Towards understanding winter road maintenance

Martin Loebl, Charles University, Prague

joint work with Jirka Fink and Petra Pelikanova Supported by the Marie Skodowska-Curie grant CoSP (MSCA RISE), agreement No 823748.

Let G^{s} denote the symmetric orientation of graph G, i.e., each edge of G appears twice oppositely oriented in G^{s}. The solution has the following features.

- We construct a partition $P=\left\{P_{1}, \ldots, P_{r}\right\}$ of the set of arcs of G^{s} into sets P_{1}, \ldots, P_{r} and for each i we assign vertex (depot) $d_{i} \in D$. We assume the type of maintenance m constant in P_{i}. We also assume that the oppositely oriented edges belong to the same P_{i}.
- We construct, for each i, set R_{i} so that $P_{i} \subset R_{i}$ and each arc of P_{i} may be reached from d_{i} by a directed closed walk of R_{i}.
- For each i, we design a schedule of maintenance of the edges of P_{i} by a single vehicle starting and terminating at d_{i} and using only arcs of R_{i}, with a fixed time period.
- Length of working shift: 8 hours in the Czech Republic, plus multiple safety breaks.
For simplicity, we will assume in our model that the working shift lasts a fixed amount of time, e.g., six hours, uninterrapted.
- The road network has a service hierarchy which partitions the roads into classes.
In the Czech Republic, there are three such classes: Arterial roads priority (1). Priority (2) is assigned to bus routes and other important routs. Each class is associated with maximum time of service completion.
- The capacity c_{m} describing the maximum length of a route which can be maintained with only one loading of the material $m \in M$ (Then back to the depot).
- It turns out that it is more convenient to define c_{m} as a fraction of the maximum route-length of one vehicle rather than as a 'number'.
- Maintaining plan is a tuple ($G, P, d, \alpha, z, p) . G=(V, E)$ a graph representing a road network. Vertices represent crossroads (and dead ends) and edges represent roads among them.
- $\alpha: E \rightarrow R^{+}$gives to every edge a non-negative length,
- Let $z \geq 1$ denote the number of priority classes of roads
- $p: E \rightarrow\{1, \ldots, z\}$ priority level,
- $P \subset E$ is the set of maintained edges. We will assume $P=E$ (It is practical)
- $d \in V$ is called the depot
- A vehicle route is sequence of arcs of $E^{S}, w=\left(e_{1}, \ldots, e_{\ell}\right)$, which starts and ends at d,
- Given numbers L, c and functions $t:\{1, \ldots, z\} \times Z^{+} \rightarrow R$ and $f: E \rightarrow Z^{+}$
- Each arc of E^{S} is traversed at least once by w and at most $f(e)$ times,
- Total length limit $L: \sum_{q \leq \ell} \alpha\left(e_{q}\right) \leq L$,
- For all pairs $i<j$ (taken cyclically) and y such that
[i] e_{i} appears exactly $(y-1)$ times among e_{1}, \ldots, e_{i-1},
[ii] $e_{i}=e_{j}$ and
[iii] $e_{i} \neq e_{k}$ for $i<k<j$,
we have
$\left.\sum_{q \geq i}^{j-1} \alpha\left(e_{q}\right) \leq L t\left(p\left(e_{i}\right), y\right)\right)$,
- A trip is a segment T_{j} of route w which starts and ends by depot d and the interior of T_{j} (ending vertices are excluded) does not contain the depot. A vehicle route is thus a sequence of trips.
- capacity c : for all trips $T_{j}, \sum_{e \in T_{j} \cap P S} \alpha(e) \leq c L$.

Deciding existence of a vehicle route is hard even for stars and all associated parameters and functions except α trivial (reduction to number partitioning problem).

- Why the above hardness proof is relevant? Lengths are bounded, degrees are bounded...
- Weighted versus unweighted version:

The function α on edges should be interpreted as cost of traversing the road segment rather than the length of the segment.

