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6 Contents



Notation

We mostly follow the standardized interval notation from Kearfott et al. (2002); cf. Neumaier’s web page
http://www.mat.univie.ac.at/~neum/software/int/.

Sets

conv S the convex hull of a set S ⊂ Rn, p. 14
intS the interior of a set S ⊂ Rn

Σ the solution set to Ax = b

N the set of all natural numbers 1, 2, . . .
Z the set of all integer numbers
Q the set of all rational numbers
R the set of all real numbers
C the set of all complex numbers

Numbers

r+ the positive part of a real number r, i.e, r+ = max{r, 0}
r− the negative part of a real number r, i.e, r− = max{−r, 0}
Re(z) the real part of a complex number z
Im(z) the imaginary part of a complex number z
z the complex conjugate of a complex number z (do not confuse with the upper

bound of an interval)

Vectors and matrices

v, . . . column vectors
ei the ith standard unit vector (with convenient dimension), i.e., ei =

(0, . . . , 0, 1, 0, . . . , 0)T

e the vector of ones (with convenient dimension), i.e., e = (1, . . . , 1)T

by the vector by := bc + diag(y)b∆ p. 27
‖v‖ a vector norm, p. 11
A, . . . matrices
In the identity matrix of size n
diag(v) the diagonal matrix with entries v1, . . . , vn
Ai∗ the ith row of a matrix A
A∗j the jth column of a matrix A
Ayz the matrix Ayz = Ac − diag(y)A∆ diag(z), p 27
0 the zero vector or the zero matrix
‖A‖ a matrix norm, p. 11
AT the transpose of matrix A
A−1 the inverse of matrix A
ρ(A) the spectral radius of a matrix A, p. 12
λi(A) the ith largest eigenvalue of a symmetric matrix A, p. 12
A† the Moore–Penrose pseudoinverse of A
〈A〉 the comparison matrix of A, i.e., 〈A〉ii = |aii| and 〈A〉ij = −|aij | for i 6= j, p. 14
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8 Notation

The absolute value | · | and the relations ≤ . . . of vectors and matrices are understood componentwise.

Intervals

a a real compact interval, p. 24
a, inf(a) the lower bound of an interval a, p. 24
a, sup(a) the upper bound of an interval a, p. 24
ac, mid(a) the center of an interval a, p. 24
a∆, rad(a) the radius of an interval a, p. 24
mag(a) the magnitude of an interval a, i.e., mag(a) = max {|a|; a ∈ a}, p. 25
mig(a) the mignitude of an interval a, i.e., mig(a) = min {|a|; a ∈ a}, p. 25
a ≤ b a ≤ b, p. 25
a < b a < b, p. 25

dist(a, b) distance of intervals, i.e., dist(a, b) = max{|a− b|, |a − b|}, p. 127

A an interval matrix {A; A ≤ A ≤ A}, p. 26
AS a symmetric interval matrix {A ∈ A; A = AT }, p. 27
IR the set of all real compact intervals, p. 25
IRm×n the set of all m-by-n interval matrices, p. 26
IRn the set of all n-dimensional interval vectors, p. 25
�S interval hull of a set S ⊂ Rn, i.e., �S :=

⋂

v∈IRn:S⊆v v, p. 25

Similar notation is used for interval vectors v, . . . and interval matrices A, . . .

Functions

sgn(x) the sign of a real x, i.e., sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise
ρ(A) the spectral radius of a matrix A
f ′(x) the derivative of f : R → R
f ′
xi

(x), ∂f
∂xi

the partial derivative of f : Rn → R with respect to xi
∇f(x) the gradient of f : Rn → R
∇f(x) the Jacobian of f : Rn → Rn, i.e., (∇f(x))ij = ∂fi

∂xj

∇2f(x) the Hessian of f : Rn → R, p. 14



Chapter 1

Preliminaries

Linear algebra

Most of the following can be found in Fiedler et al. (2006); Hogben (2007); Horn and Johnson (1985);
Meyer (2000); Neumaier (1990).

Complex numbers. A complex number z can be viewed as an expression of the form a + bi, where
a, b ∈ R and the imaginary number i satisfies i2 = −1. Here, a is called the real part of z and is denoted by
Re(z), and b is called the imaginary part of z and is denoted by Im(z). Arithmetic operations on complex
numbers z1 = a + bi and z2 = c + di is then defined

z1 ± z2 = (a± c) + (b± d)i,

z1z2 = (ac− bd) + (cb + ad)i,

z1
z2

=
ac + bd

c2 + d2
+

cb− ad

c2 + d2
i, z2 6= 0.

Geometrically, a complex number a + bi can be represented as a pair of numbers (a, b) in a plane. The
complex conjugate of a complex number z = a+bi is the complex number z = a−bi. The absolute value of
a complex number z = a+bi is the distance of the point (a, b) to the origin, that is, |z| =

√
a2 + b2 =

√
zz.

Some basic properties of complex numbers and operations:

• z = z if and only if z is real,

• z + z = 2Re(z) ≤ 2|z|,

• z1 + z2 = z1 + z2,

• z1 · z2 = z1 · z2,

• |z1 + z2| ≤ |z1| + |z2|,

• |z1 · z2| = |z1| · |z2|,

• |z1/z2| = |z1| / |z2|.

A complex number z = a+ bi can be also represented in the form z = |z| · eiϕ, where ϕ is the angle of the
the vector (a, b) with the positive real axis. This form is particularly convenient for multiplication since
the product of complex numbers z1 = r1 · eiϕ1 and z2 = r2 · eiϕ2 is z1z2 = (r1r2) · ei(ϕ1+ϕ2).

Matrices and vectors. Matrices are denoted by capitals A,B, . . . For the entries of a matrix A we
use Aij or aij . The set of all m× n real matrices is denoted by Rm×n, and AT stands for the transposed
matrix of A.

9



10 Chapter 1. Preliminaries

Vectors are considered as column vectors

v =











v1
v2
...
vn











= (v1, v2, . . . , vn)T .

We use Rn for the set of all n-dimensional real vectors. It is useful to view vectors as one-column matrices.
Thus, the inner product of two vectors u, v ∈ Rn can be expressed as

uT v =
n
∑

i=1

uivi.

The ith row of a matrix A ∈ Rm×n is denoted by

Ai∗ = (ai1, ai2, . . . , ain),

and the jth column by

A∗j =











a1j
a2j
...

amj











.

Special types of vectors:

• the ith standard unit vector ei = (0, . . . , 0, 1, 0, . . . , 0)T ,

• the vector of ones e = (1, . . . , 1)T .

Special types of matrices:

• A ∈ Rm×n (not necessarily square) is diagonal if aij = 0 for i 6= j. The square diagonal matrix with
entries v1, . . . , vn is denoted by diag(v).

• The identity matrix of size n is In = diag(e).

• A ∈ Rn×n is symmetric if AT = A.

• A ∈ Rn×n is orthogonal if ATA = In.

Inequalities >, ≥, . . . between vectors and between matrices are understood entrywise. For example,
A ≥ 0 means that all entries of A are nonnegative.

Determinants. THe determinant of a matrix A ∈ Rn×n is denoted by det(A) and we suppose that the
reader is familiar with the basic definitions and properties.

Let A ∈ Rn×n. Then

• a submatrix of A is obtained by removing arbitrary (possibly no) rows and columns from A,

• a principal submatrix of A is obtained by removing the same set of rows and columns from A

• a leading principal submatrix of A is obtained by removing the last k rows and columns from A
(0 ≤ k < n).

Notice that there are (2n − 1)2 nonempty submatrices and 2n − 1 principal submatrices of A, but only n
leading principal submatrices of A. Determinants of the various kinds of submatrices lead to the following
notion:

• a minor is the determinant of a square submatrix of A,

• a principal minor is the determinant of a principal submatrix of A,

• a leading principal minor is the determinant of a leading principal submatrix of A.
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The adjugate matrix of a matrix A ∈ Rn×n is the matrix adj(A) ∈ Rn×n defined entrywise as

adj(A)ij = (−1)i+j det(Aji), i, j = 1, . . . , n,

where Aji comes from A by removing its jth row and ith column. We always have

A adj(A) = det(A)In.

Provided A is nonsingular, it implies that A−1 = 1
det(A) adj(A).

Linear systems of equations and inverse matrices. Cramer’s rule gives an explicit formula for the
solution of a nonsingular system of linear equations. In the following, ei = (0, . . . , 0, 1, 0, . . . , 0)T denotes
the ith canonical vector, and the expression A+ (b−A∗i)eTi says that the ith column in A is replaced by
b.

Theorem 1.1 (Cramer’s rule). Let A ∈ Rn×n be nonsingular and b ∈ Rn. Then the linear system of
equations Ax = b has a unique solution and its entries are

xi =
det(A + (b−A∗i)eTi )

det(A)
, i = 1, . . . , n.

Theorem 1.2 (Sherman–Morrison formula). Let A ∈ Rn×n be nonsingular and b, c ∈ Rn. If cTA−1b =
−1, then A + bcT is singular, otherwise

(A + bcT )−1 = A−1 − 1

1 + cTA−1b
A−1bcTA−1.

Definition 1.3. The Moore–Penrose pseudoinverse of A ∈ Rm×n is a matrix A† ∈ Rn×m satisfying

(1) A = AA†A,

(2) A† = A†AA†,

(3) AA† is symmetric,

(4) A†A is symmetric.

Theorem 1.4. The Moore–Penrose pseudoinverse exists for every A ∈ Rm×n, is unique, and also satis-
fies, among others,

(1) A = A−1 when A is nonsingular,

(2) A† = (ATA)−1AT when A has linearly independent columns,

(3) A† = AT (AAT )−1 when A has linearly independent rows.

Norms. A vector norm is a function ‖ · ‖ : Rn → R satisfying for every α ∈ R and u, v ∈ Rn

1. ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,

2. ‖αv‖ = |α| · ‖v‖,

3. ‖u + v‖ ≤ ‖u‖ + ‖v‖.

The well-known examples of norms are

• the Euclidean norm: ‖v‖2 :=
√
vT v,

• the maximum norm: ‖v‖∞ := max(|v1|, . . . , |vn|),
• the Manhattan norm: ‖v‖1 :=

∑n
i=1 |vi|,

• the general p-norm with p ≥ 1: ‖v‖p := (
∑n

i=1 |vi|p)1/p.

A matrix norm is a function ‖ · ‖ : Rm×n → R satisfying for every α ∈ R and A,B ∈ Rm×n

1. ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0,
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2. ‖αA‖ = |α| · ‖A‖,

3. ‖A + B‖ ≤ ‖A‖ + ‖B‖,

4. ‖AB‖ ≤ ‖A‖ · ‖B‖.

Thus, a matrix norm is a vector norm on the linear space Rm×n with the additional consistency property 4.
An example of a matrix norm is

• the Frobenius norm: ‖A‖F :=
∑m

i=1

∑n
j=1 a

2
ij.

Another important matrix norms are those induced by a vector norm. Let ‖ · ‖ be a vector norm on Rn,
then the induced matrix norm is defined

‖A‖ := max
x:‖x||=1

‖Ax‖.

By considering the Euclidean, maximum and Manhattan vector norms, we obtain the induced matrix
norms

• ‖A‖2 = σ1(A), the maximal singular value,

• ‖A‖∞ = maxi=1,...,m
∑n

j=1 |aij|,
• ‖A‖1 = ‖AT ‖∞ = maxj=1,...,n

∑m
i=1 |aij |.

Subordinate matrix norms are consistent with the norms that induce them, giving rise to the useful
inequality

‖Av‖ ≤ ‖A‖ · ‖v‖.

Eigenvalues. Let A ∈ Rn×n. The eigenvalue of A is any λ ∈ C such that Ax = λx for some nonzero
x ∈ Rn. The vector x is called the eigenvector corresponding to λ. The spectral radius of A, denoted as
ρ(A), is the largest absolute value of all (even complex) eigenvalues of A. For each matrix norm we have
ρ(A) ≤ ‖A‖.

Theorem 1.5. Let A ∈ Rn×n, then ρ(A) ≤ ‖A‖ for any matrix norm.

Theorem 1.6. Let A ∈ Rn×n and ε > 0. Then there exists a matrix norm such that ρ(A) ≤ ‖A‖ ≤
ρ(A) + ε.

Theorem 1.7 (Perron–Frobenius). Let A ∈ Rn×n be nonnegative. Then ρ(A) is an eigenvalue of A and
the corresponding eigenvector is nonnegative.

Theorem 1.8. Let A,B ∈ Rn×n. If |A| ≤ B, then ρ(A) ≤ ρ(|A|) ≤ ρ(B).

Theorem 1.9. Let A ∈ Rn×n be nonnegative, x ∈ Rn positive and µ ∈ R. If Ax < µx, then ρ(A) < µ.

Theorem 1.10 (Neumann Series). Let A ∈ Rn×n, then the following are equivalent

(1) ρ(A) < 1,

(2) limk→∞Ak = 0,

(3) I + A + A2 + . . . converges.

In which case, (In −A)−1 =
∑∞

k=0A
k = I + A + A2 + . . .

Eigenvalues of symmetric matrices. If A is symmetric, then it has only real eigenvalues, so we may
suppose they are sorted non-increasingly

λ1(A) ≥ · · · ≥ λn(A).

Theorem 1.11 (Rayleigh–Ritz). For any symmetric matrix A ∈ Rn×n we have

λ1(A) = max
x:‖x‖2=1

xTAx, λn(A) = min
x:‖x‖2=1

xTAx.



13

Theorem 1.12 (Weyl). For any symmetric matrices B,C ∈ Rn×n we have

λi(B) + λn(C) ≤ λi(B + C) ≤ λi(B) + λ1(C), i = 1, . . . , n.

Theorem 1.13 (Bendixson). For any eigenvalue λ + iµ ∈ C of matrix A ∈ Rn×n we have

λn

(

1
2 (A + AT )

)

≤ λ ≤ λ1

(

1
2(A + AT )

)

,

λn

(

1
2i (A−AT )

)

≤ µ ≤ λ1

(

1
2i(A−AT )

)

.

Proof. See Marcus and Minc (1964); Stoer and Bulirsch (2002).

SVD decomposition and singular values. Each matrix A ∈ Rm×n can be decomposed as A = UΣV T ,
where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ ∈ Rm×n is diagonal with nonnegative entries. This
decomposition is called SVD decomposition (singular value decomposition) and the diagonal entries of Σ
are called singular values. They can be sorted as σ1 ≥ · · · ≥ σn ≥ 0, where the number of positive singular
values is equal to the rank of A. The largest singular value σ1 provides the value of the matrix 2-norm
(spectral norm) and the smallest singular value σn provides the distance of A to the nearest singular
matrix in 2-norm (provided A is square).

Theorem 1.14 (Relation of eigenvalues and singular values). Let A ∈ Rm×n with singular values
σ1, . . . , σn. Then

(1) matrix ATA has eigenvalues σ2
1 , . . . , σ

2
n;

(2) matrix
(

0 A
AT 0

)

has eigenvalues ±σ1, . . . ,±σn and the others are zero.

Positive (semi)definiteness. Let A ∈ Rn×n be symmetric. The matrix A is called positive semidefinite
if xTAx ≥ 0 for each x ∈ Rn. The matrix A is called positive definite if xTAx > 0 for each nonzero
x ∈ Rn. Equivalent characterizations follow.

Theorem 1.15. Let A ∈ Rn×n be symmetric. The following are equivalent:

(1) A is positive semidefinite,

(2) A has nonnegative eigenvalues,

(3) A can be expressed as A = BBT for a certain matrix B,

(4) all principal minors of A are nonnegative.

Theorem 1.16. Let A ∈ Rn×n be symmetric. The following are equivalent:

(1) A is positive definite,

(2) A has positive eigenvalues,

(3) A can be expressed as A = BBT for a certain nonsingular matrix B,

(4) all leading principal minors of A are positive.

Moreover, a symmetric matrix A ∈ Rn×n is positive definite if and only if it can be factorized as
A = LLT , where L ∈ Rn×n is lower triangular with positive diagonal entries. This is called Cholesky
decomposition and L is uniquely determined.

Special matrices.

Definition 1.17. A matrix A ∈ Rn×n is called an M-matrix, if aij ≤ 0 for i 6= j and A−1 ≥ 0.

