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Completely positive matrices



Quadratic forms

Quadratic forms:
Q : Rn → R
Q(x1, . . . , xn) := xTQx =

∑
i,j qijxixj

I Q ∈ Rn×n, x ∈ Rn

Special classes of forms:
1. positive semi-definite forms (PSD)

∀x ∈ Rn : xTQx ≥ 0
2. forms with non-negative coe�cient (NNC)

xTNx =
∑

i,j nijxixj
∀i, j : nij ≥ 0
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Completely positive forms

Q(x) := xTAx is completely positive, if
1. ∃B ∈ Rn×m : A = BBT ,
2. B ≥ 0n×m.

B ≥ 0n×m =⇒ A = BBT ≥ 0n×n
xTAx = xTBBTx = (BTx)T(BTx) =

∑m
i=1(BTx)2

i ≥ 0

Completely positive forms are

1. (PSD) positive semi-definite forms
2. (NNC) forms with non-negative coe�cients
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Alternative characterisation of CP forms

Q(x) = xTAx = xTBBTx = (BTx)T(BTx) =
∑m

i=1(BTx)2
i

i-th coordinate of (BTx):
I (BTx)i =

∑n
k=1 BTikxk =

∑n
k=1 Bkixk

I Li(x) :=
∑n

k=1 Bkixk ... form with non-negative coe�cients
linear form

Q(x) =
∑m

i=1 L2
i (x)
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Alternative characterisatino of CP forms

Q(x) = xTAx = xTBBTx = (BTx)T(BTx) =
∑m

i=1(BTx)2
i

i-th coordinate of (BTx):
I (BTx)i =

∑n
k=1 BTikxk =

∑n
k=1 Bkixk

I Li(x) :=
∑n

k=1 Bkixk ... form with non-negative coe�cients
linear form

Q(x) =
∑m

i=1 L2
i (x)

Characterisation of CP forms
A form Q(x) is completely positive if and only if there is m ∈ N :

Q(x) =
m∑
i=1

L2
i (x),

where Li(x) for i = 1, . . . ,m are non-negative forms.
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Matrix represetation of Li(x)

Q(x) =
∑m

i=1 L2
i (x)

L2
i (x) =

(∑n
j=1 `jxj

)2
=
∑n

i,j=1 `i`jxixj = xTLix
I Li = λiλ

T
i

I (λi)j := `j

A = L1 + · · ·+ Lm =
∑m

i=1 λiλ
T
i

Q(x) =
∑m

i=1 xTλiλ
T
i x =

∑m
i=1(λ

T
i x)(λ

T
i x) =

∑m
i=1(λ

T
i x)

2
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Completely positive forms

Characterisation of CP forms
A form Q(x) = xTAx is completely positive if and only if there is
m ∈ N :

Q(x) =
∑m

i=1 L2
i (x)

Q(x) =
∑m

i=1 xTλiλ
T
i x

where Li(x) for i = 1, . . . ,m are non-negative forms and λiλi their
matrix representations.

How big is m?
=⇒ cp-rank of A:

minimal m ∈ N such that
1. ∃L1(x), . . . , Lm(x) : Q(x) =

∑m
i=1 L2

i (x)
2. ∃λ1, . . . ,λm : A =

∑m
i,j=1 λiλ

T
i

3. ∃B ∈ Rn×m : A = BBT
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Cone of completely positive forms

CPn = {Q(x) : Rn → R | Q(x) if completely positive}

Properties of CPn:

1. Q1(x),Q2(x) ∈ CPn =⇒ Q3(x) := Q1(x) + Q2(x) ∈ CPn

I Q1(x) =
∑m1

i=1 L2
i (x)

I Q2(x) =
∑m2

i=1 M2
i (x)