- For some roads, the cost is not linear in length (mountain roads ...)
- Public satisfaction/complaints are important
- Routes are very expensive (vehicles, gas, drivers)
- Existence of a vehicle route visiting each arc at most F times is efficient for unweighted trees of bounded degree (and for bounded tree-width graphs)
- This is the basis of our algorithm for the winter road maintenance
- Both restrictions (F and bounded degree) are necessary
- A simplification leads to an interesting graph cutting problem
- A (first as far as we know) attempt to formalise public satisfaction

Dynamic Programming argument

Theorem

Fixed integers F, Δ. There exists a polynomial time algorithm which for a tree $T=(V, E)$ rooted in d with maximal degree at most Δ, function $f: E \rightarrow N$ such that $f(e) \leq F$ for all $e \in E$ and function $g: E \times\{1, \ldots, F\} \rightarrow N$ decides whether there exists a closed walk w starting at r satisfying

- Every edge e of T^{s} is traversed $f(e)$-times in both directions.
- For every edge e of T^{s} and $y \leq f(e)$, there are at most $g(e, y)$ steps between y-th and $(y+1)$-st traverses of e, taken cyclically.

Theorem

Fixed integers F, Δ, k. There exists a polynomial time algorithm which for a graph $G=(V, E)$ rooted in d and with maximal degree at most Δ, given along with its canonical tree decomposition (W, b) of width $k-1$ and functions $f: E^{s} \rightarrow N$ such that $f(e) \leq F$ for all $e \in E^{s}$ and $g: E^{s} \times\{1, \ldots, F\} \rightarrow N$ decides whether there exists a closed walk w starting at d satisfying

- Every edge e is traversed $f(e)$-times in both directions.
- For every edge e and $y \leq f(e)$, there are at most $g(e, y)$ steps between the y-th and $(y+1)$-th traverses of e, taken cyclically.

Negative Results

Theorem

It is NP-complete to decide whether a given binary tree $T=(V, E)$ rooted in d and function $f, g: E \rightarrow N$ there exists a closed walk w starting at r satisfying

- Every edge e is traversed $f(e)$-times in both directions.
- For every edge e, there are at most $g(e)$ steps between two consecutive traverses of e in both direction, taken cyclically.
The problem is NP-complete even if we restrict f to be non-increasing on all paths from the depot.

Theorem

Fixed integer F. It is NP-complete to decide whether a given tree $T=(V, E)$ rooted in d, function $f: E \rightarrow N$ such that $f(e) \leq F$ for every edge e and function $g: E \times\{1, \ldots, F\} \rightarrow N$ there exists a closed walk w starting at d satisfying

- Every edge e is traversed $f(e)$-times in both directions.
- For every edge e and $y \leq f(e)$, there are at most $g(e)$ steps between two y-the and $(y+1)$-st traverses of e in both direction, taken cyclically.
- Graph Cutting Problem is to find, for a given graph G with root d and set of numbers t_{1}, \ldots, t_{k}, a cover of the edge-set of G by connected subgraphs G_{1}, \ldots, G_{k} rooted in d of sizes t_{1}, \ldots, t_{k}.
- Let k be any fixed number. There is a polynomial algorithm to solve the Tree Cutting Problem. This solves polynomially vehicle routing for trees and constant priority.
- There is always a solution for $k=2$ and G 2-connected.
- NP-complete in general for $k=2$.
- Services of winter road maintenance are mostly of higher quality than what legislation constraints require.
- The complaints from public against the winter road maintenance is focused on in media or in election campaigns.
- The experience is that residents make complaints about the winter road maintenance plans if they think that they are treated in an unfair manner, i.e., if their neighbourhood is 'skipped' in the service.
- We will formalise public complaints in graphs.
- We assume a fixed cyclic order $O(v)$ of neighbours of each vertex v. Such orders of incident roads are historically acknowledged in the communities.