Theorem 1.18. Let A ∈ Rn×n be such that aij ≤ 0 for i 6= j. Then the following are equivalent:

(1) A is an M-matrix,

(2) there is v > 0 such that Av > 0,

(3) A−1e > 0,

(4) there is a splitting A = M −N , where N ≥ 0, M−1 ≥ 0 and ρ(M−1N) < 1,
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(5) each splitting A = M −N , where N ≥ 0, M−1 ≥ 0 satisfies ρ(M−1N) < 1,

(6) all principal leading minors of A are positive,

(7) the real part of all eigenvalues of A is positive,

(8) the real eigenvalues of A are positive.

Theorem 1.19. Let A ∈ Rn×n be nonnegative. Now, ρ(A) < 1 if and only if (In −A)−1 ≥ 0.

Proof. “⇒” By Theorem 1.10, (In −A)−1 =
∑∞

k=0A
k ≥ 0.

“⇐” By Definition 1.17, In −A is an M-matrix, and by Theorem 1.18(5), ρ(A) < 1.

Definition 1.20. A matrix A ∈ Rn×n is called an H-matrix, if the so-called comparison matrix 〈A〉 is
an M-matrix, where 〈A〉ii = |aii| and 〈A〉ij = −|aij| for i 6= j.

Obviously, each M-matrix is an H-matrix. Further, each H-matrix is nonsingular.

Definition 1.21. A matrix A ∈ Rn×n is called a P-matrix, if every principal minor is positive.

There are 2n−1 principal minors of A, which is hard to overcome and it makes the problem of checking
P-property to be computationally expensive (Coxson, 1994). Nevertheless, as long as A is symmetric, P-
property is equivalent to positive definiteness, and thus easily checked. P-matrices arises in the theory
of linear complementarity problems providing existence and uniqueness of solutions (Cottle et al., 2009;
Murty and Yu, 1997). Efficiently recognizable subclasses of P-matrices are positive definite matrices, M-
matrices, H-matrices with positive diagonal entries and totally positive matrices.

Calculus

Let f : Rn → R. By f ′
xi

(x) we denote the partial derivative of f with respect to xi, and by ∇f(x) :=
(f ′

x1
(x), . . . , f ′

xn
(x))T the gradient of f : Rn → R. The Jacobian of a vector valued function f : Rn → Rn

is denoted by ∇f(x), too; its ith row is formed by the gradient of the ith function fi(x). The Hessian of

f is denoted by ∇2f(x), so (∇2f(x))ij = ∂2f
∂xi∂xj

(x).

The following results are found, e.g., in Petersen and Pedersen (2012); Rudin (1987).

Theorem 1.22 (Mean value theorem for single-valued functions). Let f : R → R be continuous on [a, b]
and differentiable on (a, b). Now, there is c ∈ (a, b) such that f(b) − f(a) = f ′(c)(b− a).

Theorem 1.23 (Mean value theorem for vector-valued functions). Let U ⊆ Rn be an open set and
f : Rn → R differentiable on U . For any a, b ∈ U there is c on the line segment connecting them such that
f(b) − f(a) = ∇f(c)T (b− a).

Theorem 1.24 (Taylor’s theorem). Let f : R → R be m+ 1 times differentiable on (a, x) and continuous
on [a, x]. For each x ∈ Rn there is c ∈ (a, x) such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · +

f (m)(a)

m!
(x− a)m +

f (m+1)(c)

(m + 1)!
(x− a)m+1.

Theorem 1.25. Let A ∈ Rn×n nonsingular, b ∈ Rn and x∗ the solution of Ax = b. Then

(1)
∂(A−1)kℓ

∂aij
= −(A−1)ki(A

−1)jℓ,

(2)
∂xk
∂aij

= −(A−1)kix
∗
j ,

∂xk
∂bi

= (A−1)ki.

Convexity. A set M ⊆ Rn is convex if for each x1, x2 ∈ M and for each λ1, λ2 ≥ 0, λ1 + λ2 = 1, we
have λ1x1 +λ2x2 ∈ M. A convex hull of a set M ⊆ Rn is the smallest convex set containing M, or more
formally,

conv M = ∩{S; M ⊆ S and S is convex}.
Let M ⊆ Rn be convex. Then a function f : M → R is called convex on M if for each x1, x2 ∈ M and
each λ1, λ2 ≥ 0, λ1 + λ2 = 1, we have

f(λ1x1 + λ2x2) ≤ λ1f(x1) + λ2f(x2).
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Figure 1.1: Local and global minima.

Topology

Theorem 1.26 (Brouwer’s fixed-point theorem). Let U ⊆ Rn be a convex compact set and f : U → U
continuous. There is x ∈ U such that f(x) = x.

Theorem 1.27. Let v ∈ Rn and U, V ∈ Rn×n such that ρ(UV ) < 1. Then the iterations

x 7→ O(x) := U(v + V x)

converge to a unique fixed point for any initial vector.

Proof. For any x, y ∈ Rn, any sufficiently small ε > 0 and any matrix norm from Theorem 1.6, we have

‖O(x) −O(y)‖ = ‖UV (x− y)‖ ≤ ‖UV ‖ · ‖x− y‖ ≤ (ρ(UV ) + ε)‖x− y‖ < ‖x− y‖.

That is, the mapping O(x) is a contraction, and for any initial vector, the iterations converge to the fixed
point x = (In − UV )−1Uv.

Optimization

An optimization problem reads (Bazaraa et al., 2006; Nocedal and Wright, 2006)

min f(x) subject to x ∈ M,

where f : Rn → R is the objective function and M ⊆ Rn is the feasible set. We consider just minimization
problems since a maximization problem is transformed to a minimization problem by maxx∈M f(x) =
−minx∈M −f(x).

The goal is to find a global minimum, which is a feasible point x∗ ∈ M such that f(x∗) ≤ f(x) for
every x ∈ M . There can be multiple minima, for example, the sine function has infinitely many minima
on the real line. It may also happen that there is no minimum, that is, the minimal value of objective
function f(x) on M is not attained. Consider, for example, the problem minx∈R x, which is unbounded
from below, or the problem minx∈R ex, which is bounded from below.

Global minima are hard to compute and many solver get stuck in local minima. A point x∗ ∈ M is
a local minimum if there is ε > 0 such that f(x∗) ≤ f(x) for every x ∈ M ∩ Nε(x∗), where Nε(x∗) =
{x; ‖x− x∗‖ ≤ ε} is a neigborhood of x∗.

Linear programming

Linear programming is the class of optimization problems, where the feasible set is described by linear
constraints and the objective function is linear as well. There are many books on linear programming,
including Padberg (1999); Schrijver (1998).
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M

A1∗x = b1 A2∗x = b2

A3∗x = b3

A4∗x = b4

v

Figure 1.2: A convex polyhedron M as the intersection of four half-spaces.

Convex polyhedra. Let A ∈ Rm×n and b ∈ Rm. The set M described by the system of linear inequalities
Ax ≤ b is called a convex polyhedron. Geometrically, it is an intersection of half-spaces; one inequality
determines a half-space, and a system of inequalities corresponds to the intersection of the particular
half-spaces. Concretely, if Ai∗ 6= 0, then the ith inequality Ai∗x ≤ bi describes a half-space in Rn and Ai∗
is the normal vector, which is perpendicular to the half-space. Thus a convex polyhedron constitutes an
intersection of half-spaces; see Figure 1.2 provides an illustration.

A face of a convex polyhedron M described by Ax ≤ b is a nonempty set described by the system
Ax ≤ b, in which some of the inequalities are replaced by equations. One-dimensional face is an edge and
0-dimensional face is a vertex . The active set of a feasible point x∗ ∈ M is the index set of inequalities
that are satisfied as equations for x∗. For example, the active set of the vertex v is {1, 3} in Figure 1.2.
The active set of an interior point of M is empty.

The Minkowski–Weyl theorem claims that any bounded convex polyhedron M can be equivalently
represented as the convex hull of its vertices. Thus we have two alternative representations of a convex
polyhedron – by a system of linear inequalities or by a list of vertices.

LP problem in equality form. Linear programming problems seek for a point of a convex polyhedral
set that attains the minimal (or maximal) value of a linear function. An LP problem in equality form
reads

min cTx subject to Ax = b, x ≥ 0, (P)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. We assume without loss of generality that m ≤ n.

A vector x ∈ Rn is called a feasible solution if it satisfies the constraints, that is, if Ax = b, x ≥ 0.
If there exists at least one feasible, then the LP problem is feasible; otherwise it is infeasible. A feasible
solution x∗ ∈ Rn is optimal if cTx∗ ≤ cTx for each feasible solution x. If x∗ is an optimal solution, then
cTx∗ is the optimal value.

For an index set B ⊆ {1, . . . , n}, we denote by AB the restriction of A to the columns indexed by B.
We say that B is a basis if it has cardinality m and AB is nonsingular. A basis B is feasible if A−1

B b ≥ 0.

Geometrically, the feasible set Ax = b, x ≥ 0 describes a convex polyhedral set in Rn. For each
feasible basis B, there is associated a basic solution x with entries xB = A−1

B b and xN = 0, where
N := {1, . . . , n} \ B. The corresponding objective value is cTx = cTBxB = cTBA

−1
B b. Each basic solution

geometrically forms a vertex of the feasible set, but it is not unique – one vertex can sometimes be
represented by basic solutions with mutually different bases. A basis is called optimal if the associated
solution is optimal. The well-known simplex method for s olving LP problems is based on moving from
one feasible basis to another until an optimal one is reached; one step corresponds to a change of the
current basis to a neighboring one having one basic index changed.

Theorem 1.28. For a given LP problem, exactly one of the following three possibilities occurs

(1) the problem is infeasible (there is no feasible solution),

(2) the problem is optimal (there is an optimal solution),

(3) the problem is unbounded (for each γ ∈ R, there is a feasible x such that cTx ≤ γ).
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By convention, the optimal value of the linear program is ∞ in the first case. In the second case, it
is a real value, and in the third case, it is −∞. We use this convention generically: the minimum value
of an infeasible problem is ∞ and an unbounded problem has the optimal value −∞. Analogously for a
maximization problem.

Theorem 1.29 (Optimality criterion). Let B be a feasible basis. Then B is an optimal basis if and only
if cTN − cTBA

−1
B AN ≥ 0T .

Moreover, if cTN − cTBA
−1
B AN > 0T , then the corresponding optimal solution is unique.

Duality. From now on, we will call (P) to be the primal problem. The dual problem associated with it
is the LP problem

max bT y subject to AT y ≤ c. (D)

Theorem 1.30 (Weak duality). Let x and y be feasible solutions of (P) and (D), respectively. Then
cTx ≥ bT y.

Moreover, if cTx = bT y, then x and y are optimal.

As long as cTx ≤ bT y for some primal and dual feasible x and y, then they are optimal as well because
cTx < bT y cannot happen.

Corollary 1.31. We have:

(1) If (P) is unbounded, then (D) is infeasible.

(2) If (D) is unbounded, then (P) is infeasible.

(3) Let (P) be feasible. Then (P) is unbounded if and only if (D) is infeasible.

(4) Let (D) be feasible. Then (D) is unbounded if and only if (P) is infeasible.

Notice that it may happen that both (P) and (D) are infeasible. Consider, for instance, the one-
dimensional LP problem

min − x subject to 0x = 1, x ≥ 0.

Theorem 1.32 (Strong duality). The following are equivalent:

(1) (P) has an optimal solution,

(2) (D) has an optimal solution,

(3) both (P) and (D) are feasible.

If any of the above holds, then (P) and (D) have the same optimal value.

Other forms of LP problems. The feasible set can be described not only by the system Ax = b,
x ≥ 0, but also by systems of other type. Two other canonical forms that are used are:

min cTx subject to Ax ≤ b,

min cTx subject to Ax ≤ b, x ≥ 0.

All these forms are mutually transformable to each other. That is why usually the LP theory is derived
for one of the canonical forms.

The duals of the above LP forms are, respectively,

max bTx subject to AT y = c, y ≤ 0,

max bTx subject to AT y ≤ c, y ≤ 0.
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Farkas’ lemma. It is a very useful technique that transforms a solvable linear system into an unsolvable
one and vice versa. We state its versions for linear systems of various types. They are mutually trans-
formable to each other; the only exception is the second one, which deals with a simple system of linear
equations. Notice also that the counterpart systems can be expressed in a slightly different form. For
instance, ATu ≥ 0, bTu ≤ −1 is equivalent to the system ATu ≥ 0, bTu < 0 with respect to solvability.

Theorem 1.33 (Farkas’ lemma). Let A ∈ Rm×n and b ∈ Rm. Then we have

(1) Ax = b, x ≥ 0 is solvable iff ATu ≥ 0, bTu ≤ −1 is not solvable,

(2) Ax = b is solvable iff ATu = 0, bTu ≤ −1 is not solvable,

(3) Ax ≤ b, x ≥ 0 is solvable iff ATu ≥ 0, bTu ≤ −1, u ≥ 0 is not solvable,

(4) Ax ≤ b is solvable iff ATu = 0, bTu ≤ −1, u ≥ 0 is not solvable.

For our purposes, it is convenient to formulate Farkas’ lemma for a general system of mix linear
equations and inequalities.

Corollary 1.34. Exactly one of the linear systems

Ax + By = b, Cx + Dy ≤ d, x ≥ 0 (1.1)

and

ATu + CTv ≥ 0, BTu + DT v = 0, bTu + dT v ≤ −1, v ≥ 0, (1.2)

is solvable.

Proof. Rewriting (1.1) into the inequality form

Ax + By ≤ b, −Ax−By ≤ −b, Cx + Dy ≤ d, −x ≤ 0,

and calling Theorem 1.33(4), we obtain the alternative system

ATu1 −ATu2 + CT v − w = 0,

BTu1 −BTu2 + DT v = 0,

bTu1 − bTu2 + dT v ≤ −1, u1, u2, v, w ≥ 0.

Substituting u := u1 − u2 and eliminating w, we get (1.2).

Degeneracy. In the LP problem (P), a basic solution x corresponding to the basis B is (primal) degen-
erate if some of its basic entries vanish, that is, there is one or more zeros in the vector A−1

B b. The basic
solution is dual degenerate if there is at least one zero in the vector cTB − cTBA

−1
B AN .

Primal degeneracy is usually caused by the situation when there is a solution corresponding to several
bases; for an illustration, consider a peak of a pyramid.

Dual degeneracy means that there is an edge of the feasible polyhedron that is perpendicular to
the objective vector c, which implies that moving along this edge does not change the objective value.
Therefore, if an optimal basic solution x∗ is dual nondegenerate, then the optimal solution is unique.

Algorithms. One of the first practically usable algorithms for solving linear programming problems was
the simplex method by Dantzig (1963). However, the method may take exponential number of steps.
The provably polynomial time algorithms are the ellipsoid method by Khachiyan (1979), which is mostly
of theoretical importance, and various types of interior point methods; see Padberg (1999); Roos et al.
(2006); Schrijver (1998).
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Computational complexity

Running time is an important aspect of each algorithm. We often measure it by the number of instructions
(assignments, arithmetic operations, etc.), but from the theoretical viewpoint, we will measure it by the
number of operations on an abstract Turing machine. This is a substantially different model since, for
instance, the Gaussian elimination of a matrix of size n takes an order of n3 arithmetic operations, but
the number of bit operations depends on the concrete entries. It is still polynomial with respect to the
input size, but the proof is not straightforward as the values might increase exponentially during the
elimination.

An algorithm is called polynomial if it takes a polynomial number of operations with respect to the
input size. A problem is polynomial if there is a polynomial algorithm for it.

A decision problem, answering “yes” or “no”, belongs to the class P if it is a polynomial problem.
It belongs to the class NP if there is a nondeterministic polynomial algorithm for it. That is, informally
speaking, whenever we have a choice of several branches, we choose the right one. Precise definition
and more on computational complexity is given, e.g., in Papadimitriou (1994). The class co-NP consists
of problems whose negative is in NP. The hardest problems in the class NP are called NP-complete,
and similarly for co-NP. Formally, a problem P is NP-complete if it is in NP and it is NP-hard, where
NP-hardness means that every problem P ′ in NP can be polynomially reduced to this one (i.e., we can
answer P ′ be solving a specific instance or instances of P and the transformation takes a polynomial
number of operations). An example of a polynomial problem is checking solvability of linear equations
and inequalities over rationals (Schrijver, 1998), an example of an NP-complete problem is checking
satisfiability of a Boolean formula, and determining whether a given Boolean formula is a tautology is an
co-NP-complete problem.

