OPTIMISATION SEMINAR 31.5.2021

MARTIN ČERNÝ
KAM.MFF.CUNI.CZ/~CERNY
CERNY@KAM.MFF.CUNI.CZ
MAY 31, 2021

COMPLETELY POSITIVE MATRICES

QUADRATIC FORMS

Quadratic forms:

■ $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$
■ $Q\left(x_{1}, \ldots, x_{n}\right):=\mathbf{x}^{\top} Q \mathbf{x}=\sum_{i, j} q_{i j} x_{i} x_{j}$

- $Q \in \mathbb{R}^{n \times n}, \mathbf{x} \in \mathbb{R}^{n}$
- Special classes of forms:

1. positive semi-definite forms (PSD)

- $\forall \mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{\top} Q \mathbf{x} \geq 0$

2. forms with non-negative coefficient (NNC)

- $\mathbf{x}^{\top} N \mathbf{x}=\sum_{i, j} n_{i j} x_{i} x_{j}$
- $\forall i, j: n_{i j} \geq 0$

COMPLETELY POSITIVE FORMS

$Q(\mathbf{x}):=\mathbf{x}^{\top} A \mathbf{x}$ is completely positive, if

1. $\exists B \in \mathbb{R}^{n \times m}: A=B B^{T}$,
2. $B \geq O_{n \times m}$.

■ $B \geq \mathrm{o}_{n \times m} \Longrightarrow A=B B^{\top} \geq \mathrm{o}_{n \times n}$
■ $\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} B B^{\top} \mathbf{x}=\left(B^{\top} \mathbf{x}\right)^{T}\left(B^{\top} \mathbf{x}\right)=\sum_{i=1}^{m}\left(B^{\top} \mathbf{x}\right)_{i}^{2} \geq 0$
Completely positive forms are

1. (PSD) positive semi-definite forms
2. (NNC) forms with non-negative coefficients

Alternative characterisation of CP FORMS

- $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} B B^{\top} \mathbf{x}=\left(B^{\top} \mathbf{x}\right)^{\top}\left(B^{\top} \mathbf{x}\right)=\sum_{i=1}^{m}\left(B^{\top} \mathbf{x}\right)_{i}^{2}$
- i-th coordinate of $\left(B^{\top} \mathbf{x}\right)$:
- $\left(B^{\top} \mathbf{x}\right)_{i}=\sum_{k=1}^{n} B_{i k}^{\top} x_{k}=\sum_{k=1}^{n} B_{k i} x_{k}$
- $L_{i}(\mathbf{x}):=\sum_{k=1}^{n} B_{k i} x_{k} \ldots$ form with non-negative coefficients
- linear form
- $Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x})$

Alternative characterisatino of CP Forms

- $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} B B^{\top} \mathbf{x}=\left(B^{\top} \mathbf{x}\right)^{\top}\left(B^{\top} \mathbf{x}\right)=\sum_{i=1}^{m}\left(B^{\top} \mathbf{x}\right)_{i}^{2}$
- i-th coordinate of $\left(B^{\top} \mathbf{x}\right)$:
- $\left(B^{\top} \mathbf{x}\right)_{i}=\sum_{k=1}^{n} B_{i k}^{\top} X_{k}=\sum_{k=1}^{n} B_{k i} X_{k}$
- $L_{i}(\mathbf{x}):=\sum_{k=1}^{n} B_{k i} x_{k}$... form with non-negative coefficients
- linear form
- $Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x})$

Characterisation of CP forms

A form $Q(\mathbf{x})$ is completely positive if and only if there is $m \in \mathbb{N}$:

$$
Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x}),
$$

where $L_{i}(\mathbf{x})$ for $i=1, \ldots, m$ are non-negative forms.