I Q3(x) = Q1(x) + Q2(x) =
∑m1

i=1 L2
i (x) +

∑m2
j=1 M2

j (x)
Q1(x) ∼ A = BBT , Q2(x) ∼ C = DDT
Li(x) ∼ B∗i, Mj(x) ∼ C∗j

I E :=
(
B D

)
I EET =

(
B D

)(B
D

)
= BBT + DDT = A+ C

I Q3(x) = xTEETx
I Q3(x) = xT(A+ C)x
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Cone of completely positive forms

CPn = {Q(x) : Rn → R | Q(x) if completely positive}

Properties of CPn:

1. Q1(x),Q2(x) ∈ CPn =⇒ Q3(x) := Q1(x) + Q2(x) ∈ CPn

2. Q1(x) ∈ CPn,a ≥ 0 =⇒ Q2(x) := aQ1(x) ∈ CPn

I Q1(x) = xTAx = xTBBTx
I Q2(x) = xTaAx = xTaBBTx = xT(

√
aB)(BT

√
a)x

b :=
√
a

B2 :=
√
aB

CPn is a convex cone
CPn forms a closed convex cone.
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Standard quadratic programming

Standard quadratic programming:

min xTQx
s.t. eTx = 1,

x ≥ 0.

NP-hard optimization problem
I reduction of max-clique graph problem

xTQx = QxxT = tr(QTxxT) = 〈Q, xxT〉F
I min xTQx→ min〈Q, xxT〉F

eTx = 1→ 〈eeT, xxT〉F = 1
I 〈eeT , xxT〉F = tr

(
(eeT)T(xxT)

)
= tr

(
e(eTx)xT

)
=

I =
∑

i(exT)ii =
∑

i eixi = eTx = 1
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Standard quadratic programming

Special CP programming:

min 〈Q, xxT〉F
s.t. 〈eeT, xxT〉F = 1,

x ≥ 0.

NP-hard optimization problem
I reduction of max-clique graph problem

xTQx = QxxT = tr(QTxxT) = 〈Q, xxT〉F
I min xTQx→ min〈Q, xxT〉F

eTx = 1→ 〈eeT, xxT〉F = 1
I 〈eeT , xxT〉F = tr

(
(eeT)T(xxT)

)
= tr

(
e(eTx)xT

)
=

I =
∑

i(exT)ii =
∑

i eixi = eTx = 1
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Standard quadratic programming

Special CP programming:

min 〈Q, X〉F
s.t. 〈eeT, X〉F = 1,

X = xxT

x ≥ 0

NP-hard optimization problem
I reduction of max-clique graph problem

xTQx = QxxT = tr(QTxxT) = 〈Q, xxT〉F
I min xTQx→ min〈Q, xxT〉F

eTx = 1→ 〈eeT, xxT〉F = 1
I 〈eeT , xxT〉F = tr

(
(eeT)T(xxT)

)
= tr

(
e(eTx)xT

)
=

I =
∑

i(exT)ii =
∑

i eixi = eTx = 1
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Standard quadratic programming

CP relaxation:
min 〈Q, X〉F
s.t. 〈eeT, X〉F = 1,

X ∈ CPn

NP-hard optimization problem
I reduction of max-clique graph problem

actually xxT, x ≥ 0→ X ∈ CPn is not a relaxation
I CPn = conv{xxT | x ∈ Rn

+}
I linear cost function + convex set =⇒ optimum attained in a

vertex
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Completely positive programming

Completely positive programming:
min 〈C, X〉F
s.t. 〈Ai, X〉F = bi,

X ∈ CPn,
i = 1, . . . ,m

Lagrangian dual:

max
m∑
i=1

biyi

s.t. C −
m∑
i=1

〈Ai, X〉F =
¯
i,

X ∈ CPn∗

CPn∗ ... dual cone
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Frobenius inner product and dual cone