A problem in NP can be solved by a deterministic algorithm, but the computational time may increase
exponentially. The question whether it can be done polynomially, that is, whether P = NP, is one of the
most challenging open problems in computer science. All known algorithms for NP-hard problems have
exponential complexity in the worst case.

When we talk about NP-completeness of non-decision problems, we mean their decision formulation
analogy. For instance, the optimization problems minx∈M f(x) are formulated as decision problems ∃x ∈
M : f(x) ≤ c for a parameter c ∈ Q. Thus, linear programming is polynomial, while Travelling salesman
problem is NP-complete.

An ε-approximation algorithm of an optimization problem minx∈M f(x) finds x∗ ∈ M such that
|f(x∗) − f∗| ≤ ε · max{|f(x∗)|, |f∗|}, where f∗ := minx∈M f(x) is the optimal value and ε > 0 is a given
parameter.

Not only there exist problems that cannot be solved effectively, there are problems that cannot be
solved at all! Such problems are called undecidable, and it can be mathematically proved that there is no
algorithm (running on a Turing machine) to solve them. The prototype example is the halting problem,
which should decide whether a given algorithm finishes computation on given input data. Another example
is Hilbert’s tenth problem of deciding whether a multivariable polynomial equation has a solution in
integers, or the mortal matrix problem of determining whether a given finite collection of matrices can
be multiplied (with repetition) in some order to yield the zero matrix.

Working example of an NP-complete problem. The fundamental NP-complete problem that we
will employ in the book is the following by (Rohn, 2006a, Thm. 2.3), and also a variant by Hlad́ık (2012b).

Theorem 1.35 (Rohn, 2006a). Checking solvability of

−e ≤ Ax ≤ e, eT |x| ≥ 1 (1.3)

is NP-complete in the set of non-negative positive definite rational matrices.

Theorem 1.36. Checking solvability of

−e ≤ Ax ≤ e, eT |x| > 1 (1.4)

is NP-complete in the set of non-negative positive definite rational matrices.
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P-completeness. In some sense, P-complete problems are the hardest problems in class P. Formally,
a problem is P-complete if it lies in class P and and every problem in P can be reduced to it. When
we consider NC-reduction, we require that it works in polylogarithmic time on a parallel computer with
a polynomial number of processors. Even though P-complete problems are efficiently solvable, they are
hard to parallelize, to solve in a limited space, and one also cannot hope for having a simple closed form
expression for solving the problem.

An example of a P-complete problem is a linear program and its decision formulations, for example,
checking solvability of a linear system Ax = b, x ≥ 0. It is a challenging open problem in computational
complexity theory whether P-complete problems form a strict subset of P.



Chapter 2

Introduction

Interval analysis, roughly speaking, is concerned with interval-valued problems. We first motivate the
reader and show that interval data naturally appear in many different fields. Then, we remind some well-
known results and introduce interval and non-interval notation used throughout the book. As a first step,
we define the basic operations on intervals (interval arithmetic) and discuss some properties. Evaluation
of general functions on intervals is considered as one of the fundamental problems – we give only an
introductory insight, and study it more thoroughly in chapter 6.

2.1 Why intervals?

There are many scientific areas, where intervals naturally appear. They can be categorized into several
classes according to their main purpose

• to deal with rounding errors

• to process a set of states

• to model uncertainty

2.1.1 Numerical issues – roundings in floating point arithmetic

Roundings can make problems – even small value changes in numerical calculations may have a large
effect on the resulting value, as the following example illustrates.

Example 2.1. Consider the famous example by Rump (1994, 2010)

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
,

with a = 77617 and b = 33096. The true value is f = a
2b − 2 = −0.827386 . . . In single, double and

extended precision, the calculations from 80s gave

single precision f ≈ 1.172603 . . .

double precision f ≈ 1.1726039400531 . . .

extended precision f ≈ 1.172603940053178 . . .

The same behavior is observable for the expression in the form

f = 21 · b · b− 2 · a · a + 55 · b · b · b · b− 10 · a · a · b · b +
a

2b
,

As another Rump’s example Hyvönen and De Pascale (1996), let

a := 10864, b := 18817, c := 9a4 − b4 + 2b2.

The exact value of c is 1, but evaluation in floating point arithmetic usually yields c = 2.

In some cases, instable expressions can be stabilized, e.g.,
√
x + 1 −√

x is not stable for large x, but
the equivalent expression

√
x + 1 − √

x = 1√
x+1+

√
x

is stable. Nevertheless, such a rearrangement is not

always possible.

21
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Representation of non-representable values

Another problem with floating point arithmetic is that many values cannot be represented exactly. One
way out of it is to enclose these values into intervals the endpoints of which are representable, e.g.,

√
2 ∈ [1.4142135623730950488, 1.4142135623730950489],

π ∈ [3.1415926535897932384, 3.1415926535897932385].

This represents the values indirectly, but with mathematical and numerical rigor – the values lie somewhere
in the respective intervals.

Disasters

For maybe a more convincing and impressive real world problems caused by round-off errors see

http://www.math.psu.edu/dna/disasters

Some of such disasters are:

• The Patriot Missile failure

This happened on February 25, 1991, during the Gulf
War. The American Patriot Missile battery in Dharan,
Saudi Arabia, inaccurately calculated the time – one
hundred hours of being up, a small rounding error of
the binary representation of 1

10 expanded to 0.34 sec-
onds. As a consequence, the battery failed to intercept
an incoming Iraqi Scud missile, which killed 28 soldiers.

[source: Wikimedia Commons,
File:Patriot missile launch b.jpg]

• The sinking of the Sleipner A offshore platform

The Sleipner A platform producing oil and gas in the North Sea in Gandsfjorden, Norway, sprang a
leak and needed to be sunk under a controlled operation on 23 August, 1991. The loss was caused
by a failure in a cell wall, which was a result of an inaccurate finite element approximation of the
linear elastic model – the shear stresses were underestimated by 47%.

• The explosion of the Ariane 5 rocket

On 4 June, 1996, the flight of the Ariane 5 launcher exploded just 40 seconds after its lift-off from
Kourou, French Guiana. The damage was evaluated at $500 million. The failure was caused by an
overflow when converting a 64-bit floating point number to a 16-bit signed integer value.

Computer-assisted proofs

Some mathematical proofs were carried out with the aid of computers. Employing interval arithmetic
here is necessary to obtain verified results. Thus, if the software and hardware work according to the
specifications, we can be sure that the results are mathematically correct. Interval analysis was utilized
in proving the famous theorems and long-standing conjectures (Frommer, 2001; Neumaier, 2007) such as
those below. Due to its discrete mathematical nature, the proof of the famous four color theorem avoids
interval computation.

http://www.math.psu.edu/dna/disasters
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• Kepler conjecture

A long-standing conjecture addressing what is the
the densest packing of equally sized balls. It dates
back to Johannes Kepler (1611), and was also stated
as Hilbert’s 18th problem. The conjecture claimed
that the face-centered cubic packing, which is de-
picted in the figure (it is the way how greengrocers
stack oranges), is the optimal one. Another optimal
packing is the so-called hexagonal close packing, both
having the density of π/(3

√
2) ≈ 74.048%.

The conjecture was proved by Hales (2005). In a part
of the original proof, one needs to classify about 5000 graphs by a scoring function, and the scores
must not exceed a value of 8. Interval computations numerically verified this upper bound, which
was indeed approached by a score ≈ 7.9997.

• Double bubble

[source: Wikimedia Commons,
File:Double bubble.png]

The double bubble problem asks what is the mini-
mal surface of two given volumes. It was conjectured
that the double bubble is made up by two pieces of
spheres, meeting at an angle of 120◦, and which are
separated by a spherical surface.

Hass and Schlafly (2000) proved the special case of
two equally sized volumes by first showing that the
minimal surface is made up by piecewise smooth sur-
faces, and then by showing optimality of the double
bubble. Interval computation played an important role in verifying that certain value ranges of
surface curvatures and meeting angles contain no optimal solution. Hutchings et al. (2002) proved
the general case.

• Goldbach’s weak conjecture

It states that every odd number greater than 5 can be expressed as the sum of three primes.
(Repetition of primes possible.)

The conjecture was proved by Helfgott (2014). It used interval-arithmetic packages for rigorous
calculations, verifying the conjecture for odd numbers up to about 1028. For larger numbers, the
proof went by using estimation techniques from analytic number theory.

• The Dirac–Schwinger conjecture

This conjecture gives an asymptotic characterization of the ground-state energy of an atom in the
quantum mechanical model. The role of interval computation was to rigorously enclose the solution
of a specific ODE, and to verify an inequality related to the minimal energy property.

• There are also applications of interval computation in dynamical systems related to chaos theory,
for instance, proving the number of digits of some constants appearing there.

Computing a desired accuracy of Newton’s constant of gravitation is discussed in Holzmann et al.
(1996).

For related results see, e.g., Einarsson (2005); Meyer and Schmidt (1991).

2.1.2 Processing a set of states

Constraint programming and global optimization are the typical fields in which wide intervals are dealt
with. We seek for an (optimal) solution of a set of constraints inside given ranges, so the intervals here
represent the area to be completely processed.
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• Constraint programming

In constraint programming with continuous domains, interval analysis is utilized to shrink the
domains, to remove interval boxes that contain no solution, and to prove in a given box there is a
unique solution. As a result, we have a set of boxes, and each solution is guaranteed to lie in one of
them. More in Section 8.1.

• Global optimization

Interval approach to global optimization follows a basis branch & bound scheme. For each box, we
can calculate lower and upper bound on the optimal value, which enables to remove the idle boxes.
Moreover, constraint programming can be used to further process boxes. Again, this approach gives
us guaranteed enclosures for global optima. More in Section 8.3.

Next, intervals are useful for calculating verified error bounds of various approximations.

• visualization of three dimensional surfaces (Stolte and Kaufman, 1998)

2.1.3 Modelling uncertainty by intervals

• Mass number of ten elements

In December 2010, the International Union of Pure and Applied Chemistry decided to state the
mass numbers of ten chemical elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, silicon,
sulfur, chlorine and thallium) as intervals; for instance, the carbon has the mass interval number
[12.0096, 12.0116]. It is not due to inaccuracy of measurement, but because there are several stable
isotopes (the other elements have just one stable isotope). So far, there were considered average
values, which turned out to be insufficient for reliable computations.

See also Wieser et al. (2013).

• Physical constants

Concerning gravitational acceleration, at different points on Earth, it ranges in about [9.78, 9.82]ms−2.
For example, Jakarta has 9.781ms−2 and Oslo has 9.819ms−2. Therefore, computing with the stan-
dardized value of 9.80665ms−2 may yield misleading results.

• Robotics (Interval methods help a robot succeed, 1996)

The team of the University of Texas at El Paso succeeded in the International AAAI 1996 and 1997
Robot Competitions (the third and the first place, respectively). In AAAI 1996, robots had to deal
with uncertainty in both sensors and actuators, and the robot designed by the team beaten the
traditional statistical approach based robots by using the interval methods.

Notes and further reading. In his book, Bridger (2019) constructs the real numbers using intervals of
rational numbers and interval arithmetic. The analogy to scientific measurement with known accuracy is
particularly appealing for computer scientists. A justification of using intervals for modelling uncertainty
is provided in Kreinovich (1995, 2007).

2.2 Getting started with intervals

Intervals. Not surprisingly, a real interval is defined as a set

a := [a, a] = {a; a ≤ a ≤ a},

where the left and right endpoints a, a ∈ R ∪ {−∞,∞} are given. We will often use the notion of the
midpoint and the radius of a, defined respectively, as

ac :=
1

2
(a + a), a∆ :=

1

2
(a− a).

http://www.cs.utep.edu/interval-comp/honors.html
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By definition, we also allow infinite values as the interval endpoints . An bounded interval can be defined
also by its midpoint and radius

a = [ac − a∆, ac + a∆] = {a ∈ R; |a− ac| ≤ a∆}.

We sometimes use the left and right endpoints, midpoint and radius as functions with an interval argument

inf(a) := a = ac − a∆, mid(a) := ac =
1

2
(a + a),

sup(a) := a = ac + a∆, rad(a) := a∆ =
1

2
(a− a).

When a∆ = 0, then the interval a consists of one real; we call such an interval point (or degenerate).
Likewise, we will associate any real value a ∈ R with an interval a = [a, a].

The magnitude (the largest absolute value) and the mignitude1) (the smallest absolute value) of a are
defined as follows

mag(a) := max {|a|; a ∈ a} = max(|a|, |a|) = |ac| + a∆,

mig(a) := min {|a|; a ∈ a} =

{

0 if 0 ∈ a,

min(|a|, |a|) otherwise.

We will employ the following relation on intervals:2)

a ≤ b ⇔ a ≤ b ⇔ ∀a ∈ a ∀b ∈ b : a ≤ b,

a < b ⇔ a < b ⇔ ∀a ∈ a ∀b ∈ b : a < b.

Inclusion between intervals can be easily characterized as

a ⊆ b ⇔ b ≤ a ≤ a ≤ b ⇔ |ac − bc| ≤ b∆ − a∆. (2.1)

The set of all real intervals is denoted by IR. Further set properties of intervals are listed in Table A.1 in
the appendix.

Interval vectors. We use similar notation for interval vectors. Let v, v ∈ Rn such that v ≤ v entrywise.
An interval vector is the set

v := [v, v] = {v ∈ Rn; v ≤ v ≤ v}.
We extend the notation of the midpoint and radius to the vectors

vc :=
1

2
(v + v), v∆ :=

1

2
(v − v).

The set of all interval vectors of size n is denoted by IRn.
Interval vectors are sometimes also called as boxes because geometrically they represent rectangular

parallelepipeds in space Rn.
Since we work with intervals, it is often useful to intervalize non-interval sets. Let a set S ⊂ Rn be a

given bounded set, the interval hull �S of S is the smallest interval vector containing S, that is,

�S :=
⋂

v∈IRn: S⊆v

v.

As we will see later, determining the interval hull is often a computationally hard problem, and we
focus more on computing an enclosure instead. An enclosure of a bounded set S ⊂ Rn is any interval
vector v ∈ IRn of such that S ⊆ v; see Figure 2.1. Naturally, one seeks for as small as possible enclosures.

1)Introduced by Neumaier (1984).
2)Other relations and orders on intervals exist, too; see Zapata et al. (2013)
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S �S enclosure of S

Figure 2.1: An enclosure and the interval hull of a set S.

Interval matrices. Interval matrices generalize intervals and interval vectors and the notation is anal-
ogous. An interval matrix is the family of matrices

A := [A,A] = {A ∈ Rm×n; A ≤ A ≤ A},
where A,A ∈ Rm×n are given. The inequality ≤ for matrices and vectors is understood entrywise through-
out this book. The corresponding midpoint and radius matrices are

Ac :=
1

2
(A + A), A∆ :=

1

2
(A−A).

The set of all interval matrices of size m × n is denoted by IRm×n. An interval matrix with zero radius
is called point.

We associate an interval matrix with a matrix with interval entries (and similarly for interval vectors).
Thus, the (i, j)th entry of an interval matrix A is the interval aij = [aij, aij]. For example, we can write

A =

(

[1, 2] 3 [4, 5]
6 [7, 8] 9

)

,

for which a12 = 3 and a13 = [4, 5], for instance.

Interval norms and other functions. The magnitude and mignitude of an interval matrix A ∈ IRn×n

are applied entrywise, that is, mag(A) ∈ IRn×n and mag(A)ij = mag(aij) for all i, j; analogously for
the mignitude. The comparison matrix is extended to the interval matrix input A ∈ IRn×n as follows:
〈A〉ii = mig(aii) and 〈A〉ij = −mag(aij) for i 6= j.

The norm of an interval vector x ∈ IRn or an interval matrix A ∈ IRm×n is defined (as opposed to
other functions) as the maximal norm over all realizations, so

‖x‖ := max
x∈x

‖x‖,

‖A‖ := max
A∈A

‖A‖.

Vector norms are easily computable by reduction to the real case,

‖x‖1 = ‖mag(x)‖1, ‖x‖2 = ‖mag(x)‖2, ‖x‖∞ = ‖mag(x)‖∞.

Most of the matrix norms are also easily reducible,

‖A‖F = ‖mag(A)‖F , ‖A‖1 = ‖mag(A)‖1, ‖A‖∞ = ‖mag(A)‖∞.

