Special classes of P-matrices in the interval setting

Matyáš Lorenc

Faculty of Mathematics and Physics, Charles university

$$
24^{\text {th }} \text { May, } 2021
$$

(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion
(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

Notation and useful matrix classes

Notation and useful matrix classes

- $\mathbb{N}, \mathbb{R}, \mathbb{R}$

Notation and useful matrix classes

- $\mathbb{N}, \mathbb{R}, \mathbb{R}$
- $\mathbb{F}^{+}, \mathbb{F}_{0}^{+}$

Notation and useful matrix classes

- $\mathbb{N}, \mathbb{R}, \mathbb{R}$
- $\mathbb{F}^{+}, \mathbb{F}_{0}^{+}$
- $\mathbb{F}^{m \times n}, \mathbb{F}^{n}$

Notation and useful matrix classes

- $\mathbb{N}, \mathbb{R}, \mathbb{I} \mathbb{R}$
- $\mathbb{F}^{+}, \mathbb{F}_{0}^{+}$
- $\mathbb{F}^{m \times n}, \mathbb{F}^{n}$
- Let $n \in \mathbb{N}$, then $[n]=\{1,2, \ldots, n\}$.
- $\mathbb{N}, \mathbb{R}, \mathbb{I} \mathbb{R}$
- $\mathbb{F}^{+}, \mathbb{F}_{0}^{+}$
- $\mathbb{F}^{m \times n}, \mathbb{F}^{n}$
- Let $n \in \mathbb{N}$, then $[n]=\{1,2, \ldots, n\}$.
- Let $A \in \mathbb{F}^{n \times n}$. Then $\forall i \in[n]: r_{i}^{+}=\max \left\{0, a_{i j} \mid j \neq i\right\}$.

Notation and useful matrix classes

- $\mathbb{N}, \mathbb{R}, \mathbb{R}$
- $\mathbb{F}^{+}, \mathbb{F}_{0}^{+}$
- $\mathbb{F}^{m \times n}, \mathbb{F}^{n}$
- Let $n \in \mathbb{N}$, then $[n]=\{1,2, \ldots, n\}$.
- Let $A \in \mathbb{F}^{n \times n}$. Then $\forall i \in[n]: r_{i}^{+}=\max \left\{0, a_{i j} \mid j \neq i\right\}$.

Definition 1.1 (Z-matrix)

Let $A \in \mathbb{R}^{n \times n}$. We say that A is a Z-matrix, if all its off-diagonal elements are non-positive.

Notation and useful matrix classes

Definition 1.2 (circulant matrix)

Let $A \in \mathbb{R}^{n \times n}$. We say that A is a circulant matrix, if all its rows are each cyclic permutations of the first row with offset equal to the row index minus one, hence if it takes the following form:

$$
\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & c_{n-2} & c_{n-1} \\
c_{n-1} & c_{0} & \ddots & & c_{n-2} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
c_{2} & & \ddots & c_{0} & c_{1} \\
c_{1} & c_{2} & \cdots & c_{n-1} & c_{0}
\end{array}\right)
$$

Definition 1.3 (P-matrix)

Let $A \in \mathbb{R}^{n \times n}$. We say that A is a P-matrix, if all its principal minors are positive.

P-matrices

Definition 1.3 (P-matrix)

Let $A \in \mathbb{R}^{n \times n}$. We say that A is a P-matrix, if all its principal minors are positive.
Definition 1.4 (Linear complementarity problem)
Let $M \in \mathbb{R}^{n \times n}$ and $q \in \mathbb{R}^{n}$. Then the linear complementarity problem, denoted $\operatorname{LCP}(M, q)$, is a task to find a vector z which satisfies the following:

- $z \geq 0$
- $M z+q \geq 0$
- $z^{T}(M z+q)=0$

Interval analysis

Interval analysis

Definition 1.5 (interval matrix)