MATRIX REPRESETATION OF $L_{i}(\mathbf{X})$

- $Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x})$
- $L_{i}^{2}(\mathbf{x})=\left(\sum_{j=1}^{n} \ell_{j} x_{j}\right)^{2}=\sum_{i, j=1}^{n} \ell_{i} \ell_{j} x_{i} x_{j}=\mathbf{x}^{\top} L_{i} \mathbf{x}$
- $L_{i}=\lambda_{i} \lambda_{i}^{\top}$
- $\left(\lambda_{i}\right)_{j}:=\ell_{j}$

■ $A=L_{1}+\cdots+L_{m}=\sum_{i=1}^{m} \boldsymbol{\lambda}_{i} \boldsymbol{\lambda}_{i}^{\top}$
■ $Q(\mathbf{x})=\sum_{i=1}^{m} \mathbf{x}^{\top} \boldsymbol{\lambda}_{i} \boldsymbol{\lambda}_{i}^{\top} \mathbf{x}=\sum_{i=1}^{m}\left(\lambda_{i}^{\top} \mathbf{x}\right)\left(\lambda_{i}^{\top} \mathbf{x}\right)=\sum_{i=1}^{m}\left(\lambda_{i}^{\top} \mathbf{x}\right)^{2}$

COMPLETELY POSITIVE FORMS

Characterisation of CP forms

A form $Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ is completely positive if and only if there is $m \in \mathbb{N}$:

■ $Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x})$
■ $Q(\mathbf{x})=\sum_{i=1}^{m} \mathbf{x}^{\top} \lambda_{i} \lambda_{i}^{\top} \mathbf{x}$
where $L_{i}(\mathbf{x})$ for $i=1, \ldots, m$ are non-negative forms and $\lambda_{i} \boldsymbol{\lambda}_{i}$ their matrix representations.

■ How big is m ?

- $\Longrightarrow c p-r a n k$ of A :
- minimal $m \in \mathbb{N}$ such that

1. $\exists L_{1}(\mathbf{x}), \ldots, L_{m}(\mathbf{x}): Q(\mathbf{x})=\sum_{i=1}^{m} L_{i}^{2}(\mathbf{x})$
2. $\exists \lambda_{1}, \ldots, \lambda_{m}: A=\sum_{i, j=1}^{m} \lambda_{i} \lambda_{i}^{\top}$
3. $\exists B \in \mathbb{R}^{n \times m}: A=B B^{T}$

CONE OF COMPLETELY POSITIVE FORMS

■ $C P^{n}=\left\{Q(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \mid Q(\mathbf{x})\right.$ if completely positive $\}$
Properties of $C P^{n}$:

1. $Q_{1}(\mathbf{x}), Q_{2}(\mathbf{x}) \in C P^{n} \Longrightarrow Q_{3}(\mathbf{x}):=Q_{1}(\mathbf{x})+Q_{2}(\mathbf{x}) \in C P^{n}$

- $Q_{1}(\mathbf{x})=\sum_{i=1}^{m_{1}} L_{i}^{2}(\mathbf{x})$
- $Q_{2}(\mathbf{x})=\sum_{i=1}^{m_{2}} M_{i}^{2}(\mathbf{x})$
- $Q_{3}(\mathbf{x})=Q_{1}(\mathbf{x})+Q_{2}(\mathbf{x})=\sum_{i=1}^{m_{1}} L_{i}^{2}(\mathbf{x})+\sum_{j=1}^{m_{2}} M_{j}^{2}(\mathbf{x})$
- $Q_{1}(\mathbf{x}) \sim A=B B^{\top}, Q_{2}(\mathbf{x}) \sim C=D D^{\top}$
- $L_{i}(\mathbf{x}) \sim B_{* i}, M_{j}(\mathbf{x}) \sim C_{* j}$
- $E:=\left(\begin{array}{ll}B & D\end{array}\right)$
- $E E^{T}=\left(\begin{array}{ll}B & D\end{array}\right)\binom{B}{D}=B B^{T}+D D^{T}=A+C$
- $Q_{3}(\mathbf{x})=\mathbf{x}^{\top} E E^{\top} \mathbf{x}$
- $Q_{3}(\mathbf{x})=\mathbf{x}^{\top}(A+C) \mathbf{x}$

CONE OF COMPLETELY POSITIVE FORMS

- $C P^{n}=\left\{Q(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R} \mid Q(\mathbf{x})\right.$ if completely positive $\}$

