OPTIMISATION SEMINAR 31.5.2021

Martin Černý

KAM.MFF.CUNI.CZ/~CERNY CERNY@KAM.MFF.CUNI.CZ

MAY 31, 2021

COMPLETELY POSITIVE MATRICES

Quadratic forms:

 $\blacksquare Q \colon \mathbb{R}^n \to \mathbb{R}$

$$Q(x_1,\ldots,x_n) := \mathbf{x}^T Q \mathbf{x} = \sum_{i,j} q_{ij} x_i x_j$$

► $Q \in \mathbb{R}^{n \times n}$, $\mathbf{x} \in \mathbb{R}^n$

- Special classes of forms:
 - 1. positive semi-definite forms (PSD)

 $\forall \mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T Q \mathbf{x} \ge \mathbf{0}$

2. forms with non-negative coefficient (NNC)

x^TN**x** =
$$\sum_{i,j} n_{ij} x_i x_j$$

 $\forall i, j : n_{ij} \ge 0$

$$Q(\mathbf{x}) := \mathbf{x}^T A \mathbf{x} \text{ is } completely positive, if}$$

1. $\exists B \in \mathbb{R}^{n \times m} : A = BB^T$,
2. $B \ge O_{n \times m}$.

$$B \ge o_{n \times m} \implies A = BB^T \ge o_{n \times n}$$
$$TA\mathbf{x} = \mathbf{x}^T BB^T \mathbf{x} = (B^T \mathbf{x})^T (B^T \mathbf{x}) = \sum_{i=1}^m (B^T \mathbf{x})_i^2 \ge 0$$

Completely positive forms are

- 1. (PSD) positive semi-definite forms
- 2. (NNC) forms with non-negative coefficients

$$Q(\mathbf{x}) = \mathbf{x}^{T} A \mathbf{x} = \mathbf{x}^{T} B B^{T} \mathbf{x} = (B^{T} \mathbf{x})^{T} (B^{T} \mathbf{x}) = \sum_{i=1}^{m} (B^{T} \mathbf{x})_{i}^{2}$$

$$i-\text{th coordinate of } (B^{T} \mathbf{x}):$$

$$(B^{T} \mathbf{x})_{i} = \sum_{k=1}^{n} B_{ik}^{T} x_{k} = \sum_{k=1}^{n} B_{ki} x_{k}$$

$$L_{i}(\mathbf{x}) := \sum_{k=1}^{n} B_{ki} x_{k} \dots \text{ form with non-negative coefficients}$$

$$linear \text{ form}$$

 $Q(\mathbf{x}) = \sum_{i=1}^{m} L_i^2(\mathbf{x})$

ALTERNATIVE CHARACTERISATINO OF CP FORMS

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B B^T \mathbf{x} = (B^T \mathbf{x})^T (B^T \mathbf{x}) = \sum_{i=1}^m (B^T \mathbf{x})_i^2$$

• *i*-th coordinate of $(B^T \mathbf{x})$:

$$\blacktriangleright (B^T \mathbf{x})_i = \sum_{k=1}^n B_{ik}^T x_k = \sum_{k=1}^n B_{ki} x_k$$

► $L_i(\mathbf{x}) := \sum_{k=1}^{n} B_{ki} x_k \dots$ form with non-negative coefficients ■ linear form

$$Q(\mathbf{x}) = \sum_{i=1}^m L_i^2(\mathbf{x})$$

Characterisation of CP forms

A form $Q(\mathbf{x})$ is completely positive if and only if there is $m \in \mathbb{N}$:

$$Q(\mathbf{x}) = \sum_{i=1}^{m} L_i^2(\mathbf{x}),$$

where $L_i(\mathbf{x})$ for i = 1, ..., m are non-negative forms.

$$Q(\mathbf{x}) = \sum_{i=1}^{m} L_i^2(\mathbf{x})$$

$$L_i^2(\mathbf{x}) = \left(\sum_{j=1}^{n} \ell_j x_j\right)^2 = \sum_{i,j=1}^{n} \ell_i \ell_j x_i x_j = \mathbf{x}^T L_i \mathbf{x}$$

$$L_i = \lambda_i \lambda_i^T$$

$$(\lambda_i)_j := \ell_j$$

$$A = L_1 + \dots + L_m = \sum_{i=1}^{m} \lambda_i \lambda_i^T$$

$$Q(\mathbf{x}) = \sum_{i=1}^{m} \mathbf{x}^T \lambda_i \lambda_i^T \mathbf{x} = \sum_{i=1}^{m} (\lambda_i^T \mathbf{x}) (\lambda_i^T \mathbf{x}) = \sum_{i=1}^{m} (\lambda_i^T \mathbf{x})^2$$

Characterisation of CP forms

A form $Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ is completely positive if and only if there is $m \in \mathbb{N}$:

$$Q(\mathbf{x}) = \sum_{i=1}^m L_i^2(\mathbf{x})$$

$$Q(\mathbf{x}) = \sum_{i=1}^{m} \mathbf{x}^{T} \lambda_{i} \lambda_{i}^{T} \mathbf{x}$$

where $L_i(\mathbf{x})$ for i = 1, ..., m are non-negative forms and $\lambda_i \lambda_i$ their matrix representations.