An interval matrix \boldsymbol{A}, denoted by $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, is defined as

$$
\boldsymbol{A}=[\underline{A}, \bar{A}]=\left\{A \in \mathbb{R}^{m \times n} \mid \underline{A} \leq A \leq \bar{A}\right\}
$$

where \underline{A}, \bar{A} are called lower, respectively upper bound matrices of \boldsymbol{A}.
We can as well look at \boldsymbol{A} as matrix, which has entries from $\mathbb{R} \mathbb{R}$, hence
$\forall i \in[m], \forall j \in[n]: \boldsymbol{a}_{i j}=\left[\underline{a_{i j}}, \overline{a_{i j}}\right]$.
If we define matrices $A^{C}=\frac{1}{2}(\bar{A}+\underline{A})$ and $A^{\Delta}=\frac{1}{2}(\bar{A}-\underline{A})$, then we can define \boldsymbol{A} alternatively as

$$
\boldsymbol{A}=\left[A^{C} \pm A^{\Delta}\right]=\left[A^{C}-A^{\Delta}, A^{C}+A^{\Delta}\right]
$$

(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

Real B-matrices

Definition 2.1 (B-matrix)

Let $A \in \mathbb{R}^{n \times n}$. Then we say that A is a B-matrix, if $\forall i \in[n]$ the following holds:
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \quad \frac{1}{n} \sum_{j=1}^{n} a_{i j}>a_{i k}$

Real B-matrices

Definition 2.1 (B-matrix)

Let $A \in \mathbb{R}^{n \times n}$. Then we say that A is a B-matrix, if $\forall i \in[n]$ the following holds:
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \frac{1}{n} \sum_{j=1}^{n} a_{i j}>a_{i k}$

$$
\sum_{j=1}^{n} a_{i j}>n \cdot r_{i}^{+}
$$

Real B-matrices

Definition 2.1 (B-matrix)

Let $A \in \mathbb{R}^{n \times n}$. Then we say that A is a B-matrix, if $\forall i \in[n]$ the following holds:
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \frac{1}{n} \sum_{j=1}^{n} a_{i j}>a_{i k}$

$$
\sum_{j=1}^{n} a_{i j}>n \cdot r_{i}^{+}
$$

$$
a_{i i}-r_{i}^{+}>\sum_{j \neq i}\left(r_{i}^{+}-a_{i j}\right)
$$

Interval B-matrices

Interval B-matrices

Theorem 2.2

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Then \boldsymbol{A} is an interval B-matrix if and only if $\forall i \in[n]$ the following two properties hold:
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \quad \sum_{j \neq k} \underline{a}_{i j}>(n-1) \cdot \bar{a}_{i k}$

Theorem 2.2

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Then \boldsymbol{A} is an interval B-matrix if and only if $\forall i \in[n]$ the following two properties hold:
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \quad \sum_{j \neq k} \underline{a}_{i j}>(n-1) \cdot \bar{a}_{i k}$
a) $\sum_{j=1}^{n} a_{i j}>0$
b) $\forall k \in[n] \backslash\{i\}: \quad \underline{a}_{i i}-\bar{a}_{i k}>\sum_{\substack{j \neq i \\ j \neq k}}\left(\bar{a}_{i k}-\underline{a}_{i j}\right)$

Proposition 2.3

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and let A_{i} be matrices defined as follows:

$$
A_{i}=\left(a_{m_{1} m_{2}}\right) ; \quad a_{m_{1} m_{2}}= \begin{cases}\bar{a}_{m_{1} m_{2}} & \text { if } m_{1} \neq i, m_{2}=i, \\ \underline{a}_{m_{1} m_{2}} & \text { otherwise }\end{cases}
$$

Then \boldsymbol{A} is an interval B-matrix if and only if $\forall i \in[n]: A_{i}$ is a B-matrix.

Theorem 2.4

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval Z-matrix. Then the following is equivalent:
(1) \boldsymbol{A} is an interval B-matrix,
(2) $\forall i \in[n]: \quad \sum_{j=1}^{n} a_{i j}>0$,
(3) $\forall i \in[n]: \quad \underline{a}_{i i}>\sum_{j \neq i}\left|\underline{a}_{i j}\right|$.
(4) A is a B-matrix.

Interval B-matrices - Closure properties

Interval B-matrices - Closure properties

Proposition 2.5

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval B-matrix and $\boldsymbol{\alpha} \in \mathbb{R}^{+}$be an interval, such that:

$$
\left.\begin{array}{rl}
\underline{\alpha} / \bar{\alpha}> & \max \left(\left\{\left.\frac{\sum_{j: a_{i j}<0}-\underline{a}_{i j}}{\sum_{j: a_{i j}>0} a_{i j}} \right\rvert\, i \in[n]\right\}\right. \\
& \cup\left\{\left.\frac{\sum_{\substack{j: a_{j i}<0 \\
j \neq k}}-\underline{a}_{i j}+(n-1) \cdot \bar{a}_{i k}}{\sum_{\substack{j: a_{i j}>0 \\
j \neq k}} a_{i j}} \right\rvert\, i \in[n], k \in[n] \backslash\{i\}: \bar{a}_{i k}>0\right\}
\end{array}\right) .
$$

Then matrix $\boldsymbol{\alpha} \cdot \boldsymbol{A}$ is also an interval B-matrix.

