,
are defined on a domain Q . The generahzed
Lagrangian was defined as

L(w,a, ) = f(W)+2069 (W)+Z,3 i (W)

= f(w)+a g(w)+ B’ h(w)




Dual Problem and Strong Duality Theorem

o Given the primal optimization problem, the dual
problem of it was defined as

maximize 6(o,pf) = inf L(w,a, )

weQ)

subject to >0

o Strong Duality Theorem: Given the primal
optimization problem, where the domain Q@ s
convex and the constraints 9; and h gre affine
functions. Then the optimum of the primal problem
occurs at the same values as the optimum of the
dual problem .




Machine Learning




Machine Learning

Supervised Unsupervised
learning learning

"

L: -l ~l
Classification Regression Cluster Dlmensm.nallty
analysis reduction




Unsupervised Learning




What 1S

Also called unsupervised learning, sometimes
called classification by statisticians and sorting

by psychologists and segmentation by people
INn marketing

Organizing data into classes such that there ise
high intra-class similarity=

low inter-class similarity =

Finding the class labels and the number of classes directly from =
the data (in contrast to classification).
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What is a natural grouping
among these objects?




|
What is a natural W

among these objects?

Simpson's Family School Employees
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A data set with clear cluster

structure

-
O ®
O
S5 O
880 o How would
Zoo . © you design
> an
algorithm
for finding
@ © the three
& 0 o4 clusters in
%9 this case?
% 00O




Supervised Learning
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		NAME		RANK		YEARS		TENURED

		Mike		Assistant Prof		3		no

		Mary		Assistant Prof		7		yes

		Bill		Professor		2		yes

		Jim		Associate Prof		7		yes

		Dave		Assistant Prof		6		no

		Anne		Associate Prof		3		no






General Approa
Classification Model

Tid Attribl  Attrib2  Attrib3  Class Leaming
1 Yes Large 125K No algorithm
2 No Medium 100K No
3 No Small 70K No
4 Yes Medium 120K No |ndUCti0n
5 No Large 95K Yes
6 No Medium 60K No
7 Yes Large 220K No Learn
8 |[No Small 85K Yes Model
9 No Medium 75K No
10 | No Small 90K Yes
Training Set
Apply

Tid  Attribl Attrib2 Attrib3  Class

11 | No Small 55K ?
12 | Yes Medium 80K ?
13 | Yes Large 110Kk |2 Deduction

14 | No Small 95K ?

15 | No Large 67K ?

Model

/

=)
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Supervised vs. Unsupervised Learning

o Supervised learning (classification)

o Supervision: The training data (observations,
measurements, etc.) are accompanied by labels
Indicating the class of the observations

o New data is classified based on the training set
o Unsupervised learning (clustering)

o The class labels of training data is unknown

o Given a set of measurements, observations, etc.
with the aim of establishing the existence of
classes or clusters in the data




Classification Techniques i

o Base Classifiers
o Decision Tree based Methods
Rule-based Methods
Nearest-neighbor
Neural Networks
Deep Learning
Naive Bayes and Bayesian Belief Networks
Support Vector Machines

O 00O0O00O

o Ensemble Classifiers
o Boosting, Bagging, Random Forests

35




Support Vector Machine (SVM)
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What is a good Decision Boundary?

o Consider a two-class, ¢ F(x)=sign(w" x+b)
linearly separable
classification problem. o © Class2
Construct the hyperplane
W'x+b=0, xeR’ [ -, @ °
to make x L@
w'x. +b>0, for y =+1 I ’
w'x.+b<0, for y =-1 = O
Class 1

o Many decision boundaries!
Are all decision boundaries
equally good?



Presenter
Presentation Notes
Perceptron learning rule can be used to find any decision boundary between class 1 and class 2


Examples of Bad Decision Boundaries

f (x) = sign(w' x +b)

@ Class 2
@)
] @)
0”‘ .
] O
I I
[ O

Class 1

f (x) =._‘sign(wT X +b)

° @ Class
e
= 3 o
R O
B Em:
[ H
Class 1




Optimal separating hyperplane

o The optimal separating hyperplane

- -
- -
- -
- -
- -
- .
-
-
-




o For the hy?erplane, it can be proved that the
margin n'i

1
Jwl’

Hence, maximizing margin is equivalent to

minimizing the square of the norm of W,




Finding the optimal decision boundary

o Let {x,, ..., X,} be our data set and lety, € {1,-1}
be the class label of x

o The optimal decision boundary should classify
all points correctly = y (w'x +b)> 1, (i

o The decision boundary can be found by
solving the following constrained optimization
problem

minimize

1
2
subjectto y. (W' x. +b)>1 Vi

fwl”




