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Optimization 



Optimization Problem



Some different types
of 

optimization problems

?



Optimization Taxonomy



Applications of Optimization

?



Karush-Kuhn-Tucker Optimality Conditions



Optimality Criteria

 Big question: How do we know that we have 
found the “optimum” for min f(x)?

Answer: Test the solution for the “necessary and sufficient conditions”



Optimality Conditions – Unconstrained 
Case
 Let x* be the point that we think is the minimum for f(x)
Necessary condition (for optimality): 

∇f(x*) = 0
 A point that satisfies the necessary condition is a 

stationary point It can be a minimum, maximum, or 
saddle point

 How do we know that we have a minimum?
 Answer: Sufficiency Condition:

The sufficient conditions for x* to be a strict local 
minimum are: 

∇f(x*) = 0
∇2f(x*) is positive definite 



Constrained Case – KKT Conditions

 To proof a claim of optimality in constrained 
minimization (or maximization), we have to check 
the found point with respect to the (Karesh) Kuhn 
Tucker conditions.

 Kuhn and Tucker extended the Lagrangian theory 
to include the general classical single-objective 
nonlinear programming problem:

minimize f(x)
Subject to gj(x) ≥ 0for j = 1, 2, ..., J

hk(x) = 0 for k = 1, 2, ..., K
x = (x1, x2, ..., xN)



Necessary KKT Conditions
For the problem:

Min f(x)
s.t. g(x) ≤ 0
(n variables, m constraints)

The necessary conditions are:
∇f(x) + Σ µi ∇gi(x) = 0 (optimality)
gi(x) ≤ 0 for i = 1, 2, ..., m   (feasibility)
µi gi(x) = 0 for i = 1, 2, ..., m (complementary slackness 

condition)
µi ≥ 0 for i = 1, 2, ..., m (non-negativity)

Note that the first condition gives n equations.



Necessary KKT Conditions (General 
Case)

 For general case (n variables, M Inequalities, L equalities):
Min f(x)
s.t.

gi(x) ≤ 0for i = 1, 2, ..., M 
hj(x) = 0 for J = 1, 2, ..., L

 In all this, the assumption is that ∇gj(x*) for j belonging to 
active constraints and ∇hk(x*) for k = 1, ...,K are linearly 
independent 

 The necessary conditions are:
∇f(x) + Σ µi ∇gi(x) + Σ λj ∇hj(x) = 0 (optimality)
gi(x) ≤ 0 for i = 1, 2, ..., M (feasibility)
hj(x) = 0 for j = 1, 2, ..., L (feasibility)
µi gi(x) = 0 for i = 1, 2, ..., M (complementary 

slackness condition)
µi ≥ 0 for i = 1, 2, ..., M (non-negativity)
(Note: λj is unrestricted in sign)



Restating the Optimization Problem 
 Kuhn Tucker Optimization Problem:  Find vectors 

x(Nx1), µ(1xM) and λ (1xK) that satisfy:
∇f(x) + Σ µi ∇gi(x) + Σ λj ∇hj(x) = 0 (optimality)
gi(x) ≤ 0 for i = 1, 2, ..., M (feasibility)
hj(x) = 0 for j = 1, 2, ..., L (feasibility)
µi gi(x) = 0 for i = 1, 2, ..., M (complementary slackness 

condition)
µi ≥ 0 for i = 1, 2, ..., M (non-negativity)

 If x* is an optimal solution to NLP, then there exists a 
(µ*, λ*) such that (x*, µ*, λ*) solves the Kuhn–Tucker 
problem.

 Above equations not only give the necessary 
conditions for optimality, but also provide a way of 
finding the optimal point.



Limitations

 Necessity theorem helps identify points that 
are not optimal.  A point is not optimal if it 
does not satisfy the Kuhn–Tucker conditions.

 On the other hand, not all points that satisfy 
the Kuhn-Tucker conditions are optimal points.

 The Kuhn–Tucker sufficiency theorem gives 
conditions under which a point becomes an 
optimal solution to a single-objective NLP.