Proposition 2.6

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval B-matrix and $\boldsymbol{\alpha}=\left[\alpha^{C} \pm \alpha^{\Delta}\right] \in \mathbb{R}^{+}$, such that:

$$
\begin{aligned}
& \alpha^{\Delta}<\min \left(\left\{\left.\frac{\alpha^{c} \cdot \sum_{j=1}^{n} a_{i j}}{\sum_{j=1}^{n}\left|\underline{a}_{i j}\right|} \right\rvert\, i \in[n]\right\}\right. \\
&\left.\cup\left\{\left.\frac{\alpha^{c} \cdot\left(\sum_{j \neq k} a_{i j}-(n-1) \cdot \bar{a}_{i k}\right)}{\sum_{j \neq k}\left|\underline{a}_{i j}\right|+(n-1) \cdot\left|\bar{a}_{i k}\right|} \right\rvert\, i \in[n], k \in[n] \backslash\{i\}\right\}\right) .
\end{aligned}
$$

Then matrix $\boldsymbol{\alpha} \cdot \boldsymbol{A}$ is also an interval B-matrix.
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

Definition 3.1 (doubly B-matrix)

Let $A \in \mathbb{R}^{n \times n}$. Then we say that A is a doubly B-matrix, if $\forall i \in[n]$ the following holds:
a) $a_{i i}>r_{i}^{+}$
b) $\forall j \in[n] \backslash\{i\}:\left(a_{i i}-r_{i}^{+}\right)\left(a_{j j}-r_{j}^{+}\right)>\left(\sum_{k \neq i}\left(r_{i}^{+}-a_{i k}\right)\right)\left(\sum_{k \neq j}\left(r_{j}^{+}-a_{j k}\right)\right)$

Circulant matrices

Theorem 3.2

Let $A \in \mathbb{R}^{n \times n}$ be a circulant matrix. Then the following are equivalent:
(1) A is a B-matrix.
(2) A is a doubly B-matrix.
(3) $a_{11}-r_{1}^{+}>\sum_{j \neq 1}\left(r_{1}^{+}-a_{1 j}\right)$

Interval doubly B-matrices

Theorem 3.3

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. Then \boldsymbol{A} is an interval doubly B-matrix if and only if the following two properties holds:
a) $\forall i \in[n]: \quad \underline{a}_{i i}>\max \left\{0, \bar{a}_{i j} \mid j \neq i\right\}$ and
b) $\forall i, j \in[n], j \neq i, \forall k, l \in[n], k \neq i, l \neq j$:
a) $\forall i \in[n]: \quad \underline{a}_{i i}>\max \left\{0, \bar{a}_{i j} \mid j \neq i\right\}$ and
b) $\forall i, j \in[n], j \neq i, \forall k, l \in[n], k \neq i, l \neq j$:
(1) $\left(\underline{a}_{i i}-\bar{a}_{i k}\right)\left(a_{j j}-\bar{a}_{j l}\right)>$
$\left(\max \left\{0, \sum_{\substack{m \neq i \\ m \neq k}}\left(\bar{a}_{i k}-\underline{a}_{i m}\right)\right\}\right)\left(\max \left\{0, \sum_{\substack{m \neq j \\ m \neq 1}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)\right\}\right)$
(2) $a_{i i}\left(a_{j j}-\bar{a}_{j l}\right)>\left(\max \left\{0,-\sum_{m \neq i} a_{i m}\right\}\right)\left(\max \left\{0, \sum_{\substack{m \neq j \\ m \neq 1}}\left(\bar{a}_{j l}-a_{j m}\right)\right\}\right)$
(3) $\underline{a}_{i i} \cdot \underline{a}_{j j}>\left(\max \left\{0,-\sum_{m \neq i} \underline{a}_{i m}\right\}\right)\left(\max \left\{0,-\sum_{m \neq j} \underline{a}_{j m}\right\}\right)$