On the other hand, computing ‖A‖2 is an NP-hard problem (Nemirovskii, 1993).
The spectral radius of an interval matrix A ∈ IRn×n is also defined as the largest possible value

ρ(A) := max
A∈A

ρ(A).
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Matrices Ayz and vectors by. In the theory of interval matrices, there often appear matrices of the
special form. Let A ∈ IRn×n, y, z ∈ [−1, 1]n and denote

Ay,z := Ac − diag(y)A∆ diag(z). (2.2)

In the same fashion, we define

by := bc + diag(y)b∆. (2.3)

It is easy to see that Ayz ∈ A, but not every matrix from A has this form. Similarly for by ∈ b. The
reason why there is a subtraction in the definition of Ay,z and addition in by is that usually Ay,z stays on
the left-hand side of a linear system, while by stays on the right-hand side.

Observation 2.2. Ayz ∈ A.

Proof. We show that |Ayz −Ac| ≤ A∆:

|Ayz −Ac| = |Ac − diag(y)A∆ diag(z) −Ac| ≤ |diag(y)|A∆|diag(z)| = InA
∆In = A∆.

Notice that if y, z ∈ {±1}n, then (Ayz)ij ∈ {aij, aij}, but not conversely. There are 2n
2

so-called vertex
matrices that have the property that aij ∈ {aij , aij}, however, only 22n of them has the form of Ayz for
certain y, z ∈ {±1}n.

Example 2.3. If y = e and z = e, then Ayz = A. If y = −e and z = e, then Ayz = A. However, the
matrix

(

a11 a12
a21 a22

)

can be written in the form Ayz for no y, z ∈ {±1}2.

Symmetric interval matrices. In some situations, symmetric interval matrices appear. When A ∈
IRn×n, then the corresponding symmetric interval matrix is defined as AS := {A ∈ A; A = AT }. Thus,
it consists of the symmetric matrices from A. Without loss of generality we assume that A and A (and
also Ac and A∆) are symmetric; otherwise we can shrink intervals in A without losing any symmetric
matrix. (We will need this assumption, e.g., in a characterization of positive definiteness.)

Notice that a symmetric interval matrix is not an interval matrix by definition!

Range of a function. One of the fundamental problems in interval analysis is computation the range of
functions over intervals. For simplicity, consider a single-valued real function f : Rn → R and an interval
vector x ∈ IRn. The range of f over x is defined as

f(x) := {f(x); x ∈ x}. (2.4)

As long as f is continuous, its range f(x) is a compact interval. In general, however, the range f(x)
need not be an interval, and also determining �f(x) can be computationally demanding. Fortunately,
for continuous and monotone functions, the range is easy to determine. If f is non-decreasing on x ∈ IR,
then f(x) = [f(x), f(x)] and likewise for non-increasing functions or piecewise monotone functions. Thus
we have, for example,

• exp(x) = [exp(x), exp(x)],

• sin(x) = [sin(x), sin(x)] provided x ⊆ [−π
2 ,

π
2 ],

• 1
x+1 = [ 1

x+1 ,
1

x+1 ] provided x > −1,

• x2 = [min(x2, x2),max(x2, x2)] provided 0 6∈ x, and x2 = [0,max(x2, x2)] otherwise.

Another simple functions are arithmetic operations, discussed more in detail in the next section.
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2.3 Interval arithmetic

The basic tool to deal with intervals is by interval arithmetic. There are still people that believe that
interval analysis is just interval arithmetic. This is not true! Since the sixties, a lot of sophisticated
theoretical properties and practical methods have been developed that makes interval analysis an efficient
technique for solving many problems. Notice that a blind use of interval arithmetic leads to poor results;
one has to apply it more carefully.

Interval arithmetic is defined naturally as a range of values over interval domains. Let ◦ be a basic
operation – addition, subtraction, multiplication or division. For a, b ∈ IR we define

a ◦ b := {a ◦ b; a ∈ a, b ∈ b},

with 0 6∈ b in case of division. It is not hard to see that for particular operations the interval arithmetic
reads

a + b = [a + b, a + b],

a− b = [a− b, a− b],

ab = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a/b = [min(a/b, a/b, a/b, a/b),max(a/b, a/b, a/b, a/b)].

Looking at real numbers as degenerate intervals, interval arithmetic generalizes the classical one, and we
can make mixed expressions like 2 + 3[4, 5] with the meaning [2, 2] + [3, 3][4, 5].

Looking at the signs of the endpoints of a and b, the interval multiplication and division can be
performed more economically than by checking all four combinations. For more details see Table A.2.

Remark 2.4 (Implementation). When implemented in a programming language, one has to pay attention
to the rounding modes. Interval arithmetic must be implemented in such a way that the output interval
always contains all possible results of realizations of intervals. For example, for addition of two intervals
a + b, the lower bound a + b has to be computed in downward rounding while the upper bound a + b in
the upward rounding mode. Basically, this book mostly handles intervals in the same way as we could
compute standard operations exactly. Nevertheless, we give implementation comments where necessary.

Some of the algebraic laws remain valid for interval arithmetic, some of them hold true only in a
weaker form, and some do not hold. For instance, if a is a nondegenerate interval, then a − a 6= 0. If
0 6∈ a in addition, then a/a 6= 1. Properties of interval arithmetic are listed in detail in Tables A.3–A.11
in the appendix.

Theorem 2.5 (Basic properties of interval arithmetic).

• Interval addition and multiplication are commutative and associative.

• Interval addition and multiplication are not distributive in general, but they are sub-distributive
instead, that is,

∀a, b, c ∈ IR : a(b + c) ⊆ ab + ac. (2.5)

Proof. Commutativity and associativity are easy to see. To prove sub-distributivity, write

a(b + c) = {a(b + c); a ∈ a, b ∈ b, c ∈ c}
= {ab + ac; a ∈ a, b ∈ b, c ∈ c}
⊆ {ab + a′c; a, a′ ∈ a, b ∈ b, c ∈ c}
= ab + ac.

The cases in which distributivity holds were characterized by Ratschek (1971); Spaniol (1970); see
also Mayer (2017). For instance, distributivity a(b + c) = ab + ac holds if a∆ = 0 (i.e., a is real) or if
b ≥ 0 and c ≥ 0.
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Example 2.6. To see concretely that interval arithmetic is not distributive in general, consider, e.g., the
following example with a = [1, 2], b = 1, c = −1:

a(b + c) = [1, 2] · (1 − 1) = [1, 2] · 0 = 0,

ab + ac = [1, 2] · 1 + [1, 2] · (−1) = [1, 2] − [1, 2] = [−1, 1].

The intuitive reason why (2.5) does not hold as equation in general is that the interval a appears twice
in the right-hand side. Since interval arithmetic has no memory and considers intervals independently,
the resulting interval can overestimate the true range of the expression over intervals.

This is called the dependence problem. Multiple appearances of the same interval quantities in interval
expressions cause overestimations. This is one of the fundamental difficulties in interval analysis. However,
(2.5) also shows that various rearrangements of interval expressions lead to various resulting intervals.
Thus, we can try to find such a rearrangement that has possibly a small overestimation.

Example 2.7. Consider the expression x2 − x with x = [−1, 2]. The expression has three equivalent
forms x2 − x = x(x− 1) = (x− 1

2 )2 − 1
4 , but the interval evaluations differ:

x2 − x = [−1, 2]2 − [−1, 2] = [0, 4] − [−1, 2] = [−2, 5],

x(x− 1) = [−1, 2]([−1, 2] − 1) = [−1, 2][−2, 1] = [−4, 2],

(x− 1
2 )2 − 1

4 = ([−1, 2] − 1
2)2 − 1

4 = [−3
2 ,

3
2 ]2 − 1

4 = [0, 94 ] − 1
4 = [−1

4 , 2].

The last expression is optimal, meaning that no other arrangement of the expression leads to a better
(tighter) interval. This is because the interval x appears just once in this case (cf. Theorem 2.16)

As the example below shows, the cumulative overestimation may grow exponentially fast.

Example 2.8. Consider a discrete dynamical system, where the state xn at time n is given by a recursive
formula xn = Axn−1. For concreteness, let A be a rotation matrix and the initial state x0 known only to
belong to an interval vector as follows (Lohner, 2001)

A =

(

cosϕ sinϕ
− sinϕ cosϕ

)

, x0 ∈ x =

(

[1 − ε, 1 + ε]
[1 − ε, 1 + ε]

)

.

Tight bounds for xn are computed easily as

xn ∈ Anx,

but if we calculate the state bounds sequentially as

xn ∈ A(A . . . A(Ax) . . . ),

then the radius dn of the right-hand side interval vector grows exponentially as

dn = |A|dn−1 =

(

| cosϕ| | sinϕ|
| sinϕ| | cosϕ|

)

dn−1 = (| sinϕ| + | cosϕ|)n
(

ε
ε

)

.

Other useful properties of intervals are mentioned below.

Proposition 2.9. Let a, b ∈ IR. Then

(1) (a± b)c = ac ± bc,

(2) (a± b)∆ = a∆ + b∆,

(3) a ⊆ b if and only if |ac − bc| ≤ b∆ − a∆,

(4) a ∩ b 6= ∅ if and only if 0 ∈ a− b and if and only if a ≥ b ∧ a ≤ b.

Proof. Items (1), (2), (4) are trivial. To show (3), write a ⊆ b as a ≤ b, −b ≤ −b, or as

ac + a∆ ≤ bc + b∆, −ac + a∆ ≤ −bc + b∆,

which is equivalent to ±(ac − bc) ≤ b∆ − a∆.
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Interval matrix operations. Interval arithmetic naturally extends to interval matrix operations. For
A,B ∈ IRm×n, we define A±B ∈ IRm×n as

(A±B)ij := aij ± bij,

and for A ∈ IRm×p,B ∈ IRp×n, we define AB ∈ IRm×n as

(AB)ij :=

p
∑

k=1

aikbkj .

Not surprisingly, the resulting interval matrices contain all results of those operations for all realizations
of intervals. It is the componentwise tightest enclosure.

Proposition 2.10. Let A ∈ IRm×p and B ∈ IRp×n. Then

AB = �{AB; A ∈ A, B ∈ B}, (2.6)

but in general

AB 6= {AB; A ∈ A, B ∈ B}. (2.7)

Proof. Equation (2.6) follows from the basic properties of interval arithmetic; see also Theorem 2.16 later
on.

To show (2.7), consider interval matrices

A =

(

1
1

)

, B = ([1, 2]).

Then

AB =

(

[1, 2]
[1, 2]

)

,

but matrix
(1
2

)

∈ AB is not attained as the product AB for particular realizations A ∈ A and B ∈ B.

Matrix operations inherit several nice properties such as commutativity and associativity of addition
and subdistributivity.

Another useful property of matrix interval operations is that all vectors in the product Ab are achieved
as Ab for some A ∈ A. By Proposition 2.10, this is not true for the interval matrix product AB in general.

Proposition 2.11. Let A ∈ IRm×n and b ∈ Rn. Then

Ab = [Acb−A∆|b|, Acb + A∆|b|] = {Ab; A ∈ A}. (2.8)

Proof. “Second equality.” For each A ∈ A we have

Ab = Acb + (A−Ac)b ≤ Acb + |A−Ac||b| ≤ Acb + A∆|b|,

and similarly from below, which proves “⊇”. To show “⊆”, let d be any vector such that |d| ≤ A∆|b|.
Define z := sgn(b) and y ∈ [−1, 1]m as follows

yi =

{

di
(A∆|b|)i if (A∆|b|)i > 0,

1 otherwise.

Then
Acb + d = Acb + diag(y)A∆|b| = Acb + diag(y)A∆ diag(z)b = A−yzb.

“First equality.” To show the first equation in (2.8), write

{Ab; A ∈ A} ⊆ Ab = Acb + [−A∆, A∆]b

⊆ Acb + [−A∆|b|, A∆|b|] = [Acb−A∆|b|, Acb + A∆|b|].

Further properties of operations with interval matrices are recored in Tables B.1–B.10 in the appendix.
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Table 2.1: Division in extended interval arithmetic when 0 ∈ b.

a/b b = 0 b < b = 0 b < 0 < b 0 = b < b

a < 0 ∅ [a/b,∞) (−∞, a/b] ∪ [a/b,∞) (−∞, a/b]

a ≤ 0 ≤ a R R R R
a > 0 ∅ (−∞, a/b] (−∞, a/b] ∪ [a/b,∞) [a/b,∞)

Extended interval arithmetic. Sometimes, it is useful to extend interval arithmetic to enable division
by an interval containing zero. Suppose b 6= 0. We define the extended division by

a/b := {a/b; a ∈ a, 0 6= b ∈ b},

so it contains all possible divisions except division by zero. It is either an interval or a union of two
intervals. The explicit formula for the extended division is given in Table 2.1 for the singular case 0 ∈ b.

We cannot utilize extended interval arithmetic as is, but we have to pay attention whether it is
appropriate to use for a given problem. We will employ the extended interval arithmetic in the interval
Gauss–Seidel method (Remark 3.33) and in the Interval Newton method (Section 8.1.1).

Extended interval arithmetic was introduced independently by Hanson (1968); Kahan (1968b) and
later elaborated by Ratz (1996), among others.

2.4 Evaluation of functions over intervals

Let us come back to the problem of computing the range f(x) of a function f : Rn → R over an interval
vector x ∈ Rn. Since the range f(x) need not be an interval, we can focus on computations of its interval
hull �f(x) instead. Nevertheless, calculating �f(x) is still a very difficult problem in general. Indeed,
we will see later in Chapter 8 that the problem is undecidable – there provably exists no algorithm for
computing it.

In view of this result, we have to resign on computing �f(x), and turn our attention to calculate
as tight as possible enclosure to f(x). Even calculating a tight enclosure is still a computationally and
theoretically hard problem.

In order to develops enclosure methods for f(x), consider an interval function f : IRn → IR. What
properties should f have?

Definition 2.12 (Inclusion isotonicity). A function f : IRn → IR is inclusion isotonic if for every x,y ∈
IRn :

x ⊆ y ⇒ f(x) ⊆ f(y).

Definition 2.13 (Interval extension). A function f : IRn → IR is an interval extension of f : Rn → R if
for every x ∈ Rn :

f(x) = f(x).

These two properties, inclusion isotonicity (also called inclusion monotonicity) and interval extension,
are enough to get a proper enclosure for the range of f(x). The following theorem was already given by
Moore (1966).

Theorem 2.14 (Fundamental theorem of interval analysis). If f : IRn → IR is inclusion isotonic and is
an interval extension of f : Rn → R, then for every x ∈ IRn :

f(x) ⊆ f(x).

Proof. For every x ∈ x, one has by interval extension and inclusion isotonicity that f(x) = f(x) ⊆ f(x),
whence f(x) ⊆ f(x).
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We now have the desired properties, but have no example yet. We show that a simple example is
obtained by a direct engagement of interval arithmetic. Let f : Rn → R be a function that can be written
as an arithmetic expression using only a finite number of arithmetic operations. Fix such an expression,
and the corresponding natural interval extension f of f is defined by that expression when replacing the
real arithmetic by the interval one. Herein, we assume that there is no division by an interval containing
zero. The notion of natural interval extension is attributed to Moore (1966).

Theorem 2.15. Natural interval extension of an arithmetic expression is both an interval extension and
inclusion isotonic.

Proof. It is easy to see that interval arithmetic is both an interval extension and inclusion isotonic. Next,
proceed by mathematical induction.

For concreteness, reconsider Example 2.7. The function f(x) = x2−x has the natural interval extension
f1(x) = x2 − x. However, f(x) = x(x − 1) and f(x) = (x − 1

2)2 − 1
4 are mathematically equivalent

formulations of f that yield natural interval extensions f1(x) = x2 − x and f2(x) = (x − 1
2)2 − 1

4 ,
respectively. We see that different formulations lead to different natural interval extensions, which, as a
consequence, give different enclosures of f(x). Thus, natural interval extension is formulation dependent
and one has to pay attention which of the various equivalent formulations to use.

In Example 2.7, the third formulation f(x) = (x− 1
2 )2 − 1

4 gave rise to the tightest enclosure to f(x).
This is not by chance. The reason is that the variable appears only ones in that expression, in which case
the natural interval extension yields the optimal enclosures (Moore, 1966; Skelboe, 1974).