〈A,B〉F := tr(ATB) =
∑n

i,j=1 aijbij
CPn∗ = {A ∈ Rn×n | 〈A,B〉F ≥ 0,∀B ∈ CPn}
I B = xxT

x ∈ Rn
+

bij = xixj
I 0 ≤ 〈A,B〉F =

∑n
i,j=1 aijbij =

∑n
i,j=1 aijxixj = xTAx
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Frobenius inner product and dual cone

〈A,B〉F := tr(ATB) =
∑n

i,j=1 aijbij
CPn∗ = {A ∈ Rn×n | 〈A,B〉F ≥ 0,∀B ∈ CPn}
I B = xxT

x ∈ Rn
+

bij = xixj
I 0 ≤ 〈A,B〉F =

∑n
i,j=1 aijbij =

∑n
i,j=1 aijxixj = xTAx

Q(x)=xTAx is copositive (constrained positive), if

∀x ∈ Rn+ : xTAx ≥ 0

A ∈ CPn∗ =⇒ A is copositive
Copositive forms form a closed convex cone:
I xT(A+ B)x = xTAx+ xTBx ≥ 0
I b ≥ 0 : xT(bA)x = bxTAx ≥ 0
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Frobenius inner product and dual cone

A is copositive ?
=⇒ A ∈ CPn∗

I 〈A, xxT〉 ≥ 0 for x ∈ Rn
+

I B =
∑m

i=1 xixTi
I 〈A,B〉 = 〈A,

∑m
i=1 xixTi 〉 =

∑n
i=1〈A, xixTi 〉 ≥ 0
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Frobenius inner product and dual cone

A is copositive ?
=⇒ A ∈ CPn∗

I 〈A, xxT〉 ≥ 0 for x ∈ Rn
+

I B =
∑m

i=1 xixTi
I 〈A,B〉 = 〈A,

∑m
i=1 xixTi 〉 =

∑n
i=1〈A, xixTi 〉 ≥ 0

Duality of cones of CP and COP
The convex cones of completely positive forms and copositive
forms are duals under Frobenius inner product.
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Characterisations of CP matrices

still not properly answered
su�cient and necessary conditions
I through connection of CP to graph theory
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CP and graph theory

G = (V, E) ... graph
I V ... vertices
I E ... edges

B ∈ R|V|×|E| ... incidence matrix

Bve :=
{

1, if v ∈ e,
0, if v /∈ e.

v,w ∈ V : (BBT)vw = 〈bv∗,bw∗〉
I (BBT)vw =

∑|E|
e=1 BveBTew =

∑|E|
e=1 bvebwe

〈bv∗,bw∗〉 =


1, if v 6= w, {v,w} ∈ E,
0, if v 6= w, {v,w} /∈ E,
deg(v), if v = w.

A− diag(A) ... adjacency matrix of graph G
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A sufficient condition of CP

A is diagonally dominant if ∀i : aii >
∑

i 6=j aij

Su�cient condition of CP
Let A be a non-negative diagonally dominant symmetric matrix.
Then A ∈ CPn.

Idea: Assign G to A
I incidence matrix of G =⇒ matrix B s.t. A = BBT

G(A) := (V, E)
I V = {1, . . . ,n}
I E = {{i, j} | aij > 0}

actually a multi-graph (i = j)
B ... incidence matrix of G(A)
I bve := 1, if v ∈ e
I i 6= j : (BBT)ij = 1 ⇐⇒ aij > 0
I i = j : (BBT)ii = deg(i) + 1
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A sufficient condition of CP

A is diagonally dominant if ∀i : aii >
∑

i 6=j aij

Su�cient condition of CP
Let A be a non-negative diagonally dominant symmetric matrix.
Then A ∈ CPn.