Properties of $C P^{n}$:

$$
\begin{aligned}
& \text { 1. } Q_{1}(\mathbf{x}), Q_{2}(\mathbf{x}) \in C P^{n} \Longrightarrow Q_{3}(\mathbf{x}):=Q_{1}(\mathbf{x})+Q_{2}(\mathbf{x}) \in C P^{n} \\
& \text { 2. } Q_{1}(\mathbf{x}) \in C P^{n}, a \geq 0 \Longrightarrow Q_{2}(\mathbf{x}):=a Q_{1}(\mathbf{x}) \in C P^{n} \\
& \text { Q } Q_{1}(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}=\mathbf{x}^{\top} B B^{\top} \mathbf{x} \\
& \text { Q } Q_{2}(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{A}=\mathbf{x}^{\top} a B B^{\top} \mathbf{x}=\mathbf{x}^{\top}(\sqrt{a} B)\left(B^{\top} \sqrt{a}\right) \mathbf{x} \\
& \text { ■ } b:=\sqrt{a} \\
& B_{2}:=\sqrt{a} B
\end{aligned}
$$

$C P^{n}$ is a convex cone

$C P^{n}$ forms a closed convex cone.

STANDARD QUADRATIC PROGRAMMING

Standard quadratic programming:

$$
\begin{array}{lr}
\min & \mathbf{x}^{\top} Q \mathbf{x} \\
\text { s.t. } & \mathbf{e}^{\top} \mathbf{x}=1, \\
& \mathbf{x} \geq 0 .
\end{array}
$$

■ NP-hard optimization problem

- reduction of max-clique graph problem
$\square \mathbf{x}^{\top} Q \mathbf{x}=Q \mathbf{x} \mathbf{x}^{\top}=\operatorname{tr}\left(Q^{\top} \mathbf{x} \mathbf{x}^{\top}\right)=\left\langle Q, \mathbf{x x}^{\top}\right\rangle_{F}$
$-\min \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \rightarrow \min \left\langle Q, \mathbf{x} \mathbf{x}^{\top}\right\rangle_{F}$
■ $\mathbf{e}^{T} \mathbf{x}=1 \rightarrow\left\langle\mathbf{e e}^{\top}, \mathbf{x x}^{\top}\right\rangle_{F}=1$
- $\left\langle\mathbf{e} \mathbf{e}^{\top}, \mathbf{x x}^{\top}\right\rangle_{F}=\operatorname{tr}\left(\left(\mathbf{e e}^{\top}\right)^{\top}\left(\mathbf{x} \mathbf{x}^{\top}\right)\right)=\operatorname{tr}\left(\mathbf{e}\left(\mathbf{e}^{\top} \mathbf{x}\right) \mathbf{x}^{\top}\right)=$
- $=\sum_{i}\left(\mathbf{e x}^{\top}\right)_{i i}=\sum_{i} \mathbf{e}_{i} \mathbf{x}_{i}=\mathbf{e}^{\top} \mathbf{x}=1$

STANDARD QUADRATIC PROGRAMMING

Special CP programming:

$$
\begin{array}{cr}
\min & \left\langle Q, \mathbf{x x}^{\top}\right\rangle_{F} \\
\text { s.t. } & \left\langle\mathbf{e e}^{\top}, \mathbf{x} \mathbf{x}^{\top}\right\rangle_{F}=1, \\
\mathbf{x} \geq 0 .
\end{array}
$$

■ NP-hard optimization problem

- reduction of max-clique graph problem

■ $\mathbf{x}^{\top} Q \mathbf{x}=Q \mathbf{x} \mathbf{x}^{\top}=\operatorname{tr}\left(Q^{\top} \mathbf{x} \mathbf{x}^{\top}\right)=\left\langle Q, \mathbf{x x}^{\top}\right\rangle_{F}$
$-\min \mathbf{x}^{\top} \mathbf{Q} \mathbf{x} \rightarrow \min \left\langle Q, \mathbf{x} \mathbf{x}^{\top}\right\rangle_{F}$
$\boldsymbol{\square} \mathbf{e}^{\top} \mathbf{x}=1 \rightarrow\left\langle\mathbf{e e}^{\top}, \mathbf{x x}^{\top}\right\rangle_{F}=1$