Theorem 2.16. Suppose that in an expression of f : Rn → R each variable x1, . . . , xn appears at most
once. The corresponding natural interval extension f(x) satisfies for every x ∈ IRn: f(x) = f(x).

Proof. Inclusion “⊆” holds by Theorems 2.14 and 2.15. Inclusion “⊇” follows from the assumption and
optimality of interval arithmetic. Let a, b ∈ IR and ◦ an arithmetic operation. Now, for each c ∈ a ◦ b
there are a ∈ a and b ∈ b such that c = a ◦ b. By induction, we have that for each y ∈ f(x) there is
x ∈ x such that y = f(x). We used the fact that each variable x1, . . . , xn appears at most once in the
expression for f(x), so there is no conflict in the selection of x ∈ x.

Apart from the natural interval extension, there are other inclusion isotonic interval extensions; some
of them are discussed in Chapter 6. Basically, there exists many interval extensions: If f(x) is an interval
extension of a function f : R → R, then f(x) + x − x is another interval extension of f , and one can
iterate further. Examples of interval functions that are interval extensions of some basic ones, but not
inclusion isotonic, are, e.g., ‖A‖, mag(a), etc.

Notes and further reading. It is easy to see that inclusion isotonicity is preserved under function
composition. Note that the extended interval arithmetic is also inclusion isotonic (Kearfott, 1996a; Ratz,
1996).

2.5 Interval hull of sets

In general, it is a very hard problem to compute the interval hull of a set S ⊆ Rn. One way to compute
�S is to reduce the problem to 2n optimization problems

inf(�Σ)i = min{xi; x ∈ S}, i = 1, . . . , n

sup(�Σ)i = max{xi; x ∈ S}, i = 1, . . . , n,

which calculate the minimum and maximum of ith coordinate xi, respectively. Even though these op-
timization problems are difficult to solve in general, they become tractable as long as the set S has
favourable properties, such as convexity. This is particularly the case if S is a convex polyhedron.
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minx1 max x1

minx2

max x2

S

�S

Figure 2.2: The interval hull �S of a convex polyhedron S.

Convex polyhedra. If the set S is described by a system of linear inequalities Ax ≤ b, then S forms
a convex polyhedron (see page 16). Calculation of the interval hull �S then reduces to solving 2n linear
programs

inf(�Σ)i = min{xi; Ax ≤ b}, i = 1, . . . , n

sup(�Σ)i = max{xi; Ax ≤ b}, i = 1, . . . , n.

Figure 2.2 illustrates this situation.

Even though linear programs are polynomially solvable, it takes some time of computation to solve 2n
of them. Since all the linear programs share the same feasible set, there is an open room for an efficient
computation of them. This was the aim of Achterberg’s heuristic introduced in Baharev et al. (2009); it
tries to reduce the computational effort by a suitable order of solving the linear programs.

Zonotopes. Zonotopes are special convex polyhedra that are defined as images of interval vectors under
a linear map. More formally, let A ∈ Rm×n and x ∈ IRn. Then the corresponding zonotope is defined as

Z := {Ax; x ∈ x}.

Thus, we have in hand neither a system of linear inequalities nor a list or vertices; zonotopes are charac-
terized by another mean. Indeed, it may be computationally consuming to determine vertices of Z or its
defining inequalities simply because there can be exponentially many such inequalities.

Zonotopes possess many favourable and interesting properties. They are centrally symmetric about
point Axc, and each face of Z is again a zonotope. The interval hull of a zonotope is easily calculated by
interval arithmetic,

�Z = Ax.

Example 2.17. Let

A =

(

1 3 −6 −10
−3 5 −2 10

)

, x = [−1, 1]4.

Figure 2.3 depicts the corresponding zonotope and its interval hull.

2.6 Historical notes

Interval approximations date back to Archimedes, who enclosed the irrational number π by the interval
[310

71 , 3
1
7 ]. During the time, several approaches to deal with interval (or more general) values appeared

(Kantorovich, 1962; Warmus, 1956; Young, 1931). The foundations of modern interval computation were
set up by Moore (1962, 1966); Sunaga (1958). They come up with the idea of computing rigorous bounds



34 Chapter 2. Introduction

5 10 15 20−5−10−15−20
−5

−10

−15

−20

5

10

15

20

0 x1

x2

Z

�Z

Figure 2.3: (Example 2.3) The interval hull �Z of zonotope Z.

by using interval enclosures for numerical problems such as solving nonlinear equations (Section 8.1.1), nu-
merical integration (Section 7.3), or initial value problems in ordinary differential equations (Section 7.4).

In particular, Moore’s dissertation in 1962 and book (Moore, 1966) achieved high interest and initiated
a large research in interval computation. In his honor, there is the Moore Prize (https://interval.
louisiana.edu/Moore_prize.html) for the best dissertation or paper in applications of interval analysis.
So far, there have been the following winners:

• Warwick Tucker (2002) has proved, using interval techniques, that the renowned Lorenz equations
do in fact possess a strange attractor. This solved the 14th Smale’s problem (Smale, 1998).

• Thomas C. Hales (2004) received Moore Prize for his solution of the Kepler conjecture about the
densest arrangement of spheres in space.

• Kyoko Makino and Martin Berz (2008) received Moore Prize for their work on suppression of the
wrapping effect by Taylor model-based verified integrators.

• Luc Jaulin (2012) received the prize for his paper “A nonlinear set-membership approach for the lo-
calization and map building of an underwater robot using interval constraint propagation” published
in IEEE Transactions on Robotics in 2009 (Vol. 25, No. 1, pp. 88–98).

• Kenta Kobayashi (2014) was awarded the prize for his paper “Computer-assisted uniqueness proof
for Stokes’ wave of extreme form” published in Nankai Series in Pure, Applied Mathematics and
Theoretical Physics in 2013 (Vol. 10, pp. 54–67).

• Balazs Banhelyi, Tibor Csendes, Tibor Krisztin and Arnold Neumaier (2016) were awarded the
prize for their paper “Global attractivity of the zero solution for Wright’s equation” published in
SIAM Journal on Applied Dynamical Systems in 2014 (Vol. 13, No. 1, pp. 537–563).

• Jordi-Llúıs Figueras, Àlex Haro and Alejandro Luque (2018) were awarded the prize for their pa-
per “Rigorous computer-assisted application of KAM theory: A modern approach” published in
Foundations of Computational Mathematics in 2017 (Vol. 17, No. 5, pp. 1123–1193).

• Marko Lange and Siegfried M. Rump (2021) were awarded the prize for their paper “Verified inclu-
sions for a nearest matrix of specified rank deficiency via a generalization of Wedin’s sin(θ) theorem”
published in BIT Numerical Mathematics in 2021 (Vol. 61, pp. 361–380).

First systematic treatment of interval matrices is due to Apostolatos and Kulisch (1968).

Interval community

Interval community shares its knowledge and experiences by organising conferences, publishing book and
journal papers, and posting information on the Internet, among others.

https://interval.louisiana.edu/Moore_prize.html
https://interval.louisiana.edu/Moore_prize.html
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• Mailing list

The Interval community has its interval mailing list [Reliable Computing]; see

http://www.cs.utep.edu/interval-comp/ftp.html

The mailing list serves for conference announcements and for discussion on various interval compu-
tation problems.

• Web pages

Web pages

http://www.cs.utep.edu/interval-comp/

administrated by Vladik Kreinovich contain many useful links related to interval computation,
including information on interval software, conferences, publications, applications, and researchers.

• Journals

The primal journal of the interval computations community is the Reliable Computing . I is “an open
electronic journal devoted to mathematical computations with guaranteed accuracy, bounding of
ranges, mathematical proofs based on floating point arithmetic, and other theory and applications of
interval arithmetic and directed rounding”. It started in 1991 under the name Interval Computations,
and then changed to Reliable Computing in 1995 being published by Kluwer Academic Publishers.
Since 2010, it became a free electronic journal.

Nevertheless, interval community researchers publish in a lot of other prestigious journals on com-
puting, numerical analysis, linear algebra, fuzzy theory and optimization.

• Conferences

There are two international conferences devoted directly to interval computation. First,

SCAN, International Symposium on Scientific Computing, Computer Arithmetics and
Verified Numerics3)

is organized (mostly) biannually since 1989. It was initiated by the University of Karlsruhe, Germany,
and supported by GAMM (International Association of Applied Mathematics and Mechanics) and
IMACS (International Association for Mathematics and Computers in Simulation).

Second,

SWIM, Summer Workshop on Interval Methods,
(until 2015 Small Workshop on Interval Methods),

established by Luc Jaulin and Nacim Ramdani, is held annually since 2008.

Moreover, interval computation sessions are organized at many other international conferences; see
the regularly updated list of forthcoming conferences

http://www.cs.utep.edu/interval-comp/conf.html

• Intervals Day (March 14)

Mathematicians are celebrating this day as Pi Day since 03/14 reminds of π = 3.14 . . . Since
Archimedes was among the first who estimated π from below and from above, the interval community
appropriates this day also as Intervals Day.

3)Until 2014 known as the GAMM – IMACS International Symposium on Scientific Computing, Computer Arithmetic,

and Verified Numerical Computation.

http://www.cs.utep.edu/interval-comp/ftp.html
http://www.cs.utep.edu/interval-comp/
http://www.cs.utep.edu/interval-comp/rcjournal.html
http://www.cs.utep.edu/interval-comp/conf.html
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Recognition

• L.N. Trefethen, IV.21 Numerical Analysis, in Gowers (2008), the section about the future (p. 614):

When these are combined with techniques of interval arithmetic, there is even the prospect
of accuracy guaranteed with respect to rounding as well as discretization error.

2.7 Software

Despite the fast development of hardware, software, programming languages and related areas, and being
aware of getting out-of-date soon, we mention current implementations of interval computation below.

INTLAB (Rump, 1999a) is a MATLAB toolbox capable of performing interval calculations. It imple-
ments interval arithmetic and elementary functions of interval arguments and provides a flexible program-
ming environment.

VERSOFT (Rohn, 2019b) is a verification software written in INTLAB; implementation of linear alge-
braic functions for real / complex or interval data. It includes linear system solving, eigenvalues, matrix
decompositions, basic optimization problems, among others.

Both INTLAB and VERSOFT are free of charge for noncommercial use.

• Interval package for Octave (by O. Heimlich),
free package of verified interval functions
https://wiki.octave.org/Interval_package

There are several interval libraries for C++ in GNU Linux, for instance:

• C-XSC (Hofschuster and Krämer, 2004),
The C-XSC (eXtended Scientific Computing) library for reliable computing provides useful data
types, such as real and complex intervals and matrices, and functionalities, such as overloading,
controlled rounding or dot products in arbitrary / exact precision.
http://www.xsc.de/, http://www2.math.uni-wuppertal.de/~xsc/index_en.html

• Boost Interval,
http://www.boost.org/doc/libs/1_53_0/libs/numeric/interval/doc/interval.htm

• FILIB++ (Lerch et al., 2001),
evaluation of basic functions, enables containment sets,
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html

• GAOL (by F. Goualard),
http://sourceforge.net/projects/gaol/

• MPFI (by N. Revol, F. Rouillier),
multi precision, portable http://perso.ens-lyon.fr/nathalie.revol/software.html

• PROFIL /BIAS (by O. Knüppel et al.),
efficient, portable, http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

Concerning other applications and languages,

• PASCAL-XSC (Klatte et al., 1991),
This language provides interval (real and complex) arithmetic, controlled rounding, exact scalar
product, and other tools for numerical computation. Moreover, there have been implemented some
application modules solving basic numerical problems (linear and nonlinear systems, eigenvalues or
optimization).
http://www.xsc.de/, http://www2.math.uni-wuppertal.de/~xsc/index_en.html

https://wiki.octave.org/Interval_package
http://www.xsc.de/
http://www2.math.uni-wuppertal.de/~xsc/index_en.html
http://www.boost.org/doc/libs/1_53_0/libs/numeric/interval/doc/interval.htm
http://www2.math.uni-wuppertal.de/wrswt/software/filib.html
http://sourceforge.net/projects/gaol/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
http://www.xsc.de/
http://www2.math.uni-wuppertal.de/~xsc/index_en.html
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• Fortran interval packages,
including INTLIB (Kearfott et al., 1994), INTERVAL ARITHMETIC (Kearfott, 1996b), FORTRAN-
XSC (Walter, 1993).

• (Hyvönen and De Pascale, 1996), interval arithmetic embedded in MS Excel,

Software for particular interval problems is listed in .... (CSP, GO) TODO

IEEE standard for interval arithmetic

With the extension of interval packages for many programming languages, there emerged the need of
standardization of interval arithmetic. After years of work (2008–2015) of the IEEE Interval Standard
Working Group – P1788

http://grouper.ieee.org/groups/1788/

there was released IEEE Std 1788-2015 – IEEE Standard for Interval Arithmetic; see

http://standards.ieee.org/findstds/standard/1788-2015.html

This standard specifies basic interval arithmetic operations, and it provides a layer between the hardware
and the programming language levels. A simplified version of this standard was published as IEEE Std
1788.1-2017 - IEEE Standard for Interval Arithmetic (Simplified); see

https://standards.ieee.org/findstds/standard/1788.1-2017.html

Citing from the web page: “It includes those operations and features of the latter that in the editors’
view are most commonly used in practice. Compared to IEEE Std 1788-2015, this standard aims to
be minimalistic, yet to cover much of the functionality needed for interval computations. As such, it
is more accessible and will be much easier to implement, and thus will speed up the production of
implementations.”

For more information about computer arithmetic, its implementation, rounding effects and verified
computations see Kulisch (2013); Rump (2010).

http://grouper.ieee.org/groups/1788/
http://standards.ieee.org/findstds/standard/1788-2015.html
https://standards.ieee.org/findstds/standard/1788.1-2017.html
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Chapter 3

Systems of interval linear equations

Systems of linear equations is a basic problem in linear algebra, and it is also essential for many other
disciplines. Not surprisingly, problems related to interval systems of linear equations are fundamental in
interval computation.

3.1 Solution set

In this section, we introduce the solution set. We present its topological and other properties, and we
discuss the related computational complexity issues.

The solution set. Let A ∈ IRm×n and b ∈ IRm. Then the system of interval linear equations is a family
of linear systems

Ax = b, A ∈ A, b ∈ b.

We denote this family in short as

Ax = b,

but the aim is not to find an (interval) vector x that satisfies these equations. A solution is defined as a
solution to a system Ax = b for some A ∈ A and b ∈ b. Naturally, the solution set is defined as the set
of all solutions and denoted

Σ := {x ∈ Rn; ∃A ∈ A∃b ∈ b : Ax = b}.

This definition is also called the united solution set since we join together all solutions over all real
instances of the interval system. Extensions using another quantification are addressed in Section 3.10.

The solution set is characterized by diverse ways. First, we mention the characterization by Beeck.

Theorem 3.1 (Beeck, 1972, 1974). We have

(1) x ∈ Σ if and only if Ax ∩ b 6= ∅,
(2) x ∈ Σ if and only if 0 ∈ Ax− b.

Proof.

(1) When x ∈ Σ, then Ax = b for some A ∈ A and b ∈ b, and thus Ax = b ∈ Ax ∩ b. On the other
hand, when b ∈ Ax∩ b, then clearly b ∈ b. By Proposition 2.11, there is A ∈ A such that Ax = b.

(2) This follows from the previous item and Proposition 2.9(4).

The famous and very useful characterization of Σ comes from Oettli and Prager (1964); see also
Fiedler et al. (2006).

Theorem 3.2 (Oettli and Prager, 1964). The solution set Σ is described by the inequality system

|Acx− bc| ≤ A∆|x| + b∆. (3.1)

39
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x is a solution of Ax = b

∅ 6= Ax ∩ b

0 ∈ Ax− b

|Acx− bc| ≤ A∆|x| + b∆

|mid(Ax− b)| ≤ rad(Ax− b)

mig(Ax− bc) ≤ b∆

Table 3.1: Equivalent characterizations of the (weak) solutions.

Proof. By Proposition 3.1, x ∈ Σ if and only if 0 ∈ Ax − b. By Proposition 2.9(3), it is equivalent with
|mid(Ax− b)| ≤ rad(Ax− b), which is simplified to (3.1) by Proposition 2.9(1)–(2).

As stated in the proof, condition (3.1) can be equivalently stated by using a symmetric formula from
Rohn (2014); see Mayer (2017),

|mid(Ax− b)| ≤ rad(Ax− b).

