Community-based algorithms for protein function prediction

Nikola Kalábová

Faculty of Science, Charles university

10th May, 2021

- Prediction of protein function
- Markov Clustering Algorithm
- 3 Jerarca
- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- 6 Evaluation

- 1 Prediction of protein function
- Markov Clustering Algorithm
- 3 Jerarc

Prediction of protein function

- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- **6** Evaluatio

From genome to protein

Prediction of protein function

TCGTGTGGGGTATCAGATCCCATACTGATCGTTGTACCCCATCCACCCTGCATTGATGAAAA ATCAGACT CTACGTACGACGATCGATTTCTCTGACATGTGAATATGGTCGCGCGCTATGCTA CCCCCATATACCTATCGACATGTCTCCCCCCCCCATATAATATCCAGACTCTCCTGACATAACG ATATACTACGATGACCGATGATGTAGACTAGCTACAGACGCACTGAAGACGCCCCTCTATACG TACCCTCATCCTACCCCCCCATATCCCCCATCTCCCCTCATATCCCCATCCCTATCTACCCATA TACCA STCATECCOTANTA CTACTATE ATTATANTC COTACA COTACA AND COTC STCA CATC GATAAGACTTATTACGAAGGCCCGTAATATCGTAGCAACTCTATGATTAGCAGGGTCGATAT ACCATCA ATCA ATCATA CTA ATTATA ACTA ATACTCOCCATATCOCCATCCOCCCTACA CTTA CGCCACGTATCTATATCGACGCGATATTTCGATACGAGAAAGTCAGTAGCGCGTATCGGGATT TATCATACT ACACTACTCATCA TCAC ACCACATCATTCTA TOTOT AT ATTAT CTATA CTACCTAC ACACTCTATCTACCATC CTACCTACCTCCTTATCCTACTCTCCCTTTACTA ACANTCONTCONCOTONCTACTACCTACCATOCCCCCTACCONTCCCCATCCCCATA ATECATECATECATACTACTACTECATECATACTECATGACGGGGTGCATGATCGATCATCAT CAGTACGTCAGTACTECATTTTCCATCCTGACTGCATGCATGACTGCATGCATGATGATGC TACETCT@ACTEC@TACT@ACAA@GT@CATECCCCACT@ACT@ACTACT@AT@AT@ACA AATATATCGAGAGTCAGTGCGATATATACGCGATAACAGCGG CTCTCTCGAGAGAGCTCTT

000000000

Prediction of protein function

Protein function

000000000

MCL Jerarca LLPA Graphlet algorithm Evaluation 000000 000000 00

Methods for function prediction

Prediction of protein function

Protein protein interactions

Prediction of protein function 000000000

Protein protein interaction networks

Prediction of protein function 000000000

Community networks

Prediction of protein function 000000000

Definition (Community)

A community is a subset of vertices that are densely connected with each other and sparsely connected to the vertices outside of the community.

From PPIN to protein function

- identify communities
- annotate communitites

Faculty of Science, Charles university

Problems

- Data reliability
- Overlapping of communities
- Specific structure of the communities
- Running time

MCL ●00000

- 2 Markov Clustering Algorithm
- 3 Jerarca
- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- 6 Evaluatio

Faculty of Science, Charles university

MCI 000000

The Markov matrix has on the index i, j the probability of selecting the edge $\{v_i, v_i\}$ from all edges directing from v_i , if there exists an edge between v_i and v_i , else 0. The probability of selecting a certain edge incident to one vertex is uniform for each edge incident to the vertex.

$$M_{i,j} = \begin{cases} \frac{1}{\deg(v_i)} & \text{if } \{v_i, v_j\} \in E(G) \\ 0 & \text{if } \{v_i, v_j\} \notin E(G) \end{cases}$$
 (1)

Paradigm

A random walk in G that visits a dense community will likely not leave the community until many of its vertices have been visited.

Steps

Expansion

$$M := M^e$$

Inflation

$$M_{i}$$

$$M_{i,j} := rac{M_{i,j}^r}{\sum_j M_{i,j}^r}$$

Until convergence

Postprocessing

$$A_{i,j} = \begin{cases} 1 & \text{if } M_{i,j} > t \\ 0 & \text{if } M_{i,i} \le t \end{cases} \tag{4}$$

Identify connected components

Selfloops

• Problem: Odd powers - odd lenghts and vice versa

Line graph L(G)

- Reliability incorporation
- Information about larger neighborhood
- Overlapping communities

- Prediction of protein function
- Markov Clustering Algorithm
- 3 Jerarca
- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- 6 Evaluatio