C I
Lagrangian of the optimization

problem
minimize EHWHZ

subjectto y, (W' x. +b)>1 Vi

o The Lagrangian is

L = %WTW+ D a;(1-y,(W'x; +b))
i=1

o Setting the gradient of L w.r.t. W and be to zero,
we have

WD (y)x =0 = w=Yayx
i=1 i=1

Zn:ai y; =0
i—1
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Presentation Notes
Enable us to implement the non-parametric learning


The Dual Problem

n
o If we substitute w = Z‘Zi y.x. intoLagrangian L, we
have i1

1 n n n n
L:EZaiiniTZajijj +Z:05i(1—yi (Zlocjij}xi +b)j
i1 =1 i1 =1
1 n n n n n n
:EZZaiajyiijiij +leai —Z;aiyiz;ajij}xi —ble
1= 1= ]= 1=

i=1 j=1

1 n n n
= "Eé{jilj}il‘xicxjfViyqliiIEllb :zz:cxi
i1 j-1 i1

n
o Note that Zai ¥i =0  and the data points appear in
i=1
terms of their inner product; this is a quadratic function

of a, only.



i _

The Dual Problem )

o The dual problem is therefore:

maxmize W () => ¢, —% D ooy YK X,
i=1

i=1, j=1

subjectto «; 20, > a;y; =0
i=1
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Presentation Notes
Later we will use this feature to implement the SV classification for nonlinear separable case 


The Dual Problem
minimize W (a) = ZZa VX X, =D e

I, j=1 i=1
subjectto &; 20, > oy, :(Q

o This is a quadratic pro'g:;lramming (QP) problem, an

therefore a global minimum of «; can always be
found

o W can be recovered by W= &% , and

=Y oy x,  forany a, >0
i=1

o so the decision function can be written

f (x) = sign (Zn:ai Y. X! X +b)



Presenter
Presentation Notes
Let x(1) and x(-1) be two S.V.
Then b = -1/2( w^T x(1) + w^T x(-1) )


i _

The use of slack variables i

o We allow “errors” & in classification for noisy data

Class 2

W x+b=1

W X+b=0

Class 1

v



Presenter
Presentation Notes
In practice, The data can be polluted by noise 


Soft Margin Hyperplane

o The use of slack variables g enable the soft margi
classifier
w'x. +b>1-¢& y =1
Wix +b<-1+& y, =-1
£E>0 Vi
o &; are “slack variables” in optimization
o Note that £=0 if there is no error for x

N

1, 42 .
o The objective function %" +C;5i
C : tradeoff parameter between error and margi




o The primal optimization problem becomes

minimize %”W”2+Ci§i
i=1
subjectto y. (W' x. +b)>1-&, & >0




i _

Dual Soft-Margin Optimization Problem

o The dual of this new constrained optimization
problem is

maxmize W (a) = Za _E Z a4 Yy X X

i=1, j=1

subject to C>¢;, >0, Zai y, =0
i=1

n
W can be recovered as W= Zai YiXi

=1

o

o This is very similar to the optimization problem in
the hard-margin case, except that there is an
upper bound C on o; how.

o Once again, a QP solver can be used to find o,



Presenter
Presentation Notes
Note also, everything is done by inner-products


Nonlinear separable problems

This is a hyperplane!
(in some space)




Non-linear SVMs:. Feature spaces

v

\ 4




Proximal Support Vector Machine




The algorithm finds two non-parallel hyperplanes one
for each class, each hyperplane should be as close as

possible to one class and as far as possible from the
other class.




IAW? + b1 '
|IBW?T + b1

min

|IBW? + b?||

ms

AW + 52|




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

Twin Support Vector Machines
for Pattern Classification

Jayadeva, Senior Member, IEEE,
R. Khemchandani, Student Member, IEEE,
and
Suresh Chandra

Abstract—We propose Twin SVM, a binary SVM classifier that determines two
nonparallel planes by solving two related SVM-type problems, each of which is
smaller than in a conventional SVM. The Twin SVM formulation is in the spirit of
proximal SVMs via generalized eigenvalues. On several benchmark data sets,
Twin SVM is not only fast, but shows good generalization. Twin SVM is also useful
for automatically discovering two-dimensional projections of the data.




Standard SVM :

X2 A V
.
a . ‘0,//\/ //‘%
/)’
IN
°
. /4.{0 1
min=w!w +ve'lr,
/ wr 2
) 0 C o subjectto (Aw —ey) +1 =>e,
71 o Op (Bw —ey) —r < —e,
P r = 0.
//¢>‘5\7 / g X,




Why TWSVM?

This quadratic programming problem
(QPP) is expensive to solve for large
dimensions because all data points
appear in the constraints.