- $\left\langle\mathbf{e} \mathbf{e}^{\top}, \mathbf{x x}^{\top}\right\rangle_{F}=\operatorname{tr}\left(\left(\mathbf{e e}^{\top}\right)^{\top}\left(\mathbf{x} \mathbf{x}^{\top}\right)\right)=\operatorname{tr}\left(\mathbf{e}\left(\mathbf{e}^{\top} \mathbf{x}\right) \mathbf{x}^{\top}\right)=$
- $=\sum_{i}\left(\mathbf{e x}^{\top}\right)_{i i}=\sum_{i} \mathbf{e}_{i} \mathbf{x}_{i}=\mathbf{e}^{\top} \mathbf{x}=1$

STANDARD QUADRATIC PROGRAMMING

Special CP programming:

$$
\begin{array}{cr}
\min & \langle Q, X\rangle_{F} \\
\text { s.t. } & \left\langle\mathbf{e e}^{T}, X\right\rangle_{F}=1, \\
X=\mathbf{x x} \\
& \mathbf{x} \geq 0
\end{array}
$$

■ NP-hard optimization problem

- reduction of max-clique graph problem
$\square \mathbf{x}^{\top} Q \mathbf{x}=Q \mathbf{x} \mathbf{x}^{\top}=\operatorname{tr}\left(Q^{\top} \mathbf{x} \mathbf{x}^{\top}\right)=\left\langle Q, \mathbf{x x}^{\top}\right\rangle_{F}$
$-\min \mathbf{x}^{\top} Q \mathbf{x} \rightarrow \min \left\langle Q, \mathbf{x} \mathbf{x}^{\top}\right\rangle_{F}$
$\boldsymbol{\square} \mathbf{e}^{T} \mathbf{x}=1 \rightarrow\left\langle\mathbf{e e}^{T}, \mathbf{x} \mathbf{x}^{T}\right\rangle_{F}=1$
- $\left\langle\mathbf{e} \mathbf{e}^{\top}, \mathbf{x x}^{\top}\right\rangle_{F}=\operatorname{tr}\left(\left(\mathbf{e e}^{\top}\right)^{\top}\left(\mathbf{x x}^{\top}\right)\right)=\operatorname{tr}\left(\mathbf{e}\left(\mathbf{e}^{\top} \mathbf{x}\right) \mathbf{x}^{\top}\right)=$
$\boldsymbol{\bullet}=\sum_{i}\left(\mathbf{e x}^{\top}\right)_{i i}=\sum_{i} \mathbf{e}_{i} \mathbf{x}_{i}=\mathbf{e}^{\top} \mathbf{x}=1$

STANDARD QUADRATIC PROGRAMMING

CP relaxation:

$$
\begin{array}{cr}
\min & \langle Q, X\rangle_{F} \\
\text { s.t. } & \left\langle\mathbf{e e}^{T}, X\right\rangle_{F}=1, \\
& X \in C P^{n}
\end{array}
$$

■ NP-hard optimization problem

- reduction of max-clique graph problem

■ actually $\mathbf{x x}^{\top}, \mathbf{x} \geq 0 \rightarrow X \in C P^{n}$ is not a relaxation

- $C P^{n}=\operatorname{conv}\left\{\mathbf{x x}^{\top} \mid \mathbf{x} \in \mathbb{R}_{+}^{n}\right\}$
- linear cost function + convex set \Longrightarrow optimum attained in a vertex

COMPLETELY POSITIVE PROGRAMMING

Completely positive programming:

$$
\begin{array}{cr}
\min & \langle C, X\rangle_{F} \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle_{F}=\mathbf{b}_{i}, \\
& X \in C P^{n}, \\
& i=1, \ldots, m
\end{array}
$$