- How big is *m*?
- $\blacksquare \implies cp$ -rank of A:
- minimal $m \in \mathbb{N}$ such that

1.
$$\exists L_1(\mathbf{x}), \dots, L_m(\mathbf{x}) : Q(\mathbf{x}) = \sum_{i=1}^m L_i^2(\mathbf{x})$$

2. $\exists \lambda_1, \dots, \lambda_m : A = \sum_{i,j=1}^m \lambda_i \lambda_i^T$
3. $\exists B \in \mathbb{R}^{n \times m} : A = BB^T$

• $CP^n = \{Q(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R} \mid Q(\mathbf{x}) \text{ if completely positive} \}$ Properties of CP^n :

1.
$$Q_{1}(\mathbf{x}), Q_{2}(\mathbf{x}) \in CP^{m} \implies Q_{3}(\mathbf{x}) := Q_{1}(\mathbf{x}) + Q_{2}(\mathbf{x}) \in CP^{r}$$

 $\triangleright Q_{1}(\mathbf{x}) = \sum_{i=1}^{m_{1}} L_{i}^{2}(\mathbf{x})$
 $\triangleright Q_{2}(\mathbf{x}) = \sum_{i=1}^{m_{2}} M_{i}^{2}(\mathbf{x})$
 $\triangleright Q_{3}(\mathbf{x}) = Q_{1}(\mathbf{x}) + Q_{2}(\mathbf{x}) = \sum_{i=1}^{m_{1}} L_{i}^{2}(\mathbf{x}) + \sum_{j=1}^{m_{2}} M_{j}^{2}(\mathbf{x})$
 $\blacksquare Q_{1}(\mathbf{x}) \sim A = BB^{T}, Q_{2}(\mathbf{x}) \sim C = DD^{T}$
 $\blacksquare L_{i}(\mathbf{x}) \sim B_{*i}, M_{j}(\mathbf{x}) \sim C_{*j}$
 $\triangleright E := (B \quad D)$
 $\triangleright EE^{T} = (B \quad D) \begin{pmatrix} B \\ D \end{pmatrix} = BB^{T} + DD^{T} = A + C$
 $\triangleright Q_{3}(\mathbf{x}) = \mathbf{x}^{T} EE^{T} \mathbf{x}$
 $\triangleright Q_{3}(\mathbf{x}) = \mathbf{x}^{T} (A + C) \mathbf{x}$

■
$$CP^n = \{Q(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R} \mid Q(\mathbf{x}) \text{ if completely positive} \}$$

Properties of *CP*ⁿ:

1.
$$Q_1(\mathbf{x}), Q_2(\mathbf{x}) \in CP^n \implies Q_3(\mathbf{x}) \coloneqq Q_1(\mathbf{x}) + Q_2(\mathbf{x}) \in CP^n$$

2. $Q_1(\mathbf{x}) \in CP^n, a \ge 0 \implies Q_2(\mathbf{x}) \coloneqq aQ_1(\mathbf{x}) \in CP^n$
 $\blacktriangleright Q_1(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} = \mathbf{x}^T B B^T \mathbf{x}$
 $\blacktriangleright Q_2(\mathbf{x}) = \mathbf{x}^T a A \mathbf{x} = \mathbf{x}^T a B B^T \mathbf{x} = \mathbf{x}^T (\sqrt{a}B)(B^T \sqrt{a}) \mathbf{x}$
 $\blacksquare b \coloneqq \sqrt{a}$
 $\blacksquare B_2 \coloneqq \sqrt{a}B$

CPⁿ is a convex cone

CPⁿ forms a closed convex cone.