Proposition 3.4

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ for $n \geq 4$ and let us define $A_{(i, k),(j, l)} \in \mathbb{R}^{n \times n}$ as follows:

$$
A_{(i, k),(j, l)}=\left(a_{m_{1} m_{2}}\right) ; \quad a_{m_{1} m_{2}}= \begin{cases}\bar{a}_{i k} & \text { if }\left(m_{1}, m_{2}\right)=(i, k), \\ \bar{a}_{j l} & \text { if }\left(m_{1}, m_{2}\right)=(j, l), \\ \underline{a}_{m_{1} m_{2}} & \text { otherwise } .\end{cases}
$$

Then \boldsymbol{A} is an interval doubly B-matrix if and only if
$\forall i, j \in[n], j>i, \forall k, I \in[n], k \neq i, I \neq j: A_{(i, k),(j, l)}$ is a doubly B-matrix.

Interval doubly B-matrices - Characterization through reduction

Proposition 3.5

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and let us define $A_{(i, k),(*, l)}$ and ${ }_{i} A_{(*, l)} \in \mathbb{R}^{n \times n}$ as follows:

$$
\begin{gathered}
A_{(i, k),(*, l)}=\left(a_{m_{1} m_{2}}\right) ; \quad a_{m_{1} m_{2}}= \begin{cases}\bar{a}_{i k} & \text { if }\left(m_{1}, m_{2}\right)=(i, k), \\
\bar{a}_{m_{1} I} & \text { if } m_{2}=I \wedge m_{1} \neq i \wedge m_{1} \neq I, \\
\underline{a}_{m_{1} m_{2}} & \text { otherwise. }\end{cases} \\
{ }_{i} A_{(*, l)}=\left(a_{m_{1} m_{2}}^{\prime}\right) ; \quad a_{m_{1} m_{2}}^{\prime}= \begin{cases}\bar{a}_{m_{1} I} & \text { if } m_{2}=I \wedge m_{1} \neq i \wedge m_{1} \neq I, \\
\underline{a}_{m_{1} m_{2}} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then \boldsymbol{A} is an interval doubly B-matrix if and only if $\forall i, I \in[n]:\left({ }_{i} A_{(*, l)}\right.$ is a doubly B-matrix $\wedge \quad \forall k \in[n] \backslash\{i\}: A_{(i, k),(*, l)}$ is a doubly B-matrix).

Theorem 3.6

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ interval Z-matrix. Then \boldsymbol{A} is an interval doubly B-matrix if and only if \underline{A} is a doubly B-matrix.

Theorem 3.7

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \forall i \in[n]: k_{i} \in \operatorname{argmax}\left\{\bar{a}_{i j} \mid j \neq i\right\}$ and $\forall i \in[n]: k_{i}^{\prime} \in \operatorname{argmax}\left\{\underline{a}_{i j} \mid j \neq i\right\}$. Let us define $\tilde{A} \in \mathbb{R}^{n \times n}$ as follows:

$$
\tilde{A}=\left(\widetilde{a}_{m_{1} m_{2}}\right) ; \quad \widetilde{a}_{m_{1} m_{2}}= \begin{cases}\bar{a}_{m_{1} k_{m_{1}}} & \text { if } m_{2}=k_{m_{1}} \\ \underline{a}_{m_{1} m_{1}} \\ \min \left\{\underline{a}_{m_{1} m_{2}}, \underline{a}_{m_{1} k_{m_{1}}}\right\} & \text { if } m_{2}=m_{1}, \\ \text { otherwise }\end{cases}
$$

If $\forall i \in[n]: a_{i k_{i}^{\prime}} \geq 0$ and \tilde{A} is a doubly B-matrix, then \boldsymbol{A} is an interval doubly B-matrix.