Table 3.1 summarizes various ways to characterize the solutions.
When x ∈ Σ, it is sometimes useful to know for which realization of intervals the solution is attained,

that is, for which A ∈ A and b ∈ b we have Ax = b. Below, we adopt the result from Fiedler et al. (2006),
and in the proof, there is explained the method for finding the corresponding A ∈ A and b ∈ b.

Proposition 3.3. Every solution x ∈ Σ is a solution of the special system Ayzx = by for some y ∈
[−1, 1]m and z ∈ {±1}n.

Proof. Let x ∈ Rn be a solution to (3.1). Define the vector y ∈ [−1, 1]m componentwise as

yi =

{

(Acx−bc)i
(A∆|x|+b∆)i

if (A∆|x| + b∆)i > 0,

1 otherwise.

Now, we have (Acx− bc)i = yi(A
∆|x| + b∆)i, or,

Acx− bc = diag(y)(A∆|x| + b∆).

Define z := sgn(x), then |x| = diag(z)x and we can write

Acx− bc = diag(y)A∆ diag(z)x + diag(y)b∆,

or
(Ac − diag(y)A∆ diag(z))x = bc + diag(y)b∆.

Thus Ayzx = by and so x ∈ Σ.

The following theorem gives another normal form realization by means of the endpoints of the interval
coefficients; for each equation, only one of the endpoints could possibly be in the interior of its interval
domain. For a survey of normal forms see (Rohn, 2012b, Sec. 4.2.3).

Proposition 3.4 (Rohn, 1985). Let x∗ ∈ Σ. Then there are A ∈ A and b ∈ b such that Ax∗ = b, and
for each i ∈ {1, . . . ,m} we have aij ∈ {aij , aij} and bi ∈ {bi, bi} for all but at most one entry.

Proof. Let i ∈ {1, . . . ,m} and denote the ith equation of the system Ax = b by aTx = β. By the
Oettli–Prager theorem

(ac)Tx∗ − βc ≤ (a∆)T |x∗| + β∆,

−(ac)Tx∗ + βc ≤ (a∆)T |x∗| + β∆.
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Denote s := sgn(x∗). Then |x∗| = diag(s)x∗ and the above inequalities draw

(ac − diag(s)a∆)Tx∗ ≤ β,

(ac + diag(s)a∆)Tx∗ ≥ β.

Denote r := s and ar := ac − diag(r)a∆. Put j := 0. While aTr x
∗ < β do j := j + 1 and rj := −rj. Now,

there are two cases. If we have aTr x
∗ ≥ β, then obviously aTr x

∗ = β for some rj ∈ [−1, 1]. Thus, we found
a realization in which only the jth coefficient is possibly from the interior of the interval aj. In the second
case, r = −s and

β ≤ (ac + diag(s)a∆)Tx∗ = aTr x
∗ < β.

Hence (ac + diag(s)a∆)Tx∗ = β for some β ∈ β. So we found a realization in which only the right-hand
side entry is possibly from the interior of β.

Geometrically, the solution set Σ has a polyhedral shape. It might be nonconvex, but it is provably
convex when restricted to any orthant (Beeck, 1973; Oettli, 1965).

Theorem 3.5 (Oettli, 1965). In each orthant, Σ is either empty or a convex polyhedral set.

Proof. Let an orthant corresponding to a sign vector s ∈ {±1}n be given. This orthant is described by
diag(s)x ≥ 0, and the solution set restricted to this orthant reads

|Acx− bc| ≤ A∆|x| + b∆, diag(s)x ≥ 0.

Since |x| = diag(s)x, we have

|Acx− bc| ≤ A∆ diag(s)x + b∆, diag(s)x ≥ 0,

or
Acx− bc ≤ A∆ diag(s)x + b∆, −(Acx− bc) ≤ A∆ diag(s)x + b∆, diag(s)x ≥ 0.

By rearranging the expression, we obtain linear inequalities

(Ac −A∆ diag(s))x ≤ b, (−Ac −A∆ diag(s))x ≤ −b, diag(s)x ≥ 0. (3.2)

or in compact form
Aesx ≤ b, −A−esx ≤ −b, diag(s)x ≥ 0.

The proof revealed that the solution set can be partitioned as a union of convex polyhedra, the interior
of which is pairwise disjoint.

Corollary 3.6. We have

Σ =
⋃

s∈{±1}n

{

x; Aesx ≤ b, −A−esx ≤ −b, diag(s)x ≥ 0
}

. (3.3)

In particular, if we are interested in the nonnegative solutions, then the solution set is a convex
polyhedron and checking solvability is polynomial by linear programming.

Corollary 3.7. The solution set to the interval system Ax = b, x ≥ 0 is described by

Ax ≤ b, Ax ≥ b, x ≥ 0. (3.4)

Proof. Put s := e and by (3.2) we have that the solution set in the orthant x ≥ 0 draws

(Ac −A∆)x ≤ b, (−Ac −A∆)x ≤ −b, x ≥ 0, (3.5)

which is equivalent to (3.4).

Example 3.8. Consider the interval system of linear equations (Barth and Nuding, 1974)
(

[2, 4] [−2, 1]
[−1, 2] [2, 4]

)(

x1
x2

)

=

(

[−2, 2]
[−2, 2]

)

. (3.6)

Its solution set is illustrated in Figure 3.1.
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Figure 3.1: (Example 3.8) The solution set to
(3.6).

Figure 3.2: (Example 3.9) The solution set to
(3.7).

Example 3.9. The solution set for this three-dimensional system




[3, 5] [−1, 1] [−1, 1]
[−1, 1] [3, 5] [−1, 1]
[−1, 1] [−1, 1] [3, 5]









x1
x2
x3



 =





[−1, 1]
[−1, 1]
[−1, 1]



 (3.7)

is illustrated in Figure 3.2.

Remark 3.10. The solution set can also be decomposed as follows

Σ =
⋃

s∈{±1}n

{

x; Aesx ≤ b, −A−esx ≤ −b
}

(3.8)

which is an alternative to (3.3). Inclusion “⊆” is easy to see in view of (3.3). Inclusion “⊇” can be shown
as in the proof of Theorem 3.5: The system

Aesx ≤ b, −A−esx ≤ −b

is equivalent to
Acx− bc ≤ A∆ diag(s)x + b∆, −(Acx− bc) ≤ A∆ diag(s)x + b∆,

from which
|Acx− bc| ≤ A∆ diag(s)x + b∆ ≤ A∆|x| + b∆.

Decomposition (3.8) does not provide a pairwise disjoint interior splitting of the solution set. On the other
hand, the particular convex polyhedra are larger.

Example 3.11. Consider the interval linear system from Example 3.8. Figure 3.3 illustrates overlapping
decomposition (3.8).

The problem of finding a solution x ∈ Σ is intractable. The first proof is by Lakeev and Noskov (1994);
we follow the proof by Fiedler et al. (2006).

Theorem 3.12 (Lakeev and Noskov, 1994). Checking Σ 6= ∅ is an NP-hard problem, even in the class
of problems with m = n.

Proof. Let the system (1.3) from Theorem 1.35 be given and consider the interval system

[A,A]x = [−e, e], [−e, e]Tx = [1, 1].

According to the Oettli–Prager Theorem 3.2, the solution set is described by

|Ax− 0| ≤ 0|x| + e, |0x− 1| ≤ eT |x| + 0,

which is equivalent to (1.3). To obtain a square system, we impose an idle variable y resulting in an
equivalent square interval system

[A,A]x + 0y = [−e, e], [−e, e]Tx + 0y = [1, 1].
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(a) The part of the solution set corresponding to s =
(−1, 1)T is in blue.
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(b) The part of the solution set corresponding to s =
(1, 1)T is in blue.

Figure 3.3: (Example 3.11): Overlapping decomposition (3.8) of the solution set.

Remark 3.13 (Polynomial cases). On the other hand, there are classes of interval equations solvable in
polynomial time. First, problems with nonnegative variables as mentioned in Theorem 3.7.

Second, problems with real A and intervals in the right-hand side vector b only. In this case, the
solution set Σ is described by linear inequalities b ≤ Ax ≤ b. Geometrically, it represents an image of the
box b under the mapping b 7→ A−1b, that is, a zonotope (see page 33). In this case, the interval hull of
the solution set is simply calculated by interval arithmetic, that is, �Σ = A−1b.

Third, suppose that the intervals are situated b and in at most k columns of A. Then in (3.3), we do
not need to enumerate all 2n sign vectors, but only 2k, where the variable signs correspond to interval
columns of A. For the sake of simplicity, suppose that the last k columns of A are interval. Then (3.3)
takes the form

Σ = ∪s∈{1}n−k×{±1}k
{

x; Aesx ≤ b, −A−esx ≤ −b, diag(s)x ≥ 0
}

.

Other complexity results related to the solution set are discussed at the end of Section 3.6.2.

Remark 3.14. There are other interesting topological properties of the solution set. For instance, if A
is regular and b is real and nonzero, then the solution set Σ cannot simultaneously intersect two opposite
orthants (Rohn, 1984, 2012b).

There are some open problems related topology of the solution set, too. Rohn (2012b, Thm. 144)
shows that when A is regular, every two points in Σ can be connected by a piecewise linear curve having
at most n segments. Can this value decrease to 2? Or even stronger version: Exists x∗ ∈ Σ such that for
each x ∈ Σ the whole segment joining x∗ and x lies in Σ?

Notes. Visualization of the solution set is possible by using diverse programs: MATLAB package for
visualization in 2D and 3D is available in (Sharaya, 2014b), and an online service for computations
webComputing in Popova (2006a).

Chen et al. (2010) applied interval linear equations in static code analysis, by introducing a new
abstract domain. Its benefit is that, based on the properties of interval linear equations, it can capture
certain noncovex properties.

3.2 Methods for the square case – preliminaries

In this section, we restrict ourselves to the most common square case of interval systems with m = n.
Sections 3.3.1 and 3.5.1 are devoted to direct methods and Section 3.4 is devoted to iterative methods for
enclosing the solution set. Methods to compute the exact interval hull �Σ are studied in Section 3.5.4.
Special cases that are easily solved are dealt with in Section 3.5.5.

The structure od the solution set Σ is rather complicated, so one is more interested in determining
its interval hull �Σ. By Theorem 3.12, computation �Σ is NP-hard (if we know �Σ, then we can easily
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decide whether Σ 6= ∅), and this is also true for a family of systems with regular matrices satisfying
ρ(|(Ac)−1|A∆) = 0; see (Fiedler et al., 2006, Thm. 2.38) or (Rohn, 2012b, Thm. 167) and compare Sec-
tion 3.6.2. That is why one is usually satisfied with a tight enclosure. Nevertheless, even calculation of a
sharp enclosure may be hard. As shown in Kreinovich and Lakeyev (1996) (cf. Kreinovich et al. (1998)),
computing an enclosure with a prescribed relative or absolute accuracy is still NP-hard.

Problem statement. The main problem of Sections 3.2–3.5 is to find �Σ or its tight enclosure.

In the rest of Section 3.2, we will discuss several classes of interval matrices and two auxiliary trans-
formations (preconditioning and the residual form) that transform interval systems to a (usually) more
convenient form.

Regularity and special matrices. As in the real case, solvability of interval systems and the structure
of Σ depends on whether the constraint matrices are nonsingular. This leads to regularity of interval
matrices (regularity is dealt with in more detail in Section 3.6).

Definition 3.15. An interval matrix A ∈ IRn×n is called regular if each A ∈ A is nonsingular. Otherwise,
A is irregular.

Two important classes of regular interval matrices are M-matrices and its generalization H-matrices.

Definition 3.16. An interval matrix A ∈ IRn×n is called M-matrix if each A ∈ A is an M-matrix.

Theorem 3.17 (Barth and Nuding, 1974). An interval matrix A ∈ IRn×n is an M-matrix if and only if
A is an M-matrix and Aij ≤ 0 for all i 6= j.

Proof. One direction is obvious. For the converse one we employ Theorem 1.18(2). Since A is an M-matrix,
there is v > 0 such that Av > 0. Now, for any A ∈ A we have Av ≥ Av > 0.

In other words, we can say that A is an M-matrix if and only if both the lower and the upper bound
matrices A and A are M-matrices.

Definition 3.18. An interval matrix A ∈ IRn×n is called H-matrix if each A ∈ A is an H-matrix.

Theorem 3.19 (Neumaier, 1984). An interval matrix A ∈ IRn×n is an H-matrix if and only if 〈A〉 is
an M-matrix, where

〈A〉ii = mig(aii),

〈A〉ij = −mag(aii), i 6= j.

Proof. “Only if”. Since A ∈ IRn×n is an H-matrix, 〈A〉 is an M-matrix for each A ∈ A, so even for those
A∗ ∈ A satisfying 〈A∗〉 = 〈A〉.

“If”. Let v > 0 be such that 〈A〉v > 0. Then for each A ∈ A we have 〈A〉v ≥ 〈A〉v > 0.

The proof also showed that A is an H-matrix if and only if the H-matrix property holds for the
selection A∗ ∈ A defined as

a∗ii = arg min{|aii|; aii ∈ aii},
a∗ij = arg max{|aij |; aij ∈ aij}, i 6= j.

3.2.1 Preconditioning

Usually, a so-called preconditioning is performed in order to obtain tight enclosures; the origin of this
approach dates back to Hansen (1965); Hansen and Smith (1967). Let C ∈ Rn×n, then the preconditioning
the interval system Ax = b means that we multiply both sides by C to obtain a new interval system

(CA)x = Cb,
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where the interval matrix CA and the interval vector Cb are evaluated by interval arithmetic. Due to
the virtue of interval arithmetic, the solution set to the new system contains the old one. It may seem
that this also leads to overestimating the enclosures of the solution set calculated by various methods.
However, most methods work well with preconditioning.

After preconditioning, the constraint matrix reads CA = [CAc − |C|A∆, CAc + |C|A∆], that is,
its midpoint is CAc and its radius is |C|A∆. Usually, one preconditions by C = (Ac)−1 or its numerical
approximation. The reason that preconditioning helps is that the center of CA is the identity matrix, and
for such cases the interval hull of the solution set can be exactly determined (Section 3.5.1). Moreover, the
inverse midpoint preconditioner behaves best in some measures (Neumaier, 1984, 1990), which, however,
does not mean that no other choice can be more useful in some cases.

Preconditioning is successfully performed for all the methods presented here, including the interval
Gaussian elimination, the interval Gauss–Seidel method and the Krawczyk method.

One can hardly compute C = (Ac)−1 exactly by using floating point arithmetic. However, some results
later on (Theorem 3.43 and many others) rely on having mid(CA) = In. This can be achieved by relaxing
CA and enclosing it as CA ⊆ [In − ∆, In + ∆], where ∆ := mag(In − CA).

Proposition 3.20. The matrix [In−∆, In+∆] is the smallest matrix (with respect to inclusion) enclosing
CA and having its midpoint to be In.

Proof. Let M be such that CA ⊆ M and M c = In. Then mag(In − CA) ≤ mag(In − M) = M∆, so
M∆ := ∆ is the best choice.

A preconditioning that is optimal in some sense was proposed by Kearfott (1990); Kearfott et al.
(1991); Kearfott (1996a) for the interval Gauss–Seidel method. The preconditioning is done separately
for each variable by solving an appropriate linear program. Another preconditioners, which are based on
the Gauss–Jordan elimination, are discussed in Montanher et al. (2017).

Example 3.21. Reconsider Example 3.8 by (Barth and Nuding, 1974) again. Preconditioning the interval
system by (Ac)−1, we obtain an interval system

(

[0.5945, 1.4055] [−0.5406, 0.5406]
[−0.5406, 0.5406] [0.5945, 1.4055]

)(

x1
x2

)

=

(

[−0.7568, 0.7568]
[−0.7568, 0.7568]

)

.

In this example, the solution set blowed up a lot. Figure 3.4 illustrates the original solution set (in blue),
the solution set of the preconditioned system (in gray) and its interval hull in light gray. One can see that
the preconditioning caused high overestimation.

Nevertheless, in a typical situation, the overestimation is mild. Consider, for example, the system
(

[4, 5] [−1, 1]
[1, 2] −[3, 5]

)(

x1
x2

)

=

(

[−1, 4]
− [3, 4]

)

. (3.9)

Its solution set and the preconditioned one are drawn in Figure 3.5.