Sufficiency Condition
 Sufficient conditions that a point x* is a strict local 

minimum of the NLP problem, where f, gj, and hk
are twice differentiable functions are that
1) The necessary KKT conditions are met.
2) The Hessian matrix ∇2L(x*) = ∇2f(x*) + Σµi∇2gi(x*) + 
Σλj∇2hj(x*) is positive definite on a subspace of 
Rn as defined by the condition:
yT ∇2L(x*) y ≥ 0 is met for every vector y(1xN)
satisfying:
∇gj(x*)y < 0  for j belonging to I1 = { j | gj(x*) = 

0, uj* > 0} (active constraints)
∇hk(x*)y = 0 for k = 1, ..., K
y ≠ 0



KKT Sufficiency Theorem (Special 
Case)
 Consider the classical single objective NLP 

problem.
minimize f(x)
Subject to gj(x) ≤ 0 for j = 1, 2, ..., J

hk(x) = 0 for k = 1, 2, ..., K

 Let the objective function f(x) be convex, the 
inequality constraints gj(x) be all convex functions 
for j = 1, ..., J, and the equality constraints hk(x) for 
k = 1, ..., K be linear.

 If this is true, then the necessary KKT conditions are 
also sufficient.

 Therefore, in this case, if there exists a solution x* 
that satisfies the KKT necessary conditions, then x* 
is an optimal solution to the NLP problem.

 In fact, it is a global optimum.



Dual Problem



Generalized Lagrangian Function 

 Consider the general (primal) optimization 
problem

where the functions                                                       
are defined on a domain     . The generalized 
Lagrangian was defined as
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Dual Problem and Strong Duality Theorem
 Given the primal optimization problem, the dual 

problem of it was defined as

 Strong Duality Theorem: Given the primal 
optimization problem, where the domain        is 
convex and the constraints                are affine 
functions. Then the optimum of the primal problem 
occurs at the same values as the optimum of the 
dual problem . 
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Machine Learning 





Unsupervised Learning 



•Organizing data into classes such that there is

•high intra-class similarity

•low inter-class similarity
•Finding the class labels and the number of classes directly from 

the data (in contrast to classification).

What is Clustering?
Also called unsupervised learning, sometimes 
called classification by statisticians and sorting
by psychologists and segmentation by people 
in marketing





What is a natural grouping 
among these objects?



School EmployeesSimpson's Family MalesFemales

Clustering is subjective

What is a natural grouping 
among these objects?



A data set with clear cluster 
structure

 How would 
you design 
an 
algorithm 
for finding 
the three 
clusters in 
this case?



Supervised Learning



Classifier

Train data Unseen Data

(Jeff, Professor, 4)

Tenured?
NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no


Sheet1

		NAME		RANK		YEARS		TENURED

		Mike		Assistant Prof		3		no

		Mary		Assistant Prof		7		yes

		Bill		Professor		2		yes

		Jim		Associate Prof		7		yes

		Dave		Assistant Prof		6		no

		Anne		Associate Prof		3		no







General Approach for Building 
Classification Model

Apply 
Model

Induction

Deduction

Learn 
Model

Model

Tid Attrib1 Attrib2 Attrib3 Class 

1 Yes Large 125K No 

2 No Medium 100K No 

3 No Small 70K No 

4 Yes Medium 120K No 

5 No Large 95K Yes 

6 No Medium 60K No 

7 Yes Large 220K No 

8 No Small 85K Yes 

9 No Medium 75K No 

10 No Small 90K Yes 
10 

 

Tid Attrib1 Attrib2 Attrib3 Class 

11 No Small 55K ? 

12 Yes Medium 80K ? 

13 Yes Large 110K ? 

14 No Small 95K ? 

15 No Large 67K ? 
10 

 

Test Set

Learning
algorithm

Training Set

32





Supervised vs. Unsupervised Learning
 Supervised learning (classification)
 Supervision: The training data (observations, 

measurements, etc.) are accompanied by labels
indicating the class of the observations

 New data is classified based on the training set
 Unsupervised learning (clustering)
 The class labels of training data is unknown
 Given a set of measurements, observations, etc. 

with the aim of establishing the existence of 
classes or clusters in the data

34



Classification Techniques

 Base Classifiers
 Decision Tree based Methods
 Rule-based Methods
 Nearest-neighbor
 Neural Networks
 Deep Learning
 Naïve Bayes and Bayesian Belief Networks
 Support Vector Machines

 Ensemble Classifiers
 Boosting, Bagging, Random Forests

35



Support Vector Machine (SVM)



What is a good Decision Boundary?

 Consider a two-class, 
linearly separable 
classification problem. 
Construct the hyperplane 

to make

 Many decision boundaries! 
Are all decision boundaries 
equally good?

Class 1

Class 2
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Examples of Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2
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Optimal separating hyperplane 

 The optimal separating hyperplane

Class 1

Class 2

m

0=+ bxwT

1=+ bxwT

w

1−=+ bxwT



 For the  hyperplane, it can be proved that the 
margin m is 

Hence, maximizing margin is equivalent to 

minimizing the square of the norm of      .