Theorem 3.8

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ such that \underline{A} and \bar{A} are circulant. Then the following is equivalent:
(1) \boldsymbol{A} is an interval doubly B-matrix
(2) \boldsymbol{A} is an interval B-matrix
(3) It holds that
a) $\underline{a}_{11}>-\sum_{j \neq 1} \underline{a}_{1 j}$
b) $\forall k \in[n] \backslash\{1\}: \underline{a}_{11}-\bar{a}_{1 k}>\sum_{\substack{j \neq 1 \\ j \neq k}}\left(\bar{a}_{1 k}-\underline{a}_{1 j}\right)$
(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

Real B_{π}^{R}-matrices

Definition 4.1 (B_{π}^{R}-matrix)

Let $A \in \mathbb{R}^{n \times n}$, let $\pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and let $R \in \mathbb{R}^{n}$ be a vector formed by the row sums of A (hence $\left.\forall i \in[n]: R_{i}=\sum_{j=1}^{n} a_{i j}\right)$. Then we say that A is a B_{π}^{R}-matrix, if $\forall i \in[n]$:
a) $R_{i}>0$
b) $\forall k \in[n] \backslash\{i\}: \quad \pi_{k} \cdot R_{i}>a_{i k}$

Proposition 4.2

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix with positive row sums and let $R \in \mathbb{R}^{n}$ be a vector formed by the row sums of A (hence $\forall i \in[n]: R_{i}=\sum_{j=1}^{n} a_{i j}>0$). Then there exists a vector $\pi \in \mathbb{R}^{n}$ satisfying $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ such that A is a B_{π}^{R}-matrix if and only if

$$
\sum_{j=1}^{n} \max \left\{\left.\frac{a_{i j}}{R_{i}} \right\rvert\, i \neq j\right\}<1
$$

Interval B_{π}^{R}-matrices

Definition 4.3 (homogeneous interval B_{π}^{R}-matrix)

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and $\boldsymbol{R} \in \mathbb{R}^{n}$. Then we say that \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix, if $\forall A \in \boldsymbol{A}: \exists R \in \boldsymbol{R}$ such that A is a (real) B_{π}^{R}-matrix.

Definition 4.3 (homogeneous interval B_{π}^{R}-matrix)

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}, \pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and $\boldsymbol{R} \in \mathbb{R}^{n}$. Then we say that \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix, if $\forall A \in \boldsymbol{A}: \exists R \in \boldsymbol{R}$ such that A is a (real) B_{π}^{R}-matrix.

Definition 4.4 ((heterogeneous) interval $B_{\Pi^{R}}^{R}$-matrix)

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{R} \in \mathbb{R}^{n}$. Then we say that \boldsymbol{A} is a (heterogeneous) interval $B_{\Pi}^{\boldsymbol{R}}$-matrix, if $\forall A \in \boldsymbol{A}: \exists R \in \boldsymbol{R}, \exists \pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$: \boldsymbol{A} is a (real) B_{π}^{R}-matrix.

Theorem 4.5

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $\pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and $\boldsymbol{R} \in \mathbb{R}^{n}$ be a vector of intervals of the individual row sums in matrix \boldsymbol{A}. Then \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix if and only if $\forall i \in[n]$ the following properties hold:
a) $\underline{R}_{i}>0$
b) $\forall k \in[n] \backslash\{i\}$:
a) $\underline{R}_{i}>0$
b) $\forall k \in[n] \backslash\{i\}$:

$$
\begin{aligned}
& \left(\pi_{k}>1 \Rightarrow \sum_{j \neq k} \underline{a}_{i j}>\left(\frac{1}{\pi_{k}}-1\right) \cdot \underline{a}_{i k}\right) \wedge \\
& \wedge\left(0<\pi_{k} \leq 1 \Rightarrow \sum_{j \neq k} \underline{a}_{i j}>\left(\frac{1}{\pi_{k}}-1\right) \cdot \bar{a}_{i k}\right) \wedge \\
& \wedge\left(\pi_{k}=0 \Rightarrow 0>\bar{a}_{i k}\right) \wedge \\
& \wedge \\
& \wedge\left(\pi_{k}<0 \Rightarrow \sum_{j \neq k} \bar{a}_{i j}<\left(\frac{1}{\pi_{k}}-1\right) \cdot \bar{a}_{i k}\right)
\end{aligned}
$$

Theorem 4.6

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval square matrix with positive row sums intervals (hence $\left.\forall i \in[n]: \sum_{j=1}^{n} \underline{a}_{i j}>0\right)$. Then there exists a vector $\pi \in \mathbb{R}^{n}$ satisfying $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ such that \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix if and only if

$$
\sum_{j=1}^{n} \max \left\{\frac{\bar{a}_{i j}}{\bar{a}_{i j}+\sum_{m \neq j} \underline{a}_{i m}}, \left.\frac{\underline{a}_{i j}}{\underline{a}_{i j}+\sum_{m \neq j} \underline{a}_{i m}} \right\rvert\, i \neq j\right\}<1
$$

Interval $\mathrm{B}_{\Pi^{R}}^{R-m a t r i x}$ (heterogeneous)

Theorem 4.7

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval square matrix with positive row sums intervals. Then \boldsymbol{A} is an interval B_{Π}^{R}-matrix if and only if $\exists \pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and that \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix.