Lagrangian dual:

$$
\begin{array}{cc}
\max & \sum_{i=1}^{m} b_{i} y_{i} \\
\text { s.t. } & C-\sum_{i=1}^{m}\left\langle A_{i}, X\right\rangle_{F}=\underline{i}, \\
& X \in C P_{*}^{n}
\end{array}
$$

■ $C P_{*}^{n}$... dual cone

Frobenius inner product and dual cone

- $\langle A, B\rangle_{F}:=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j=1}^{n} a_{i j} b_{i j}$
-CP ${ }_{*}^{n}=\left\{A \in \mathbb{R}^{n \times n} \mid\langle A, B\rangle_{F} \geq 0, \forall B \in C P^{n}\right\}$
- $B=\mathbf{x x}^{\top}$

■ $\mathbf{x} \in \mathbb{R}_{+}^{n}$

- $b_{i j}=x_{i} x_{j}$
- $\mathbf{O} \leq\langle A, B\rangle_{F}=\sum_{i, j=1}^{n} a_{i j} b_{i j}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=\mathbf{x}^{\top} A \mathbf{x}$

Frobenius inner product and dual cone

■ $\langle A, B\rangle_{F}:=\operatorname{tr}\left(A^{\top} B\right)=\sum_{i, j=1}^{n} a_{i j} b_{i j}$
■ $C P_{*}^{n}=\left\{A \in \mathbb{R}^{n \times n} \mid\langle A, B\rangle_{F} \geq 0, \forall B \in C P^{n}\right\}$

- $B=\mathbf{x x}^{\top}$

■ $\mathbf{x} \in \mathbb{R}_{+}^{n}$
■ $b_{i j}=x_{i} x_{j}$
$-\mathrm{O} \leq\langle A, B\rangle_{F}=\sum_{i, j=1}^{n} a_{i j} b_{i j}=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}=\mathbf{x}^{\top} A \mathbf{x}$
$Q(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$ is copositive (constrained positive), if

$$
\forall \mathbf{x} \in \mathbb{R}_{+}^{n}: \mathbf{x}^{\top} A \mathbf{x} \geq 0
$$

- $A \in C P_{*}^{n} \Longrightarrow A$ is copositive

■ Copositive forms form a closed convex cone:

- $\mathbf{x}^{\top}(A+B) \mathbf{x}=\mathbf{x}^{\top} A \mathbf{x}+\mathbf{x}^{\top} B \mathbf{x} \geq 0$
- $b \geq 0: \mathbf{x}^{\top}(b A) \mathbf{x}=b \mathbf{x}^{\top} A \mathbf{x} \geq 0$

FROBENIUS INNER PRODUCT AND DUAL CONE

- A is copositive $\xlongequal{?} A \in C P_{*}^{n}$
- $\left\langle A, \mathbf{x x}^{\top}\right\rangle_{m} \geq$ o for $\mathbf{x} \in \mathbb{R}_{+}^{n}$
- $B=\sum_{i=1}^{m} \mathbf{x}_{\mathbf{i}} \mathbf{x}_{i}^{T}$
- $\langle A, B\rangle=\left\langle A, \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right\rangle=\sum_{i=1}^{n}\left\langle A, \mathbf{x}_{i} \mathbf{X}_{i}^{T}\right\rangle \geq 0$

Frobenius inner product and dual cone

- A is copositive $\xlongequal{?} A \in C P_{*}^{n}$
- $\left\langle A, \mathbf{x x}^{\top}\right\rangle \geq 0$ for $\mathbf{x} \in \mathbb{R}_{+}^{n}$
- $B=\sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}$
- $\langle A, B\rangle=\left\langle A, \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right\rangle=\sum_{i=1}^{n}\left\langle A, \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\right\rangle \geq 0$

Duality of cones of CP and COP

The convex cones of completely positive forms and copositive forms are duals under Frobenius inner product.