3.2.2 Residual form

The residual form approach to solving Ax = b employs a vector x∗ ∈ Rn, and by using the substitution
y ≡ x− x∗, it transforms the problem to solving

Ay = b−Ax∗,

where the right-hand side is evaluated by interval arithmetic. This is again an interval linear system of
equations, and can be solved by any solver. If y ∈ IRn is an enclosure to the solution set of the transformed
system, then x∗ + y encloses the original one.

The vector x∗ is usually taken as a solution to Acx = bc, and therefore the midpoints of both interval
vectors b−Ax∗ and y are near to zero.

The transformation to the residual form of interval equations usually does not tighten the resulting
enclosures and the convergence speed, but it has some good properties. This form is convenient, in
particular when solving systems with dependencies between interval coefficients; see Section 3.9.
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3.3 Direct methods for the square case

In this section, we briefly present the interval version of the well-known Gaussian elimination. Other
direct methods based on the limit versions of iterative methods will be discussed in Section 3.4.4*.

3.3.1 Interval Gaussian elimination

The interval Gaussian elimination works in the same fashion as Gaussian elimination, but with interval
arithmetic instead of the real (or floating point) one. For more details see, e.g., Alefeld and Herzberger
(1983); Neumaier (1990); Mayer (2017), from which the results of this section are derived.

Notice that in each step, the pivot must be an interval not containing the zero. If we cannot find an
appropriate pivot, then the method fails.

The elements below the pivot can be set directly to zero as in the classical Gaussian elimination and
need not be superfluously evaluated by interval arithmetic. The reason is that the transformation of the
interval matrix







a11 . . .
a21 . . .

...







changes the (2, 1)th entry to a21 − a21
a11

a11. However, a straightforward evaluation of this expression is
not convenient. As we observed in Example 2.7, among others, it is better to use another formula for the
same function. Since a21 − a21

a11
a11 = 0, we simply evaluate the zero function on a11 × a21, which is again

zero.

The algorithm (interval Gaussian elimination). Now we state formally the algorithm. First, we
transform the extended interval matrix C := (A | b) into the row echelon form:

1: for k = 1, . . . , n do
2: suppose that 0 6∈ ckk (otherwise switch row k with some row below it)
3: for i = k + 1, . . . , n do
4: cik := 0
5: for j = k + 1, . . . , n do
6: cij := cij − cik

ckk
ckj

7: end for
8: end for
9: end for
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If step 2 cannot be performed, then the algorithm cannot compute a bounded enclosure of Σ, and A is
possibly irregular. Otherwise, the algorithm succeeds, and we apply the backward substitution to compute
an enclosure x ⊇ Σ:

1: for k = n, . . . , 1 do
2: xk := bk − 1

akk

∑n
j=k+1 akjxj

3: end for
4: return “x”

Example 3.22. Reconsider Example 3.8. The interval Gaussian elimination proceeds as follows

(

A b
)

∼
(

[2, 4] [−2, 1] [−2, 2]
[−1, 2] [2, 4] [−2, 2]

)

∼
(

[2, 4] [−2, 1] [−2, 2]
0 [1, 6] [−4, 4]

)

.

Notice that after pivoting operations, the values below the pivots vanish, as in the classical Gaussian
elimination. By back substitution, we compute

x2 = [−4, 4],

x1 =
(

[−2, 2] − [−2, 1] · [−4, 4]
)

/ [2, 4] = [−5, 5].

The resulting enclosure of the solution set is x = ([−5, 5], [−4, 4])T .

The interval Gaussian elimination can fail even if A is regular (one pre-explanation is that checking
regularity of A is hard, but the interval Gaussian elimination is a polynomial method). This is not the
case for n = 1 or n = 2, but one can to find a three-dimensional counterexample; see Mayer (2017);
Reichmann (1979). We present another counterexample here.

Example 3.23. Consider the interval matrix

A =





[1, 2] 2 3
4 5 6
−1 1 0



 .

It is not hard to verify that A is regular. Nevertheless, the transformation to the row echelon form yields




[1, 2] 2 3
4 5 6
−1 1 0



 ∼





[1, 2] 2 3
0 [−3, 1] [−6, 0]
0 [2, 3] [1.5, 3]



 ∼





[1, 2] 2 3
0 [2, 3] [1.5, 3]
0 [−3, 1] [−6, 0]





∼





[1, 2] 2 3
0 [2, 3] [1.5, 3]
0 0 [−7.5, 4.5]



 .

The third pivot is an interval containing the zero, so the interval Gaussian elimination cannot be performed
regardless the values of the right-hand side interval vector b.

Due to this property, it is natural to seek for a class of regular matrices for which the interval Gaussian
elimination does not fail. Such classes are M-matrices or H-matrices, among some others; we prove this
result for M-matrices first, and then we generalize it for H-matrices.

Theorem 3.24 (Alefeld, 1977). Let A be an M-matrix. Then for each k = 1, . . . , n − 1, after the kth
loop of the interval Gaussian elimination, the submatrix formed by the last n− k rows and columns is an
M-matrix.

Proof. We show it for k = 1 only; the others follow by induction. Let v > 0 such that Av > 0 and let
A′ be the matrix after the first loop. First, observe that a′

ij = aij − a1jai1/a11 ≤ 0 for i 6= j. Now, for
i = 2, . . . , n, using

∑n
j=1 a1jvj ≥ 0 and

∑n
j=1 aijvj > 0 we get

n
∑

j=2

a′ijvj =

n
∑

j=2

(

aij − a1j
ai1
a11

)

vj =

n
∑

j=2

aijvj −
ai1
a11

n
∑

j=2

a1jvj

≥
n
∑

j=2

aijvj +
ai1
a11

a11v1 =

n
∑

j=1

aijvj > 0,

which means that A′ without the first row and column is an M-matrix.
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Figure 3.6: (Example 3.26) The solution set Σ.

Corollary 3.25 (Alefeld, 1977). Let A be an M-matrix. Then the interval Gaussian elimination can be
carried out without any pivoting.

Proof. From the assumption, there is v > 0 such that Av > 0. In particular, a11v1 > −∑n
i=2 a1ivi ≥ 0.

Thus, a11 is positive, and one loop of the interval Gaussian elimination can be performed. Since the active
submatrix is an M-matrix by Theorem 3.24, this argument applies repeatedly in each loop.

Even though the interval Gaussian elimination does not fail for M-matrices, it need not produce the
interval hull of the solution set.

Example 3.26. Consider the interval linear system of equations Ax = b from (Mayer, 2017, Ex. 5.5.19),
where

A =

(

[2, 4] [−2, 0]
[−1, 0] [2, 4]

)

, b =

(

[1, 2]
[−2, 2]

)

.

The solution set Σ is depicted in Figure 3.6. Its interval hull is

�Σ = ([−1, 4], [−1.5, 3])T .

Even though A is an M-matrix, the interval Gaussian elimination yields an overestimated enclosure

([−1.5, 4], [−2, 3])T .

Theorem 3.27 (Alefeld, 1977). Let A be an H-matrix. Then for each k = 1, . . . , n − 1, after the kth
loop of the interval Gaussian elimination, the submatrix formed by the last n− k rows and columns is an
H-matrix.

Corollary 3.28 (Alefeld, 1977). Let A be an H-matrix. Then the interval Gaussian elimination can be
carried out without any pivoting.

Proof. By Theorem 3.19, 〈A〉 is an H-matrix, so 0 6∈ a11, and the first loop of the interval Gaussian
elimination can be performed. Then we proceed by induction.

Gaussian elimination closely relates to LU decomposition. For H-matrices, we have the following
interval version of LU decomposition.

Theorem 3.29 (Alefeld, 1977). Let A be an H-matrix. Then there are lower and upper triangular interval
matrices L,U ∈ IRn×n such that the diagonal of L consists of ones, and A ⊆ LU .
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Proof. For an H-matrix A ∈ A, the LU decomposition can be done as follows: Transform the matrix
(A | In) to the row echelon form (U | L′), where U is upper triangular and L′ is lower triangular with
ones on the diagonal. Hence L′A = U , from which we obtain the LU decomposition as A = LU , where
L = L′−1.

We proceed similarly for the interval matrix A. By Corollary 3.28, we can transform the interval
matrix (A | In) to the row echelon form (U | L′). Since L′ is lower triangular with ones on the diagonal,
we can enclose the inverses of all its realizations by transforming (L′ | In) to the reduced row echelon
form (In | L), which always exists. By the inclusion property of interval arithmetic, A ⊆ LU .

To summarize, provided A is an H-matrix or a similar special matrix (such as diagonally dominant),
the interval Gaussian works well. Moreover, when A is an M-matrix, and one of 0 ∈ b, b ≥ 0, or b ≤ 0
holds true, then the interval Gaussian elimination yields �Σ; see Barth and Nuding (1974); Beeck (1974);
Mayer (2017). This result is worth comparing with Theorem 3.57, where an analogous result for inverse
nonnegative interval matrices is stated.

Preconditioning. In general, preconditioning is commonly recommended. Without a preconditioning,
the interval Gaussian elimination may yield very poor results; for an exponential overestimation see
Neumaier (1990). For systems preconditioned by (Ac)−1 the method works well in the sense that we get
a finite enclosure provided the constraint matrix stays regular (since the interval matrix is an H-matrix
then). Moreover, it is superior to the interval Gauss–Seidel method (Section 3.4.1) in this case. Under
some assumptions, it also yields the tightest enclosure of the preconditioned system (Mayer and Rohn,
1998). On the other hand, we can find examples for which the direct Gaussian elimination works, but the
midpoint inverse preconditioning fails.

Notes and further reading. Attempts to make the interval Gaussian elimination more efficient involve,
e.g., pivot tightening (Garloff, 2009). Mayer (2017) discusses several classes of interval matrices (i.a.
Hessenberg matrices) and conditions under which interval Gaussian elimination can be applied. He also
characterizes a class of interval matrices (including, e.g., tridiagonal matrices) for which interval Gaussian
elimination is feasible if and only if it is feasible for each realization.

3.4 Iterative methods for the square case

Several methods for finding an enclosure to Σ, such as the interval Jacobi, interval Gauss–Seidel and
Krawczyk method, are based on iterative steps sequentially improving an initial enclosure x0. The iteration
methods that we will present do not require regularity of the matrix, which is convenient when searching
for the solutions in a prescribed box only; cf. Section 8.1. The methods presented in this section mostly
perform better if preconditioning is used.

Initial enclosure. The following formula gives a cheap initial enclosure; see Moore et al. (2009). Again,
it performs well if the interval linear system Ax = b is preconditioned by the midpoint inverse.

Theorem 3.30. If ‖In −A‖∞ < 1, then

x0 :=
‖b‖∞

1 − ‖In −A‖∞
[−1, 1]n (3.10)

encloses Σ.

Proof. Let x ∈ Σ, so Ax = b for some A ∈ A and b ∈ b. Thus x = Ax+(In−A)x = b+(In−A)x, whence
for any matrix norm induced by a vector norm, one has ‖x‖ = ‖b + (In − A)x‖ ≤ ‖b‖ + ‖In − A‖ · ‖x‖.
Hence by factoring ‖x‖

‖x‖ ≤ ‖b‖
1 − ‖In −A‖ ≤ ‖b‖

1 − ‖In −A‖ .

Choosing the maximum norm we obtain (3.10).
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Figure 3.7: An interval operator O(x) applied on an interval vector x.

Interval operators. After having an initial enclosure to Σ, the iterations can usually be written in a
generic way as follows

1: xk := O(xk−1);
2: xk := xk ∩ xk−1

Herein, O : IRn → IRn is an interval operator. This operator must not miss any solution. That is, if
x ∈ x ∩ Σ, then x ∈ O(x). This property is illustrated by Figure 3.7. Subfigure 3.7a shows the situation
when the initial vector x encloses the whole solution set Σ, whereas in Subfigure 3.7b x encloses only
a part of Σ. The later corresponds to a situation when only a part of Σ is of interest (e.g., nonnegative
solutions).

Notice that step 2 ensures that the sequence x0 ⊇ x1 ⊇ . . . is nested and so converges to some
interval vector. Under some assumptions, discussed in the following section, step 2 can be omitted and
the iterations still converge to an enclosure of Σ.

Interval operators based on splittings. Most of the operator used are based on a splitting of the
constraint matrix. Consider first the real case and split A = M −N , where M is nonsingular. Then the
system Ax = b reads Mx = b+Nx, from which x = M−1(b+Nx). This gives rise to an interval operator

O(x) = M−1(b + Nx). (3.11)

If M is easily invertible (such as a diagonal matrix), then we can use this explicit form. Otherwise, we
compute the value of O(x) by solving the interval linear system

M · O(x) = b + Nx. (3.12)

The following sections will be devoted to particular types of splittings and the corresponding interval
operators, in particular Jacobi, Gauss–Seidel and Krawczyk iterations. More information on iterations
based on splittings is provided by Mayer (2017).

3.4.1 The interval Jacobi and Gauss–Seidel method

The Jacobi and Gauss–Seidel methods are classical iterative methods to solve a real system of linear
equations Ax = b. We will adapt them for solving the interval systems.

The interval Jacobi operator. The ith equation of the real system Ax = b reads
∑n

j=1 aijxj = bi,
from which

xi = 1
aii

(

bi −
∑i 6=i

j=1 aijxj

)

.



3.4. Iterative methods for the square case 51

This gives rise to the classical Jacobi method. Starting with some initial approximation x0 ∈ Rn, the kth
iteration for the Jacobi method is

1: for i = 1, . . . , n do

2: xki := 1
aii

(

bi −
∑i−1

j 6=i aijx
k−1
j

)

,

3: end for

For the interval system Ax = b, we have to calculate an initial enclosure x0 ⊇ Σ first. Next, the kth
interval Jacobi iteration draws as follows.

1: for i = 1, . . . , n do

2: xk
i := 1

aii

(

bi −
∑

j 6=i aijx
k−1
j

)

;

3: xk
i := xk

i ∩ xk−1
i .

4: end for

In other words, it is the iterative method from Section 3.4 using the interval Jacobi operator

J(x)i := 1
aii

(

bi −
∑

j 6=i aijxj

)

.

Naturally, we have to assume that 0 6∈ aii for all i ∈ {1, . . . , n}, unless we employ some type of an extended
interval arithmetic (see Remark 3.33). If Ac = In, which is obtained by a suitable preconditioning, then
the condition ∃i : 0 ∈ aii implies irregularity of A and thus Σ could be unbounded.

Denote by D the diagonal matrix with entries equal to the diagonal of A, and by A′ denote A with
the diagonal set to zero. Then the interval Jacobi operator has a compact form

J(x) := D−1(b−A′x),

where D−1 = diag(d−1
11 , . . . ,d

−1
nn). Thus, the interval Jacobi operator is an operator based on splitting

(3.11), where M is the diagonal of A, and N the rest of A.
The important property of the interval Jacobi operator (and any similar interval operator) is that it

misses out no solution:

Theorem 3.31. For each x ∈ IRn we have J(x) ⊇ x ∩Σ.

Proof. For each x ∈ x ∩Σ we have x = D−1(b−A′x) ⊆ D−1(b−A′x) = J(x).

The interval Gauss–Seidel operator. The classical Gauss–Seidel method for solving the real system
Ax = b is based on expressing the ith equation as

xi = 1
aii

(

bi −
∑i−1

j=1 aijxj −
∑n

j=i+1 aijxj

)

.

This leads us to the iterative process, where the kth iteration reads

1: for i = 1, . . . , n do

2: xki := 1
aii

(

bi −
∑i−1

j=1 aijx
k
j −

∑n
j=i+1 aijx

k−1
j

)

.

3: end for

The interval Gauss–Seidel iteration method for solving Ax = b then simply utilizes interval arith-
metic

1: for i = 1, . . . , n do

2: xk
i := 1

aii

(

bi −
∑i−1

j=1 aijx
k
j −

∑n
j=i+1 aijx

k−1
j

)

;

3: xk
i := xk

i ∩ xk−1
i .

4: end for

Thus, the corresponding interval Gauss–Seidel operator reads

GS(x)i := 1
aii

(

bi −
∑i−1

j=1 aijGS(x)j −
∑n

j=i+1 aijxj

)

.

The interval Gauss–Seidel operator is also an operator based on splitting (3.12), where M is the lower
triangular part of A, N the strictly upper triangular part of −A, and the resulting value of GS(x) is
computed by forward substitution.