Theorem 4.7

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be an interval square matrix with positive row sums intervals. Then \boldsymbol{A} is an interval B_{Π}^{R}-matrix if and only if $\exists \pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and that \boldsymbol{A} is a homogeneous interval B_{π}^{R}-matrix.

Definition 4.8 (interval B_{π}^{R}-matrix)

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$. Then we say that \boldsymbol{A} is an interval $B_{\pi}^{\boldsymbol{R}}$-matrix if it is a homogeneous interval $B_{\pi}^{\boldsymbol{R}}$-matrix.

Proposition 4.9

Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, let $\pi \in \mathbb{R}^{n}$ such that $0<\sum_{j=1}^{n} \pi_{j} \leq 1$ and $\boldsymbol{R} \in \mathbb{R}^{n}$ be a vector of intervals of the individual row sums in matrix \boldsymbol{A}. Let $\forall i \in[n]: A_{i} \in \mathbb{R}^{n \times n}$ defined as follows:
(1) if $\pi_{i}>1$, then: $A_{i}=\underline{A}$

2 else if $0 \leq \pi_{i} \leq 1$, then: $A_{i}=\left(a_{m_{1} m_{2}}\right) ; \quad a_{m_{1} m_{2}}= \begin{cases}\bar{a}_{m_{1} m_{2}} & \text { if } m_{1} \neq i, m_{2}=i, \\ a_{m_{1} m_{2}} & \text { otherwise. }\end{cases}$
(3) else if $\pi_{i}<0$, then: $A_{i}=\left(a_{m_{1} m_{2}}\right) ; \quad a_{m_{1} m_{2}}= \begin{cases}\underline{a}_{m_{1} m_{2}} & \text { if } m_{1}=i, \\ \bar{a}_{m_{1} m_{2}} & \text { otherwise. }\end{cases}$

Then \boldsymbol{A} is an interval B_{π}^{R}-matrix if and only if $\forall i \in[n]: A_{i}$ is a B_{π}^{R}-matrix, where $R \in \mathbb{R}^{n}$ is a vector of values corresponding to the row sums of A_{i}.
(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

B-matrices

Let $n \in \mathbb{N}$. Let $N, N^{\prime} \in \mathbb{R}, N \geq n, N^{\prime} \geq 2 n-1$ arbitrary and let $\boldsymbol{A} \in \mathbb{R} \mathbb{R}^{n \times n}$ defined as follows:

$$
\begin{aligned}
& \boldsymbol{A}=\left(\boldsymbol{a}_{i j}\right) ; \quad \boldsymbol{a}_{i j}= \begin{cases}{\left[2 n-1, N^{\prime}\right]} & \text { if } i=j, \\
{[-1,1]} & \text { if } i \neq j .\end{cases} \\
& \boldsymbol{A}^{\prime}=\left(\boldsymbol{a}_{i j}^{\prime}\right) ; \quad \boldsymbol{a}_{i j}^{\prime}= \begin{cases}{[n, N]} & \text { if } i=j, \\
{\left[-1, \frac{1}{n-1}\right]} & \text { if } i \neq j .\end{cases} \\
& \boldsymbol{A}^{\prime \prime}=\left(\boldsymbol{a}_{i j}^{\prime \prime}\right) ; \quad \boldsymbol{a}_{i j}^{\prime \prime}= \begin{cases}{[n, N]} & \text { if } i=j, \\
{\left[\frac{-1}{n-1}, 1\right]} & \text { if } i \neq j .\end{cases}
\end{aligned}
$$

Then $\boldsymbol{A}, \boldsymbol{A}^{\prime}$ and $\boldsymbol{A}^{\prime \prime}$ are interval B-matrices.