Characterisations of CP matrices

■ still not properly answered
■ sufficient and necessary conditions

- through connection of CP to graph theory

CP AND GRAPH THEORY

- $G=(V, E)$... graph
- V ... vertices
- E ... edges

■ $B \in \mathbb{R}^{|V| \times|E|}$... incidence matrix
■ $B_{v e}:= \begin{cases}1, & \text { if } v \in e, \\ 0, & \text { if } v \notin e .\end{cases}$
■ $v, w \in V:\left(B B^{T}\right)_{v w}=\left\langle b_{v *}, b_{w *}\right\rangle$

- $\left(B B^{T}\right)_{v w}=\sum_{e=1}^{|E|} B_{v e} B_{e w}^{T}=\sum_{e=1}^{|E|} b_{v e} b_{w e}$
$\square\left\langle b_{v *}, b_{w *}\right\rangle= \begin{cases}1, & \text { if } v \neq w,\{v, w\} \in E, \\ 0, & \text { if } v \neq w,\{v, w\} \notin E, \\ \operatorname{deg}(v), & \text { if } v=w .\end{cases}$
■ $A-\operatorname{diag}(A) \ldots$ adjacency matrix of graph G

A SUFFICIENT CONDITION OF CP

$\square A$ is diagonally dominant if $\forall i: a_{i i}>\sum_{i \neq j} a_{i j}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in C P^{n}$.

- Idea: Assign G to A
- incidence matrix of $G \Longrightarrow$ matrix B s.t. $A=B B^{T}$

■ $G(A):=(V, E)$

- $V=\{1, \ldots, n\}$
- $E=\left\{\{i, j\} \mid a_{i j}>0\right\}$

■ actually a multi-graph $(i=j)$
■ B... incidence matrix of $G(A)$

- $b_{v e}:=1$, if $v \in e$
- $i \neq j:\left(B B^{\top}\right)_{i j}=1 \Longleftrightarrow a_{i j}>0$
- $i=j:\left(B B^{\top}\right)_{i i}=\operatorname{deg}(i)+1$

A SUFFICIENT CONDITION OF CP

$\square A$ is diagonally dominant if $\forall i: a_{i i}>\sum_{i \neq j} a_{i j}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in C P^{n}$.

- Idea: Assign G to A
- incidence matrix of $G \Longrightarrow$ matrix B s.t. $A=B B^{T}$
- $G(A):=(V, E)$
- $V=\{1, \ldots, n\}$
- $E=\left\{\{i, j\} \mid a_{i j}>0\right\}$

■ actually a multi-graph ($i=j$)

- B^{\prime}... modified incidence matrix of $G(A)$
- $b_{\text {ve }}^{\prime}:=\sqrt{a_{i j}}$, if $v \in e,|e|=2$ and $b_{v e}^{\prime}:=1$, if $v \in e,|e|=1$
$-i \neq j:\left(B^{\prime} B^{\prime T}\right)_{i j}=a_{i j} \Longleftrightarrow a_{i j}>0$
- $i=j:\left(B^{\prime} B^{\prime T}\right)_{i i}=\sum_{i \neq j} a_{i j}+1$

A SUFFICIENT CONDITION OF CP

$\square A$ is diagonally dominant if $\forall i: a_{i i}>\sum_{i \neq j} a_{i j}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in C P^{n}$.

■ Idea: Assign G to A

- incidence matrix of $G \Longrightarrow$ matrix $B^{\prime \prime}$ s.t. $A=B^{\prime \prime} B^{\prime \prime T}$

■ $G(A):=(V, E)$

- $V=\{1, \ldots, n\}$
- $E=\left\{\{i, j\} \mid a_{i j}>0\right\}$
- actually a multi-graph $(i=j)$
- $B^{\prime \prime}$... modified' incidence matrix of $G(A)$
- $b^{\prime \prime}{ }_{\text {ve }}:=1$, if $v \in e,|e|=2$ and $b_{v e}^{\prime \prime}:=a_{i i}-\sum_{i \neq j} a_{i j}$, if $v \in e,|e|=1$
- $i \neq j:\left(B^{\prime \prime} B^{\prime \prime T}\right)_{i j}=\sqrt{a_{i j}} \Longleftrightarrow a_{i j}>0$
$-i=j:\left(B^{\prime \prime} B^{\prime \prime T}\right)_{i i}=\sum_{i \neq j} a_{i j}+a_{i i}-\sum_{i \neq j} a_{i j}=a_{i i}$