We make a rational assumption that the number of public complaints can be deduced from the structure of a vehicle route and in particular from its perceived unfairness.
Let d be the depot of degree 1 . Let $w=\left(e_{1}, \ldots, e_{l}\right)$ be a vehicle route.
For $e_{i}=\left(s_{i}, t_{i}\right)$

- let $(w, i)+$ denote the edge incident with t_{i} which follows $\left(s_{i}, t_{i}\right)$ in $O\left(t_{i}\right)$
- let (w, i) - denote the edge incident with s_{i} which precedes $\left(s_{i}, t_{i}\right)$ in $O\left(s_{i}\right)$.
- If no orientation of $(w, i)+$ belongs to $\left(e_{1}, \ldots, e_{i+1}\right)$ then we say that edge $(w, i)+$ has a forward complaint.
- If no orientation of $(w, i+1)$ - belongs to $\left(e_{1}, \ldots, e_{i+1}\right)$ then we say that edge ($w, i+1$) - has a backward complaint.
- The unfairness index of the route w, denoted by $\operatorname{Uf}(w)$, is the sum of the number of edges which have a forward complaint and the number of edges which have a backward complaint.

Necklace splitting

Theorem (Noga Alon)

Every necklace with $k a_{i}$ beads of color $i, 1 \leq i \leq s$, has a k-splitting of size at most $(k-1) \cdot s$.

- Finding smallest number of cuts is NP-complete even for $k=2$ and each $a_{i}=1$ (Bonsman, Eppig and Hochstttler; Meunier)
- Can one find efficiently the guaranteed splitting ?
- This was finally answered negatively in 2019 by Filos-Ratsikas and Goldberg:
finding necklace splitting guaranteed by Alon's theorem is PPA-complete even for $k=2$.
We say that problem is PPA-complete if it is polynomial time equivalent to the LEAF problem.
- An instance of the problem called LEAF consists of a graph G of maximum degree 2 , whose 2^{n} vertices are represented by 0,1 sequences of length $n ; G$ is given by an algorithm that takes as input a vertex and outputs its neighbours. Moreover, the vertex 0 has degree 1 . The goal is to output another vertex of degree 1 .

Theorem

There exists a polynomial reduction of the necklace splitting problem to the unfairness minimisation problem where the network is a star rooted in its leaf, with edge-weights, each edge maintained at least once and $c=1 / k$.

Proof. Let $n=\sum_{l=1}^{s} k a_{i}$ be the length of the necklace.
Define numbers M_{1}, \ldots, M_{s} so that $M_{i}>n \sum_{j<i} M_{j}$ Let T be a star with $n+1$ leaves v_{0}, \ldots, v_{n} and center x. Let $d=v_{0}$ and let each edge $x v_{i}$ has weight M_{j} if the bead in position i has color j. The weight of $x v_{0}$ is zero. Finally let L be twice the sum of all the edge-weights and let $c=1 / k$.

Weighted tree cutting with a guaranteed Unfairness is PPA-complete.

- Min necklace splitting hard for $k=2$, and each $a_{i}=1$. Relating this special case to the Unfairness:
- Is there a set of natural numbers M_{1}, \ldots, M_{s} such that
- for each $i \in\{1, \ldots, s\}, M_{i}$ bounded by a fixed power of s and
- all partial sums of M_{i} 's are pairwise distinct.
- Let $f(n)=\min \{\max S:|S|=n$ and S has distinct subset sums $\}$
- Paul Erdös conjectured in 1931 that for some constant c

$$
f(n) \geq c 2^{n}
$$

- Conway and Guy found a construction of sets with distinct subset sum, now called the Conway-Guy sequence. This was later improved by Lunnan and then by Bohman to $f(n) \leq 0.22002 \cdot 2^{n}$ (for n sufficiently large).
- The best known lower bound, up to the constant, has been proved by Erdös and Moser in 1955, $f(n) \geq 2^{n} /(10 \sqrt{n})$.
- Unfairness index polynomial for tree cutting, fixed k
- Is there Alon's theorem for trees, planar graphs? Trees, $k=a_{1}=a_{2}=2$: might be also s.