Doubly B-matrices

Doubly B-matrices

$$
\begin{aligned}
& \max \sum_{m=1}^{n} \bar{x}_{m}-\sum_{m=1}^{n} \underline{x}_{m} ; \\
& \bar{x}_{k} \leq \underline{a}_{i i}-\bar{a}_{i k} \\
& -\sum_{m \neq i} \underline{x}_{m} \leq \frac{\underline{a}_{i i} \cdot \underline{a}_{j j}}{-\sum_{m \neq j} \underline{a}_{j m}}+\sum_{m \neq i} \underline{a}_{i m} \\
& -\sum_{m \neq i} \underline{x}_{m} \leq \frac{\underline{a}_{i i}\left(\underline{a}_{j j}-\bar{a}_{j l}\right)}{\sum_{\substack{m \neq j \\
m \neq l}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)}+\sum_{m \neq i} \underline{a}_{i m} \\
& \left(\frac{\underline{a}_{j j}}{-\sum_{m \neq j} \underline{a}_{j m}}+(n-2)\right) \cdot \bar{x}_{k}-\sum_{\substack{m \neq i \\
m \neq k}} \underline{x}_{m} \leq \frac{\left(\underline{a}_{i i}-\bar{a}_{i k}\right) \underline{a}_{j j}}{-\sum_{m \neq j} \underline{a}_{j m}}-\sum_{\substack{m \neq i \\
m \neq k}}\left(\bar{a}_{i k}-\underline{a}_{i m}\right) \\
& \left(\frac{\left(\underline{a}_{j j}-\bar{a}_{j l}\right)}{\sum_{\substack{m \neq j \\
m \neq 1}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)}+(n-2)\right) \cdot \bar{x}_{k}-\sum_{\substack{m \neq i \\
m \neq k}} \underline{x}_{m} \leq \frac{\left(\underline{a}_{i i}-\bar{a}_{i k}\right)\left(\underline{a}_{j j}-\bar{a}_{j l}\right)}{\sum_{\substack{m \neq j \\
m \neq 1}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)}-\sum_{\substack{m \neq i \\
m \neq k}}\left(\bar{a}_{i k}-\underline{a}_{i m}\right) \\
& \text { for } k \neq i \\
& \text { for } j \neq i:-\sum_{m \neq j} \underline{a}_{j m}>0 \\
& \text { for } j \neq i, I \neq j: \sum_{\substack{m \neq j \\
m \neq l}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)>0 \\
& \text { for } k \neq i, j \neq i:-\sum_{m \neq j}{\underset{a}{j}}_{j m}>0 \\
& \text { for } k \neq i, j \neq i, I \neq j: \sum_{\substack{m \neq j \\
m \neq l}}\left(\bar{a}_{j l}-\underline{a}_{j m}\right)>0
\end{aligned}
$$

(1) Introduction
(2) B-matrices
(3) Doubly B-matrices
(4) B_{π}^{R}-matrices
(5) Generation
(6) Conclusion

Open problems

Definition 6.1 (Parametric interval matrix)

Let $k, m, n \in \mathbb{N}, \boldsymbol{p} \in \mathbb{R}^{k}$ and $\left\{A_{0}, A_{1}, \ldots, A_{k}\right\} \subset \mathbb{R}^{m \times n}$. Then we define parametric interval matrix $\boldsymbol{A}(\boldsymbol{p})$ as follows:

$$
\boldsymbol{A}(\boldsymbol{p})=A_{0}+\sum_{i=1}^{k} \boldsymbol{p}_{i} A_{i}
$$

Definition 6.2 (Mime)

Let $A \in \mathbb{R}^{n \times n}$. Then we call A a mime, which stands for \mathbf{M}-matrix and Inverse M-matrix Extension, if for some $s_{1}, s_{2} \in \mathbb{R}, P_{1}, P_{2} \in \mathbb{R}_{0}^{+n \times n}$, such that $\exists u \in \mathbb{R}_{0}^{+n}$ which satisfies

$$
P_{1} u<s_{1} u \text { and } P_{2} u<s_{2} u
$$

it takes the form of

$$
A=\left(s_{1} I_{n}-P_{1}\right)\left(s_{2} I_{n}-P_{2}\right)^{-1} .
$$

- $s_{2}=1, P_{2}=0 \quad \rightarrow \quad$ M-matrices
- $s_{1}=1, P_{1}=0 \quad \rightarrow \quad$ inverse M-matrices

Theorem 6.3 ("The end is coming" theorem)

(1) This is the end.
(2) Everyone is already asleep by now.

Proof.

(1) Trivial.
(2) Look around. (If you are not sleeping, then sweet dreams.)