COMPLETELY POSITIVE GRAPHS

■ $G(A)$... a graph associated to A

- $G(A):=(V, E)$

■ $V=\{1, \ldots, n\}$

- $E=\left\{\{i, j\} \mid a_{i j}>0\right\}$

■ $A=A^{T}$... a realisation of G

- A matrix A s.t. $G(A)=G$

COMPLETELY POSITIVE GRAPHS

■ $G(A)$... a graph associated to A

- $G(A):=(V, E)$

■ $V=\{1, \ldots, n\}$

- $E=\left\{\{i, j\} \mid a_{i j}>0\right\}$

■ $A=A^{T}$... a realisation of $G(\operatorname{or} G(A))$
$-\{i, j\} \in E \Longrightarrow a_{i j}>0$

Completely positive graphs

A graph G does not contain an odd cycle of length more than 3 if and only if every realisation A of G is completely positive.

Application:
■ $G(A)$ does not contain the cycle $\Longrightarrow A \in C P^{n}$

MODIFYING THE MATRIX

■ $M(A)$... a comparison matrix of A

- $M(A)_{i j}:= \begin{cases}a_{i j}, & \text { if } i=j, \\ -a_{i j}, & \text { if } i \neq j .\end{cases}$

MODIFYING THE MATRIX

■ $M(A)$... a comparison matrix of A

$$
M(A)_{i j}:= \begin{cases}a_{i j}, & \text { if } i=j \\ -a_{i j}, & \text { if } i \neq j\end{cases}
$$

$M(A)$ is PSD $\Longrightarrow A$ is CP

For $A=A^{\top}, M(A)$ is PSD $\Longrightarrow A$ is CP.
Proof:

1. $M(A)$ is M-matrix $\Longrightarrow A$ is $C P$

- key element of the proof

2. $M(A)$ is $P D \Longrightarrow M(A)$ is M-matrix

- Z-matrix is $P D \Longrightarrow Z$-matrix is M-matrix

3. $M(A)$ is PSD $\Longrightarrow M(A)$ is PD

$M(A)$ IS PSD $\stackrel{?}{=} A$ is $C P$

■ When does the opposite inequality hold?

- we employ the graph $G(A)$

$M(A)$ IS PSD $\stackrel{?}{=} A$ is $C P$

- When does the opposite inequality hold?
- we employ the graph $G(A)$

$M(A)$ is $P S D \Leftarrow A$ is $C P$

For a graph G it holds for every matrix realisation A that

$$
A \text { is } C P \Longrightarrow M(A) \text { is } P S D
$$

if and only if G is triangle free.
Application:for $A \stackrel{?}{\in} C P^{n}$:

1. construct G
2. If G is triangle free:

- $M(A)$ is PSD $\Longrightarrow A \in C P^{n}$
- $M(A)$ is not PSD $\Longrightarrow A \notin C P^{n}$

SUMMARY

Completely positive forms

- $Q(\mathbf{x})=\sum_{i=1}^{n} L_{i}(\mathbf{x})$
- $L_{i}(\mathbf{x}) \ldots$ non-negative forms

Completely positive matrices

- $A=B B^{T}$
- $B \in \mathbb{R}_{+}^{n \times m} \ldots$ non-negative matrices
- $A=\sum_{i=1} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$
- $\mathbf{x}_{i} \in R_{+}^{n}$... non-negative vectors

SUMMARY

Completely positive forms
■ $Q(\mathbf{x})=\sum_{i=1}^{n} L_{i}(\mathbf{x})$
Completely positive matrices
■ $A=B B^{T}$

- $A=\sum_{i=1} \mathbf{x} \mathbf{x}^{\top}$
$C P^{n}$... set of completely positive matrices
■ closed convex cone
- dual to the cone copositive matrices
- studied in optimization
- NP-hard optimization (both primal and dual)

Characterisation of CP
■ open problem

- sufficient and necessary conditions
- based on graphs $G(A)$
- based on comparison matrices $M(A)$