2
1m

w
=

w



Finding the optimal decision boundary

 Let {x1, ..., xn} be our data set and let yi ∈ {1,-1} 
be the class label of xi

 The optimal decision boundary should classify 
all points correctly ⇒

 The decision boundary can be found by 
solving the following constrained optimization 
problem
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Lagrangian of the optimization 
problem

 The Lagrangian is

 Setting the gradient of     w.r.t. and be to zero, 
we have
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The Dual Problem
 If we substitute                          into Lagrangian , we 

have 

 Note that                     , and the data points appear in 
terms of their inner product; this is a quadratic function 
of αi only. 
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The Dual Problem
 The dual problem is therefore:
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The Dual Problem

 This is a quadratic programming (QP) problem, and 
therefore a global minimum of      can always be 
found

 can be recovered by                      , and  

 so the decision function can be written
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The use of slack variables

 We allow “errors” ξi in classification for noisy data 

Class 1

Class 2

0Tw x b+ =

1Tw x b+ = −

1=+ bxwT

wjx

ix

jξ

iξ
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In practice, The data can be polluted by noise 



Soft Margin Hyperplane
 The use of  slack variables ξi enable the soft margin 

classifier

 ξi are “slack variables” in optimization
 Note that ξi=0 if there is no error for 

 The objective function
C : tradeoff parameter between error and margin
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 The primal optimization problem becomes
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Dual Soft-Margin Optimization Problem

 The dual of this new constrained optimization 
problem is

 can be recovered as 

 This is very similar to the optimization problem in 
the hard-margin case, except that there is an 
upper bound C on αi now. 

 Once again, a QP solver can be used to find αi
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Nonlinear separable problems



Non-linear SVMs:  Feature spaces

Φ:  x→ φ(x)



Proximal Support Vector Machine 



A

B

The algorithm finds two non-parallel hyperplanes one 
for each class, each hyperplane should be as close as 
possible to one class and as far as possible from the 
other class.



min
‖𝐴𝐴𝑊𝑊1 + 𝑏𝑏1‖
‖𝐵𝐵𝑊𝑊1 + 𝑏𝑏1‖

min
‖𝐵𝐵𝑊𝑊2 + 𝑏𝑏2‖
‖𝐴𝐴𝑊𝑊2 + 𝑏𝑏2‖





Standard SVM :

min
𝑤𝑤,𝑟𝑟

1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝜈𝜈𝑒𝑒𝑇𝑇𝑟𝑟,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 (𝐴𝐴𝐴𝐴 − 𝑒𝑒𝑒𝑒) + 𝑟𝑟 ≥ 𝑒𝑒,
(𝐵𝐵𝐵𝐵 − 𝑒𝑒𝑒𝑒) − 𝑟𝑟 ≤ −𝑒𝑒,

𝑟𝑟 ≥ 0.



Why TWSVM?

This quadratic programming problem 
(QPP) is expensive to solve for large 
dimensions because all data points 
appear in the constraints.



How does it works ?

Instead of solving one large QPP, TWSVM 
solve two smaller QPP each of them has 
the formulation of standard SVM except 
that not all data patterns appear in the 
constraint at the same time.
The algorithm finds two non-parallel 
hyperplanes one for each class, each 
hyperplane should be as close as
possible to one class and as far as possible 
from the other class.





Linear Classifier
TWSVM is obtained by solving the following pair of 
QPPs:



The first term of the objective function represents 
the sum of square distance from the hyperplane
to each pattern of one class, therefore minimizing 
it keeps the hyperplane close to the patterns of 
one class.

The constraints require the hyper plane to be far 
from the other class patterns at least with distance 
1.

The second term of the objective function 
minimize the sum of error variables to minimize miss 
classification of patterns belongs to other class.



The Wolfe dual can be obtain as follows

max
𝛼𝛼
𝑒𝑒2𝑇𝑇𝛼𝛼 −

1
2
𝛼𝛼𝑇𝑇𝐺𝐺(𝐻𝐻𝑇𝑇𝐻𝐻)−1𝐺𝐺𝑇𝑇𝛼𝛼,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 0 ≤ 𝛼𝛼 ≤ 𝑐𝑐1

]𝐺𝐺 = [𝐵𝐵 𝑒𝑒2] 𝑎𝑎𝑎𝑎𝑎𝑎 𝐻𝐻 = [𝐴𝐴 𝑒𝑒1

𝑢𝑢 = − 𝐻𝐻𝑇𝑇𝐻𝐻 −1𝐺𝐺𝑇𝑇𝛼𝛼 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢 = 𝑤𝑤1𝑇𝑇, 𝑏𝑏1 𝑇𝑇 .