Idea: Assign G to A
I incidence matrix of G =⇒ matrix B s.t. A = BBT

G(A) := (V, E)
I V = {1, . . . ,n}
I E = {{i, j} | aij > 0}

actually a multi-graph (i = j)
B′ ... modified incidence matrix of G(A)
I b′ve :=

√aij, if v ∈ e, |e| = 2 and b′ve := 1, if v ∈ e, |e| = 1
I i 6= j : (B′B′T)ij = aij ⇐⇒ aij > 0
I i = j : (B′B′T)ii =

∑
i 6=j aij + 1
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A sufficient condition of CP

A is diagonally dominant if ∀i : aii >
∑

i 6=j aij

Su�cient condition of CP
Let A be a non-negative diagonally dominant symmetric matrix.
Then A ∈ CPn.

Idea: Assign G to A
I incidence matrix of G =⇒ matrix B′′ s.t. A = B′′B′′T

G(A) := (V, E)
I V = {1, . . . ,n}
I E = {{i, j} | aij > 0}

actually a multi-graph (i = j)
B′′ ... modified’ incidence matrix of G(A)
I b′′ve := 1, if v ∈ e, |e| = 2 and b′′ve := aii −

∑
i 6=j aij, if

v ∈ e, |e| = 1
I i 6= j : (B′′B′′T)ij =

√aij ⇐⇒ aij > 0
I i = j : (B′′B′′T)ii =

∑
i 6=j aij + aii −

∑
i 6=j aij = aii
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Completely positive graphs

G(A) ... a graph associated to A
I G(A) := (V, E)

V = {1, . . . ,n}
E = {{i, j} | aij > 0}

A = AT ... a realisation of G
I A matrix A s.t. G(A) = G
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Completely positive graphs

G(A) ... a graph associated to A
I G(A) := (V, E)

V = {1, . . . ,n}
E = {{i, j} | aij > 0}

A = AT ... a realisation of G (or G(A))
I {i, j} ∈ E =⇒ aij > 0

Completely positive graphs
A graph G does not contain an odd cycle of length more than 3 if
and only if every realisation A of G is completely positive.

Application:
G(A) does not contain the cycle =⇒ A ∈ CPn
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Modifying the matrix

M(A) ... a comparison matrix of A

I M(A)ij :=
{
aij, if i = j,
−aij, if i 6= j.
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Modifying the matrix

M(A) ... a comparison matrix of A

I M(A)ij :=
{
aij, if i = j,
−aij, if i 6= j.

M(A) is PSD =⇒ A is CP
For A = AT , M(A) is PSD =⇒ A is CP.

Proof:
1. M(A) is M-matrix =⇒ A is CP

I key element of the proof
2. M(A) is PD =⇒ M(A) is M-matrix

I Z-matrix is PD =⇒ Z-matrix is M-matrix
3. M(A) is PSD =⇒ M(A) is PD
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M(A) is PSD ?⇐ A is CP

When does the opposite inequality hold?
I we employ the graph G(A)
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M(A) is PSD ?⇐ A is CP

When does the opposite inequality hold?
I we employ the graph G(A)

M(A) is PSD⇐ A is CP
For a graph G it holds for every matrix realisation A that

A is CP =⇒ M(A) is PSD

if and only if G is triangle free.

Application:for A
?
∈ CPn:

1. construct G
2. If G is triangle free:

M(A) is PSD =⇒ A ∈ CPn
M(A) is not PSD =⇒ A /∈ CPn
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Summary

Completely positive forms
Q(x) =

∑n
i=1 Li(x)

I Li(x) ... non-negative forms
Completely positive matrices

A = BBT
I B ∈ Rn×m

+ ... non-negative matrices
A =

∑
i=1 xixTi

I xi ∈ Rn+ ... non-negative vectors
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Summary

Completely positive forms
Q(x) =

∑n
i=1 Li(x)

Completely positive matrices
A = BBT

A =
∑

i=1 xxT

CPn ... set of completely positive matrices
closed convex cone
dual to the cone copositive matrices
I studied in optimization
I NP-hard optimization (both primal and dual)

Characterisation of CP
open problem
su�cient and necessary conditions
I based on graphs G(A)
I based on comparison matrices M(A)
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