Complexity in Cooperative Games

Jan Bok*

26th October and 2nd November 2016

1 Definitions from the first lecture

A cooperative game is an ordered pair (N, v), where $N = \{1, 2, ..., n\}$ is a set of players and $v : 2^N \to \mathbb{R}$ is a characteristic function of the cooperative game. We further assume that $v(\emptyset) = 0$. The set of all cooperative games with player set N is denoted by G^N .

Subsets of N are called *coalitions* and N itself is called *grand coalition*. We often write v instead of (N, v), because we can easily identify a game with its characteristic function without loss of generality.

To further analyze players' gains, we will need a *payoff vector* which can be interpreted as a proposed distribution of rewards between players. A payoff vector for a cooperative game (N, v) is a vector $x \in \mathbb{R}^N$ with x_i denoting the reward given to the *i*th player.

An imputation of $(N, v) \in G^N$ is a vector $x \in \mathbb{R}^N$ such that $\sum_{i \in N} x_i = v(N)$ and $x_i \geq v(\{i\})$ for every $i \in N$. The set of all imputations of a given cooperative game (N, v) is denoted by I(v).

The core of $(N, v) \in G^N$ is the set

$$C(v) = \Big\{ x \in I(v); \ \sum_{i \in S} x_i \ge v(S), \forall S \subseteq N \Big\}.$$

^{*}bok@iuuk.mff.cuni.cz

Let $v: 2^N \to \mathbb{R}$ be a game, and let $x \in \mathbb{R}^N$ be a payoff vector. The *excess* of x for a coalition $S \subseteq N$ is the quantity $v(S) - \sum_{i \in S} x_i$; that is, the gain that players in coalition S can obtain if they withdraw from the grand coalition N under payoff x and instead take the payoff v(S).

Now let $\theta(x) \in \mathbb{R}^{2^N}$ be the vector of excesses of x, arranged in non-increasing order. In other words, $\theta_i(x) \geq \theta_j(x), \forall i < j$. Notice that x is in the core of v if and only if it is a pre-imputation and $\theta_1(x) \leq 0$. To define the nucleolus, we consider the lexicographic ordering of vectors in \mathbb{R}^{2^N} : For two payoff vectors x, y, we say $\theta(x)$ is lexicographically smaller than $\theta(y)$ if for some index k, we have $\theta_i(x) = \theta_i(y), \forall i < k$ and $\theta_k(x) < \theta_k(y)$. (The ordering is called lexicographic because it mimics alphabetical ordering used to arrange words in a dictionary.) The *nucleolus* of v is the lexicographically minimal imputation, based on this ordering. This solution concept was first introduced in by Schmeidler (1969).

A Shapley value is a function $\phi: G^N \to \mathbb{R}^n$ defined by the following axioms:

- Efficiency: The total gain is distributed: $:\sum_{i\in N}\phi_i(v) = v(N)$
- Symmetry: If i and j are two actors who are equivalent in the sense that $:v(S \cup \{i\}) = v(S \cup \{j\})$ for every subset S of N which contains neither i nor j, then $\phi_i(v) = \phi_j(v)$.
- Linearity: If two coalition games described by gain functions v and w are combined, then the distributed gains should correspond to the gains derived from v and the gains derived from w: $:\phi_i(v+w) = \phi_i(v) + \phi_i(w)$ for every i in N. Also, for any real number $a, :\phi_i(av) = a\phi_i(v)$ for every i in N.
- Zero player (null player): The Shapley value $\phi_i(v)$ of a null player *i* in a game *v* is zero. A player *i* is null in *v* if $v(S \cup \{i\}) = v(S)$ for all coalitions *S*.

Shapley proved that this function is well-defined, that it is unique and that it has the following form:

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! (n - |S| - 1)!}{n!} (v(S \cup \{i\}) - v(S)).$$

2 Outline of the second lecture

I will show three complexity results on three different cooperative game models.

- Weighted graph model (wGG) and Shapley value,
- rule-based representation and Shapley value,
- minimum coloring games (MCG) and its core largeness, exactness.

3 References

- PELEG, BEZALEL, AND PETER SUDHÖLTER. Introduction to the theory of cooperative games. Vol. 34. Springer Science & Business Media, 2007.
- BORM, PETER, HERBERT HAMERS, AND RUUD HENDRICKX. "Operations research games: A survey." TOP 9.2 (2001): 139-199.
- CHALKIADAKIS, GEORGIOS, EDITH ELKIND, AND MICHAEL WOOLDRIDGE. "Cooperative Game Theory: Basic Concepts and Computational Challenges." IEEE Intelligent Systems 3.27 (2012): 86-90.
- BIETENHADER, THOMAS, AND YOSHIO OKAMOTO. "Core stability of minimum coloring games." Mathematics of Operations Research 31.2 (2006): 418-431