Standard quadratic programming:

$$\begin{array}{ll} \min & \mathbf{x}^T Q \mathbf{x} \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = \mathbf{1}, \\ & \mathbf{x} \geq \mathbf{0}. \end{array}$$

NP-hard optimization problem

▶ reduction of max-clique graph problem
■
$$\mathbf{x}^T Q \mathbf{x} = Q \mathbf{x} \mathbf{x}^T = tr(Q^T \mathbf{x} \mathbf{x}^T) = \langle Q, \mathbf{x} \mathbf{x}^T \rangle_F$$

▶ $\min \mathbf{x}^T Q \mathbf{x} \to \min \langle Q, \mathbf{x} \mathbf{x}^T \rangle_F$
■ $\mathbf{e}^T \mathbf{x} = \mathbf{1} \to \langle \mathbf{e} \mathbf{e}^T, \mathbf{x} \mathbf{x}^T \rangle_F = \mathbf{1}$
▶ $\langle \mathbf{e} \mathbf{e}^T, \mathbf{x} \mathbf{x}^T \rangle_F = tr((\mathbf{e} \mathbf{e}^T)^T (\mathbf{x} \mathbf{x}^T)) = tr(\mathbf{e} (\mathbf{e}^T \mathbf{x}) \mathbf{x}^T) =$
▶ $= \sum_i (\mathbf{e} \mathbf{x}^T)_{ii} = \sum_i \mathbf{e}_i \mathbf{x}_i = \mathbf{e}^T \mathbf{x} = \mathbf{1}$

Special CP programming:

$$\begin{array}{ll} \min & \langle \boldsymbol{Q}, \boldsymbol{X} \boldsymbol{X}^T \rangle_F \\ s.t. & \langle \boldsymbol{e} \boldsymbol{e}^T, \boldsymbol{X} \boldsymbol{X}^T \rangle_F = \boldsymbol{1}, \\ & \boldsymbol{X} \geq \boldsymbol{0}. \end{array}$$

NP-hard optimization problem

► reduction of max-clique graph problem
■
$$\mathbf{x}^T Q \mathbf{x} = Q \mathbf{x} \mathbf{x}^T = tr(Q^T \mathbf{x} \mathbf{x}^T) = \langle Q, \mathbf{x} \mathbf{x}^T \rangle_F$$

► min $\mathbf{x}^T Q \mathbf{x} \to min \langle Q, \mathbf{x} \mathbf{x}^T \rangle_F$
■ $\mathbf{e}^T \mathbf{x} = \mathbf{1} \to \langle \mathbf{e} \mathbf{e}^T, \mathbf{x} \mathbf{x}^T \rangle_F = \mathbf{1}$
► $\langle \mathbf{e} \mathbf{e}^T, \mathbf{x} \mathbf{x}^T \rangle_F = tr((\mathbf{e} \mathbf{e}^T)^T (\mathbf{x} \mathbf{x}^T)) = tr(\mathbf{e} (\mathbf{e}^T \mathbf{x}) \mathbf{x}^T) =$
► $\sum_i (\mathbf{e} \mathbf{x}^T)_{ii} = \sum_i \mathbf{e}_i \mathbf{x}_i = \mathbf{e}^T \mathbf{x} = \mathbf{1}$

Special CP programming:

 $\begin{array}{ll} \min & \langle Q, X \rangle_F \\ s.t. & \langle \mathbf{e}\mathbf{e}^T, X \rangle_F = \mathbf{1}, \\ & X = \mathbf{x}\mathbf{x}^T \\ & \mathbf{x} \geq \mathbf{0} \end{array}$

CP relaxation:

$$\begin{array}{ll} \min & \langle Q, X \rangle_F \\ \text{s.t.} & \langle \mathbf{e} \mathbf{e}^T, X \rangle_F = 1, \\ & X \in C \mathbf{P}^n \end{array}$$

- NP-hard optimization problem
 - reduction of max-clique graph problem
- **actually** $\mathbf{x}\mathbf{x}^{T}, \mathbf{x} \ge \mathbf{O} \rightarrow X \in CP^{n}$ is not a relaxation
 - $\blacktriangleright CP^n = conv\{\mathbf{x}\mathbf{x}^T \mid \mathbf{x} \in \mathbb{R}^n_+\}$
 - linear cost function + convex set => optimum attained in a vertex

COMPLETELY POSITIVE PROGRAMMING

Completely positive programming:

$$\begin{array}{ll} \min & \langle C, X \rangle_F \\ \text{s.t.} & \langle A_i, X \rangle_F = \mathbf{b}_i, \\ & X \in CP^n, \\ & i = 1, \dots, m \end{array}$$

Lagrangian dual:

■ *CP*^{*n*}_{*} ... dual cone

FROBENIUS INNER PRODUCT AND DUAL CONE

 $Q(\mathbf{x})=\mathbf{x}^{T}A\mathbf{x}$ is **copositive** (constrained positive), if

$$\forall \mathbf{x} \in \mathbb{R}^n_+ : \mathbf{x}^T \mathbf{A} \mathbf{x} \ge \mathbf{0}$$

- $A \in CP_*^n \implies A \text{ is copositive}$
- Copositive forms form a closed convex cone:
 - $\blacktriangleright \mathbf{x}^{\mathsf{T}}(A+B)\mathbf{x} = \mathbf{x}^{\mathsf{T}}A\mathbf{x} + \mathbf{x}^{\mathsf{T}}B\mathbf{x} \ge \mathbf{0}$
 - $\blacktriangleright b \ge \mathbf{o} : \mathbf{x}^{\mathsf{T}}(bA)\mathbf{x} = b\mathbf{x}^{\mathsf{T}}A\mathbf{x} \ge \mathbf{o}$

■ A is copositive
$$\stackrel{?}{\Longrightarrow} A \in CP_*^n$$

► $\langle A, \mathbf{x}\mathbf{x}^T \rangle \ge \mathbf{0}$ for $\mathbf{x} \in \mathbb{R}^n_+$
► $B = \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T$
► $\langle A, B \rangle = \langle A, \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T \rangle = \sum_{i=1}^n \langle A, \mathbf{x}_i \mathbf{x}_i^T \rangle \ge \mathbf{0}$

■ A is copositive
$$\stackrel{?}{\Longrightarrow} A \in CP_*^n$$

► $\langle A, \mathbf{x}\mathbf{x}^T \rangle \ge \mathbf{0} \text{ for } \mathbf{x} \in \mathbb{R}^n_+$
► $B = \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T$
► $\langle A, B \rangle = \langle A, \sum_{i=1}^m \mathbf{x}_i \mathbf{x}_i^T \rangle = \sum_{i=1}^n \langle A, \mathbf{x}_i \mathbf{x}_i^T \rangle \ge \mathbf{0}$

Duality of cones of CP and COP

The convex cones of completely positive forms and copositive forms are duals under Frobenius inner product.

- still not properly answered
- sufficient and necessary conditions
 - through connection of CP to graph theory

CP AND GRAPH THEORY

$$G = (V, E) \dots \text{graph}$$

$$V \dots \text{vertices}$$

$$E \dots \text{edges}$$

$$B \in \mathbb{R}^{|V| \times |E|} \dots \text{ incidence matrix}$$

$$B_{ve} := \begin{cases} 1, & \text{if } v \in e, \\ 0, & \text{if } v \notin e. \end{cases}$$

$$V, w \in V : (BB^{T})_{vw} = \langle b_{v*}, b_{w*} \rangle$$

$$(BB^{T})_{vw} = \sum_{e=1}^{|E|} B_{ve}B_{ew}^{T} = \sum_{e=1}^{|E|} b_{ve}b_{we}$$

$$(BB^{T})_{vw} = \sum_{e=1}^{|E|} B_{ve}B_{ew}^{T} = \sum_{e=1}^{|E|} b_{ve}b_{we}$$

$$\langle b_{v*}, b_{w*} \rangle = \begin{cases} 1, & \text{if } v \neq w, \{v, w\} \in E, \\ 0, & \text{if } v \neq w, \{v, w\} \notin E, \\ deg(v), & \text{if } v = w. \end{cases}$$

$$A - diag(A) \dots \text{ adjacency matrix of graph } G$$

A SUFFICIENT CONDITION OF CP

• A is diagonally dominant if $\forall i : a_{ii} > \sum_{i \neq j} a_{ij}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in CP^n$.

Idea: Assign G to A • incidence matrix of $G \implies$ matrix B s.t. $A = BB^T$ \blacksquare G(A) := (V, E)▶ $V = \{1, ..., n\}$ ► $E = \{\{i, j\} \mid a_{ii} > 0\}$ **actually a multi-graph** (i = j) \blacksquare B ... incidence matrix of G(A) \blacktriangleright b_{ve} := 1, if $v \in e$ ► $i \neq j$: $(BB^T)_{ii} = 1 \iff a_{ii} > 0$ \blacktriangleright $i = j : (BB^T)_{ii} = deq(i) + 1$

A SUFFICIENT CONDITION OF CP

• A is diagonally dominant if $\forall i : a_{ii} > \sum_{i \neq j} a_{ij}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in CP^n$.