Nikola Kalábová

Phase one

- Find all maximal cliques
- Construct distace matrix D

Distance matrix

$$D_{i,j} = \frac{|C| - |C_i \cap C_j|}{|C|} \tag{5}$$

Where C is the set of maximal cliques

Faculty of Science, Charles university

Jerarca 000000

Dendrogram construction

Iterative merging of communities with minimal distance

Matrix update

$$D_{A \cup B,C} = \frac{d(A,C) \cdot |A| + d(B,C) \cdot |B|}{|A| + |B|}$$
(6)

Faculty of Science, Charles university

	a	b	С	d	е
a	0	17	21	31	23
b	17	0	30	34	21
С	21	30	0	28	39
d	31	34	28	0	43
e	23	21	39	43	0

	((a, b), e)	С	d
((a, b), e)	0	30	36
С	30	0	28
d	36	28	0

	(a, b)	C	d	е
(a, b)	0	25.5	32.5	22
С	25.5	0	28	39
d	32.5	28	0	43
e	22	39	43	0

From dendrogram to communities

Identify most probable communities

Modularity

$$Q = Tr(E) - ||E^2|| \tag{7}$$

Where ||E|| is a sum is the sum of all elements of the matrix E

H-index

$$H = -\log \sum_{j=p}^{\min(M,n)} \frac{\binom{M}{j} \binom{F-M}{n-j}}{\binom{F}{n}}$$
(8)

Where p is the total number of direct intracommunity interactions, M is the maximum possible number of intracommunity direct interactions, F is the maximum possible number of edges, and n is the number of edges.

- 4 Link label propagation algorithm

Basic algorithm

- **1** give every $v \in V(G)$ different label
- 2 while $\exists v : \ell(v) \notin \ell_{max}(v)$:
 - 1 for all $v \in V(G)$ assign v the most occurring label among its neighbors

Problems

- iteration in random order
- more labels with maximal frequency
- non-overlapping communities

Link label propagation algorithm

Edge similarity

$$S(e_{i,j}, e_{j,k}) = \frac{\sum_{x,y \in \{i,j,k\} \land x \neq y} |N(x) \cap N(y)|}{\sum_{x,y \in \{i,i,k\} \land x \neq y} |N(x) \bigcup N(y)|}$$
(9)

Where N(x) is the neighborhood of a vertex x.

Edge weight

$$W(e_{i,j}) = \frac{\sum_{e_{x,y} \in N(e_{i,j})} S(e_{i,j}, e_{x,y})}{|N(e_{i,j})|}$$
(10)

Determines the order of iteration

Label selection

$$\ell(e_{i,j}) = \operatorname{argmax}_{\ell} \sum_{e_{x,y} \in N(e_{i,j}) \land \ell(e_{x,y}) = \ell} S(e_{i,j}, e_{x,y})$$

$$\tag{11}$$

Algorithm

- 1 assign a unique label for each edge
- 2 calculate the similarity of each pair of edge
- 3 calculate the weight of each edge
- update the label of each edge in descending order of their weight until the maximum number of iterations is reached.
- 6 assign a label to each vertex according to the labels of incident edges
- 6 identify communities of vertices with the same label

Graphlet algorithm

- Prediction of protein function
- 2 Markov Clustering Algorithm
- 3 Jerarc
- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- **6** Evaluatio

Graphlet algorithm 000000

Graphlets

Nikola Kalábová

Orbits

- importance of the position in the graphlet automorphism orbits
- 73 orbits vector of 73 elements

(12)

Weight of a graphlet

The less orbits the orbit contains, the bigger weight.

$$w_i = 1 - \frac{\log(o_i)}{\log(73)}$$

Where o_i is the number of orbiths a orbit i contains.

Community-based algorithms for protein function prediction

- for every $v \in V(G)$ create a vector by calculating for every orbit the number of such orbits the vertex is involved in
- 2 calculate a vector similarity for every two vectors
- 3 for every $v \in V(G)$ identify all vertices with a similary above a threshold

Graphlet algorithm 0000000

Distance for one orbit

$$D_i(u, v) = w_i \cdot \frac{|\log(v_i + 1) - \log(u_i + 1)|}{\log(\max\{u_i, v_i\} + 2)}$$
(13)

Distance for a whole vector

$$D(u,v) = \frac{\sum_{i=0}^{72} D_i}{\sum_{i=0}^{72} w_i}$$
 (14)

Vector similarity

$$S(u, v) = 1 - D(u, v) \tag{15}$$

Similarity threshold about 0.9 - 0.95

Evaluation •0

- 2 Markov Clustering Algorithm
- 3 Jerarca
- 4 Link label propagation algorithm
- **6** Graphlet algorithm
- 6 Evaluation

Me	thod	Overlap	Reliability incorp.	Running time	Specific structure
MC	CL	no	no	good	no
Jer	arca	no	yes	slow	no
LL	PA	yes	yes	good	yes
Gra	aphlet	yes	no	fair	yes