How does it works ? B

Instead of solving one large QPP, TWSVM
solve two smaller QPP each of them has
the formulation of standard SVM except
that not all data patterns appear in the
constraint at the same time.

The algorithm finds two non-parallel
hyperplanes one for each class, each
hyperplane should be as close as

possible to one class and as far as possible
from the other class.







Linear Classifier

TWSVM is obtained by solving the following pair of
QPPs:

1
(TWSVM1)  Min : §(Aw“} + et (Aw? + €,6)+ c1elg

subject to  — (Bw'Y +ebV) +q> €5, ¢>0,

1
(TWSVM2) Min -
w(® bR, ¢ 2

subject to (Aw'® + e1b?)+g>e1, ¢>0,

(Bw{z} + egb{EJ)T(Bw{z} + e b{m)"' CQET‘I




The first term of the objective function represents
the sum of square distance from the hyperplane
to each pattern of one class, therefore minimizing
It keeps the hyperplane close to the patterns of
one class.

The constraints require the hyper plane to be far
from the other class patterns at least with distance
1.

The second term of the objective function
minimize the sum of error variables to minimize miss
classification of patterns belongs to other class.




The Wolfe dual can be obtain as follows

1 T
mo?xezTa —ECKTG(H H)-1GTq, G=|[B e] and H=[A e4]

subjectto 0 < a < ¢q

u=—(HTH)"1GTa where u=[wl, b]".

1 Ty
maxe(y —sy"P(CO7PTy,  po[a e 1] and Q=[B e 2]
subjectto 0 <y < ¢,

v=(Q"Q)™'PTy where v=[w;, b,]"




The first QPP TWSVM can be modified as follow:

min ”AW1 + elb1||2 + Cquq,
wi1,b1,q1

subjectto — (Bwy +e,by) +q = ey,
q = 0.

We combine constraint together, then we have

q = (e; —Bw; —eyby)y

Then the above problem change to following unconstrained
problem:

min ||[Aw; + e;by||? + c1||(e; — Bwy — ezby) 4 ||%
w1,b1,q91




Similarly, the second QPP TWSVM can be modified as follow:

min ||Bw, + e;b,||* + c;3||(e; — Aw, — e1by) 4 ||%
W3,b2,q>

The above problems are piecewise, quadratic, convex, and
once differentiable. The generalized Newton method can be
used for solving them.




Algorithm : Generalized Newton Method with the Stepsize Armijo

Rule I

Choose any vector pp and € > 0, 7 = 0;

while |[Vg(pi)|l< = €
Choose a; =maz{s,sd,s6%, ...} such that
9(pi) — 9(pi + aidy) > —6pV g(p:)" di.

where d; = —0%g(p;)"'Vg(p;), s > 0 is a constant, & € (0,1) and
pe (0,1).

Pi+1 = Pi + ayd;

i =1+ 1;




Numerical Experiments

Data set Twin SVM New Method -

ionosphere 0.8346+-0.0617 0.92024e-001+-
3.9924e-002
WPBC 0.6511+-0.2512 0.8792+-0.0757
WDBC 0.5778+-0.1128 0.9526+-0.0468
Pima Indians 0.36309+-4.3776e- 0.69672+- 7.4829e-
002 002

0.61524+-7.1800e- 0.85024+-6.0008e-
002 002

Heart-statlog .57407+-8.4186e- 0.67778+-6.0607e-
002 002




We can extend this method to Nonlinear Classifier




One of the hardest parts of writing a research paper can be
just finding a good topic to write about.

Some ideas:

1. Finding a new method to separate data sets

2. New efficient optimization model for the previous ideas.
3. Solving the existence ideas with a new method.

4. Extending the currents methods for binary classification to

Multi-class classification




Resources: Datasets

o UCI Repository:

http://www.ics.uci.edu/~mlearn/MLRepository.htm
I

o UCI KDD Archive:

http://kdd.ics.uci.edu/summary.data.application.
html

o Statlib: http://lib.stat.cmu.edu/

o Delve: http://www.cs.utoronto.ca/~delve/



http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/%7Edelve/

Resources: Journals

o Journal of Machine Learning Research
Machine Learning

o IEEE Transactions on Neural Networks

o IEEE Transactions on Pattern Analysis and
Machine Intelligence

o Annals of Statistics

o Journal of the American Statistical
Association

o..




Resources: Conferences

o International Conference on Machine Learning (ICML)

o European Conference on Machine Learning (ECML)

o Neural Information Processing Systems (NIPS)

o Computational Learning

o International Joint Conference on Artificial Intelligence (IJCAI)

o ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD)
o IEEE Int. Conf. on Data Mining (ICDM)




Questions?




Thanks for your
Attentmn




Charles Bridge Prague
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