max
𝛼𝛼

𝑒𝑒1𝑇𝑇𝛾𝛾 −
1
2 𝛾𝛾

𝑇𝑇𝑃𝑃(𝑄𝑄𝑇𝑇𝑄𝑄)−1𝑃𝑃𝑇𝑇𝛾𝛾,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 0 ≤ 𝛾𝛾 ≤ 𝑐𝑐2
P=[A e_1] and Q=[B e_2]

𝑣𝑣 = 𝑄𝑄𝑇𝑇𝑄𝑄 −1𝑃𝑃𝑇𝑇𝛾𝛾 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣 = 𝑤𝑤2𝑇𝑇 , 𝑏𝑏2 𝑇𝑇



The first QPP TWSVM can be modified as follow:

min
𝑤𝑤1,𝑏𝑏1,𝑞𝑞1

‖𝐴𝐴𝑤𝑤1 + 𝑒𝑒1𝑏𝑏1‖2 + 𝑐𝑐1𝑞𝑞𝑇𝑇𝑞𝑞,

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 − (𝐵𝐵𝑤𝑤1 + 𝑒𝑒2𝑏𝑏1) + 𝑞𝑞 ≥ 𝑒𝑒2,
𝑞𝑞 ≥ 0.

𝑞𝑞 = 𝑒𝑒2 − 𝐵𝐵𝑤𝑤1 − 𝑒𝑒2𝑏𝑏1 +

We combine constraint together, then we have  

Then the above problem change to following unconstrained 
problem:

min
𝑤𝑤1,𝑏𝑏1,𝑞𝑞1

‖𝐴𝐴𝑤𝑤1 + 𝑒𝑒1𝑏𝑏1‖2 + 𝑐𝑐1‖ 𝑒𝑒2 − 𝐵𝐵𝑤𝑤1 − 𝑒𝑒2𝑏𝑏1 +‖2.



min
𝑤𝑤2,𝑏𝑏2,𝑞𝑞2

‖𝐵𝐵𝑤𝑤2 + 𝑒𝑒2𝑏𝑏2‖2 + 𝑐𝑐2‖ 𝑒𝑒1 − 𝐴𝐴𝑤𝑤2 − 𝑒𝑒1𝑏𝑏2 +‖2.

Similarly, the second QPP TWSVM can be modified as follow:

The above problems are piecewise, quadratic, convex, and 
once differentiable. The generalized Newton method can be 
used for solving them.





Numerical Experiments

Data set Twin SVM New Method

ionosphere 0.8346+-0.0617 0.92024e-001+-
3.9924e-002

WPBC 0.6511+-0.2512 0.8792+-0.0757

WDBC 0.5778+-0.1128 0.9526+-0.0468

Pima Indians 0.36309+-4.3776e-
002

0.69672+- 7.4829e-
002

Soanr 0.61524+-7.1800e-
002

0.85024+-6.0008e-
002

Heart-statlog .57407+-8.4186e-
002

0.67778+-6.0607e-
002



We can extend this method to Nonlinear Classifier 



One of the hardest parts of writing a research paper can be 
just finding a good topic to write about. 

Some ideas:

1. Finding a new method to separate data sets

2. New efficient optimization model for the previous ideas.

3. Solving the existence ideas  with a new method.

4. Extending the currents methods for binary classification to

Multi-class classification



Resources: Datasets
 UCI Repository: 

http://www.ics.uci.edu/~mlearn/MLRepository.htm
l

 UCI KDD Archive: 
http://kdd.ics.uci.edu/summary.data.application.
html

 Statlib: http://lib.stat.cmu.edu/

 Delve: http://www.cs.utoronto.ca/~delve/

http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://kdd.ics.uci.edu/summary.data.application.html
http://lib.stat.cmu.edu/
http://www.cs.utoronto.ca/%7Edelve/


Resources: Journals
 Journal of Machine Learning Research 

Machine Learning 
 IEEE Transactions on Neural Networks
 IEEE Transactions on Pattern Analysis and 

Machine Intelligence
 Annals of Statistics
 Journal of the American Statistical 

Association
 ...



Resources: Conferences
 International Conference on Machine Learning (ICML) 
 European Conference on Machine Learning (ECML)
 Neural Information Processing Systems (NIPS)
 Computational Learning 
 International Joint Conference on Artificial Intelligence (IJCAI)
 ACM SIGKDD Conference on Knowledge Discovery and Data 

Mining (KDD)
 IEEE Int. Conf. on Data Mining (ICDM)



Questions?





Charles Bridge Prague
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