■ Idea: Assign G to A
► incidence matrix of G ⇒ matrix B s.t.
$$A = BB^T$$

■ $G(A) := (V, E)$
► $V = \{1, ..., n\}$
► $E = \{\{i, j\} \mid a_{ij} > 0\}$
■ actually a multi-graph $(i = j)$
■ B' ... modified incidence matrix of $G(A)$
► $b'_{ve} := \sqrt{a_{ij}}$, if $v \in e, |e| = 2$ and $b'_{ve} := 1$, if $v \in e, |e| = 1$
► $i \neq j : (B'B'^T)_{ij} = a_{ij} \iff a_{ij} > 0$
► $i = j : (B'B'^T)_{ii} = \sum_{i \neq j} a_{ij} + 1$

A SUFFICIENT CONDITION OF CP

• A is diagonally dominant if $\forall i : a_{ii} > \sum_{i \neq j} a_{ij}$

Sufficient condition of CP

Let A be a non-negative diagonally dominant symmetric matrix. Then $A \in CP^n$.

■
$$G(A)$$
 ... a graph **associated** to A
► $G(A) := (V, E)$
■ $V = \{1, ..., n\}$
■ $E = \{\{i, j\} \mid a_{ij} > 0\}$
■ $A = A^T$... a **realisation** of G
► A matrix A s.t. $G(A) = G$

■
$$G(A)$$
 ... a graph **associated** to A
► $G(A) := (V, E)$
■ $V = \{1, ..., n\}$
■ $E = \{\{i, j\} \mid a_{ij} > 0\}$
■ $A = A^T$... a **realisation** of G (or $G(A)$)
► $\{i, j\} \in E \implies a_{ij} > 0$

Completely positive graphs

A graph G does not contain an odd cycle of length more than 3 if and only if every realisation A of G is completely positive.

Application:

 \blacksquare G(A) does not contain the cycle \implies A \in CPⁿ

$$\blacksquare M(A) \dots \text{ a comparison matrix of } A$$
$$\blacktriangleright M(A)_{ij} := \begin{cases} a_{ij}, & \text{if } i = j, \\ -a_{ij}, & \text{if } i \neq j. \end{cases}$$

$$\blacksquare M(A) \dots \text{ a comparison matrix of } A$$
$$\blacktriangleright M(A)_{ij} := \begin{cases} a_{ij}, & \text{if } i = j, \\ -a_{ij}, & \text{if } i \neq j. \end{cases}$$

M(A) is PSD \implies A is CP

For $A = A^T$, M(A) is PSD \implies A is CP.

Proof:

1.
$$M(A)$$
 is M-matrix \implies A is CP

key element of the proof

- 2. M(A) is PD \implies M(A) is M-matrix
 - Z-matrix is PD \implies Z-matrix is M-matrix

3. M(A) is PSD \implies M(A) is PD

When does the opposite inequality hold?

• we employ the graph G(A)

M(A) is PSD $\stackrel{?}{\Leftarrow} A$ is CP

When does the opposite inequality hold?

we employ the graph G(A)

M(A) is PSD \Leftarrow A is CP

For a graph G it holds for every matrix realisation A that

A is
$$CP \implies M(A)$$
 is PSD

if and only if G is triangle free.

Application: for $A \stackrel{?}{\in} CP^n$:

- 1. construct G
 - 2. If G is triangle free:

$$\blacksquare M(A) \text{ is PSD } \implies A \in CP^n$$

 $\blacksquare M(A) \text{ is not PSD } \implies A \notin CP^n$

28

Completely positive forms

- $\blacksquare Q(\mathbf{x}) = \sum_{i=1}^{n} L_i(\mathbf{x})$
 - $L_i(\mathbf{x})$... non-negative forms

Completely positive matrices

- $\blacksquare A = BB^T$
 - ► $B \in \mathbb{R}^{n \times m}_+$... non-negative matrices
- $\blacksquare A = \sum_{i=1} \mathbf{x}_i \mathbf{x}_i^T$
 - ▶ $\mathbf{x}_i \in R^n_+$... non-negative vectors

SUMMARY

Completely positive forms

$$\blacksquare Q(\mathbf{x}) = \sum_{i=1}^{n} L_i(\mathbf{x})$$

Completely positive matrices

- $\blacksquare A = BB^T$
- $\blacksquare A = \sum_{i=1} \mathbf{x} \mathbf{x}^T$

CPⁿ ... set of completely positive matrices

- closed convex cone
- dual to the cone copositive matrices
 - studied in optimization
 - NP-hard optimization (both primal and dual)

Characterisation of CP

- open problem
- sufficient and necessary conditions
 - ▶ based on graphs *G*(*A*)
 - based on comparison matrices M(A)