Also the interval Gauss–Seidel operator omits no solution included in x:
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Theorem 3.32. For each x ∈ IRn we have GS(x) ⊇ x ∩Σ.

The interval Gauss–Seidel method is similar to the interval Jacobi one, but the former outperforms
the latter since the interval Gauss–Seidel iteration employs the updated values xk

1 , . . . ,x
k
i−1. Nevertheless,

the interval Jacobi iterations may come into play when performing parallel computation.

Both methods converge to the same limit. Later in Theorem 3.43 we will present an explicit formula
for the limit.

When A is an M-matrix, then the interval Gauss–Seidel method converges to the optimal �Σ; see
Barth and Nuding (1974); Neumaier (1990). The interval Gauss–Seidel method is superior to any interval
operator based on splitting. A more detailed analysis is given in Mayer (2017); Neumaier (1990).

The interval Gauss–Seidel method was introduced by Ris (1972). From that time, various improve-
ments appeared. Efficient implementation of the interval Gauss–Seidel method is due to Hansen and Sengupta
(1981); cf. Hansen and Walster (2004). It takes into account the order of equations that are processed
and enables division by zero by using a generalized interval arithmetics, too.

Remark 3.33 (Extended interval arithmetic). The interval Gauss–Seidel method is suitable for employ-
ing the extended interval arithmetic (Section 2.3), which is implemented as follows (Neumaier, 1990).
Consider an auxiliary one-variable interval equation ax = b with an initial domain x ∈ IR. Then the
restricted solution set

Σ(a, b,x) := {x ∈ x; ax = b for some a ∈ a, b ∈ b},

which is utilized in each step of the interval Gauss–Seidel method when dividing by a diagonal entry,
reads

Σ(a, b,x) =























b
a
∩ x if 0 6∈ a,

x if 0 ∈ a, 0 ∈ b,

� (x ∩ ([−∞, b/a] ∪ [b/a,∞])) if 0 ∈ a, 0 < b,

�
(

x ∩
([

−∞, b/a
]

∪
[

b/a,∞
]))

if 0 ∈ a, 0 > b.

For concreteness, consider the interval equation

[−2, 1]x = [6, 7], x ∈ x = [−5, 5].

By using the extended interval arithmetic, we can shrink the initial domain x to Σ([−2, 1], [6, 7], [−5, 5]) =
[−5,−3].

3.4.2 Krawczyk method

The Krawczyk method (Krawczyk, 1969) is an interval operator based on splitting (3.11), where M = In
and N = In −A. The Krawczyk operator thus reads

K(x) := b + (In −A)x.

Reliability of the Krawczyk operator is easy to see.

Proposition 3.34. We have x ∈ x ∩Σ ⊆ K(x).

Proof. Let x ∈ x∩Σ, so Ax = b for some A ∈ A and b ∈ b. Therefore x = b+(In−A)x ∈ b+(In−A)x =
K(x).

Analysing the Krawczyk method, we obtain a simple bound for the overestimation of the enclosure
after one iteration. Moreover, the overestimation is easily calculated by utilizing intermediate calculations.

Proposition 3.35 (Rump, 1990). Let x ⊇ Σ be given. Then the result of one Krawczyk iteration over-
estimates �Σ by no more than 2 mag(In −A)x∆ from below and from above.
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Proof. Denote

α := sup(b + (In −A)xc), β := mag(In −A)x∆.

Any x ∈ Σ can be written as x = b + (In −A)x = b + (In −A)xc + (In −A)(x− xc). Thus,

sup(�Σ) ≥ sup(b + (In −A)xc) + min
A∈A

(In −A)(x− xc) ≥ α− β.

Similarly,

sup(�Σ) ≤ sup(K(x)) = sup(b + (In −A)x) ≤ sup(b + (In −A)xc + (In −A)(x− xc)) ≤ α + β.

Now,

α− β ≤ sup(�Σ) ≤ sup(K(x)) ≤ α + β,

so the overestimation is at most 2β.

Now, we show that the Krawczyk method yields not as tight enclosures as the interval Jacobi or
Gauss–Seidel method. Notice, however, that the Krawczyk method is still worthy of consideration for
some purposes, e.g., in parametric interval systems (Section 3.9).

Proposition 3.36. Suppose that no diagonal entry of A contains the zero. Then one step of the interval
Jacobi or Gauss–Seidel iteration is superior to one step of the Krawczyk one.

Proof. It suffices to compare the Jacobi iteration with the Krawczyk one. Let x be an initial enclosure.
The ith step of the Jacobi iteration draws

xJ
i := 1

aii

(

bi −
∑

j 6=i aijxj

)

∩ xi

whereas the Krawczyk iteration puts

xK
i :=

(

bi −
∑

j 6=i aijxj − (aii − 1)xi

)

∩ xi.

Denoting a := aii and c := (b)i −
∑

j 6=i(A)ijxj, the above reads

xJ
i := c

a
∩ xi and xK

i := (c− (a− 1)xi) ∩ xi.

Suppose that ai > 0 and c ≥ 0; the other situations are dealt with similarly. We compare the right
endpoints only since the left endpoints are compared analogously. Suppose that xJ

i 6= ∅, otherwise we are
done. This implies that xi ≤ c/a. If a ≥ 1, then

sup(c− (a− 1)xi) ≥ c− (a− 1)xi ≥ c− (a− 1)
c

a
=

c

a
= sup

( c

a

)

,

showing sup(xK
i ) ≥ sup(xJ

i ). If a < 1, then

sup(c− (a− 1)xi) ≥ c− (a− 1)xi ≥ sup(xJ
i )a− (a− 1) sup(xJ

i ) = sup(xJ
i ).

In this case, sup(xK
i ) ≥ sup(xJ

i ), too.

A stronger result that preconditioned interval Gauss–Seidel iteration is always superior to the Krawczyk
one can be found in (Neumaier, 1990, Thm. 4.3.5).
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The residual Krawczyk method. The residual form transformation presented in Section 3.2.2 sub-
stitutes the variables x := x∗ + y and considers the system in the form Ay = b−Ax∗. If y is an enclosure
to the corresponding solution set, then y + x∗ encloses the original one. The Krawczyk operator for the
transformed system reads

Kr(y) := b−Ax∗ + (In −A)y.

Theorem 3.37 (Neumaier, 1990). The residual Krawczyk method produces no tighter enclosures than
the Krawczyk method.

Proof. We estimate the Krawczyk operator from above by the residual one

K(x) = K(y + x∗) = b + (In −A)(y + x∗)

⊆ b + (In −A)y + x∗ −Ax∗ = b−Ax∗ + (In −A)y = Kr(y).

Even though this result does not praise the residual version, the situation is not so bad. As long as
C = (Ac)−1, both methods converge to the same fixed point (see Corollary3.45 and around), even though
the speed of the residual one is smaller. The residual form will be particularly convenient when solving
parametric interval systems (Section 3.9).

3.4.3 ε-inflation

The previous iteration methods started with an enclosure of Σ, and iteratively tightened it to make it as
small as possible. In contrast, ε-inflation goes the opposite direction. It starts with a small interval vector
and blows it up until a rigorous enclosure of the solution set is achieved.

Let OA,b(x) be an interval operator for Σ satisfying three natural properties:

1. for every A ∈ A and b ∈ b and for every x we have OA,b(x) ⊆ OA,b(x), that is, it satisfies some
restricted inclusion isotonicity;

2. OA,b : Rn → Rn is continuous for each A ∈ A and b ∈ b and when restricted to Rn;

3. OA,b(x) = x for each A ∈ A, b ∈ b and x ∈ Rn such that Ax = b.

An example of such an interval operator is, e.g., the Krawczyk one.

Theorem 3.38. If OA,b(x) ⊆ x, then for each A ∈ A and b ∈ b, there is a fixed point of OA,b in x,
which is a solution of Ax = b.

Proof. It follows from Brouwer’s fixed point Theorem 1.26 as OA,b(x) ⊆ x.

However, as illustrated by the example below, the condition OA,b(x) ⊆ x is not sufficient to prove
regularity of A and the inclusion Σ ⊆ x.

Example 3.39. Let

A =

(

[0, 2] 0
0 [0, 2]

)

, b =

(

0
0

)

, x =

(

[−1, 1]
[−1, 1]

)

.

For the Krawczyk operator, we have K(x) = x, but A is singular and Σ = R2 is unbounded.

We derive a stronger result for the Krawczyk operator by adopting the procedure from Rump (2010).

Lemma 3.40. Let x,v ∈ IRn and V ∈ IRn×n. If

v + V x ⊆ intx,

then ρ(V ) < 1.

Proof. Let V ∈ V . Since

v + V x = v + V xc + [−|V |x∆, |V |x∆] ⊆ intx,

we have |V |x∆ < x∆. Since x∆ > 0, by the Perron–Frobenius theory (Theorems 1.8 and 1.9), ρ(V ) ≤
ρ(|V |) < 1.



3.4. Iterative methods for the square case 55

Applying it to the Krawczyk operator, we get the following.

Theorem 3.41. Let x ∈ IRn. If
b + (I −A)x ⊆ intx,

then A is regular and Σ ⊆ x.

Proof. By Lemma 3.40, we have ρ(I −A) < 1, which implies regularity of A. Now, use Theorem 3.38 to
prove Σ ⊆ x.

Implementation. The ε-inflation method is usually implemented for the preconditioned residual Krawczyk
form. We precondition by the numerically computed inverse of Ac, and we apply the residual form with
x∗ being a numerically computed solution of Acx = bc. After this transformation, the iterations go as
follows. Set x := b and repeat performing the inflation y := [0.9, 1.1]x + 10−20[−1, 1]n and updating
x := b + (I −A)y until x ⊆ inty. If we succeed, Σ ⊆ x∗ + x.

Notes. The ε-inflation method was introduced by Alefeld and Apostolatos (1968); Caprani and Madsen
(1978) and popularized (and named) by Rump (1980, 1983, 1992). It was implemented in INTLAB up to
version 6 in the first stage of the function verifylss by using the Krawczyk operator.

3.4.4* Interval operators in a general framework

As we saw in the previous sections, the interval operator often takes the form of

O(x) := U(v + V x). (3.13)

for some interval matrices U ,V ∈ IRn×n.
Based on the iterations, one can derive a direct method to enclose Σ. Notice, however, that it requires

another verified inverse (or a system of linear equations) calculation.
Theorem 3.42. If ρ(mag(U) mag(V )) < 1, then

Σ ⊆ U(v + [−1, 1]
(

(In − mag(V ) mag(U))−1 − In
)

mag(v)).

Moreover, provided V c = 0 and U is diagonal, then the enclosure is the limit of the iterations.

Proof. The idea is to find x such that such that x ⊇ U(v+V x). This inclusion implies that for each v ∈ v,
U ∈ U and V ∈ V we have x ⊇ Uv+UV x and ρ(UV ) ≤ ρ(mag(U) mag(V )) < 1. By Theorem 1.27, the
operator x 7→ Uv + UV x has a unique fixed point, and it is in x. Since the fixed points of the mapping
correspond to the solutions of the system of linear equations, Σ ⊆ x.

To find such an interval vector, we overestimate the right-hand side and solve the algebraic equation

x = U(v + [−1, 1] mag(V ) mag(x)).

Note that if V c = 0 and U is diagonal, then the right-hand sides are the same and no overestimation
happens. The magnitude of x draws

mag(x) ≤ mag(U)(mag(v) + mag(V ) mag(x)),

and it holds as equation as long as U is diagonal. Factoring mag(x), we get

mag(x) ≤ (In − mag(U) mag(V ))−1 mag(U) mag(v). (3.14)

Since ρ(mag(U) mag(V )) < 1 and mag(U),mag(V ) ≥ 0, Theorem 1.10 implies (In−mag(U) mag(V ))−1 =
∑∞

j=0(mag(U) mag(V ))j ≥ 0, and therefore the above inequality is valid and mag(x) ≥ 0. Substituting
for mag(x) its upper bound and using Neumann series again, we obtain the enclosure

x∗ = U(v + [−1, 1] mag(V )(In − mag(U) mag(V ))−1 mag(U) mag(v)) (3.15)

= U(v + [−1, 1]((In − mag(V ) mag(U))−1 − In) mag(v)).
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If V c = 0 and U is diagonal, then the above enclosure satisfies x∗ = U(v + V x∗). We claim that the
iterations x 7→ U(v+V x) converge to this unique interval vector for any initial x ∈ IRn. The magnitude
of x changes as follows

mag(x) 7→ mag(U)(mag(v) + mag(V ) mag(x)).

Since ρ(mag(U) mag(V )) < 1, we have by Theorem 1.27 that the magnitudes mag(x) converge to the
right-hand side of (3.14), which is mag(x∗). Now, for any x ∈ IRn with mag(x) = mag(x∗) we have

O(x) = U(v + V x) = U(v + V x∗) = x∗,

which completes the proof.

Interval Jacobi and Gauss–Seidel methods. By a slight modification of Theorem 3.42, we obtain
a limit of the interval Jacobi (and Gauss–Seidel) iterations. Notice that an equivalent expression is given
in (Neumaier, 1990, Thm. 4.4.10).

Theorem 3.43. If ρ(A∆) < 1 and Ac = In, then

Σ ⊆ D−1(b + [−1, 1] mag(A′)A−1 mag(b)),

and the enclosure is the limit of the Jacobi iterations.

Proof. We call Theorem 3.42 with U := D−1, V := −A′, and v := b. Using the form (3.15) and the fact
that mag(D−1) = D−1, we get

Σ ⊆ D−1(b + [−1, 1] mag(A′)(In −D−1 mag(A′))−1D−1 mag(b)).

Since

(In −D−1 mag(A′))−1D−1 = (D(In −D−1 mag(A′)))−1 = (D − mag(A′))−1 = A−1,

we have the final form. Notice that the assumption of Theorem 3.42 is satisfied since from ρ(A∆) < 1
there is x > 0 such that (A′∆ + D∆)x = A∆x < x, whence A′∆x < (In −D∆)x. Now,

mag(D−1) mag(A′)x = (In −D∆)−1A′∆x < (In −D∆)−1(In −D∆)x = x.

Therefore ρ(mag(D−1) mag(A′)) < 1.

Krawczyk method. By Theorem 3.42, the direct enclosure to Σ derived from the Krawczyk iterations
is as follows; we simply substitute U :− In, V :− In −A and v := b.

Corollary 3.44. If ρ(mag(In −A)) < 1, then

Σ ⊆ b + [−1, 1]
(

(In − mag(In −A))−1 − In
)

mag(b).

If Ac = In, then the enclosure is the limit of the iterations.

The residual Krawczyk method. If we apply the residual form of an interval system of linear equa-
tions, then the enclosure has the form of x = x∗+y, where y encloses the solution set of Ay = b−Ax∗ and
x∗ ∈ Rn is fixed. Applying the above result for the Krawczyk method to this form, we get the following
result.

Corollary 3.45. If ρ(mag(In −A)) < 1, then

Σ ⊆ x∗ + b−Ax∗ + [−1, 1]
(

(In − mag(In −A))−1 − In
)

mag(b−Ax∗). (3.16)

If Ac = In, then the enclosure is the limit of the iterations.
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It is an easy exercise to show by comparing the centers and radii that this enclosure equals to that
from the Krawczyk method (Corollary 3.44) provided Ac = In and x∗ = bc. Thus, both have the same
fixed point. Surprisingly, the generalization of the well-known Bauer–Skeel bounds for the solution of a
perturbed linear system yields the same enclosure; see Rohn (2010).

Remark 3.46. Besides (3.16), sometimes a slightly simpler enclosing formula

Σ ⊆ x∗ + [−1, 1](In − mag(In −A))−1 mag(b−Ax∗) (3.17)

is used; see Section 3.9. If Ac = In and x∗ = bc, then both enclosures are the same, but in general (3.16)
is provably tighter.

Notes and further reading. More on interval operators and their convergence can be found in
Alefeld and Herzberger (1983); Neumaier (1990). For example, in the case with U = 0, the iterations
converge to a unique fixed point x∗ for every starting point x0 if and only if ρ(mag(V )) < 1. In which
case, x∗ contains the whole solution set.

Iterations of general interval operators and their convergence are discussed by Mayer (2017).

3.5 The square case – hull methods and special cases

This section is devoted to the methods that compute �Σ. Due to its intractability, the methods have
exponential complexity in the worst case. That is why we also consider special kinds of interval matrices,
for which the interval hull of the solution set can be calculated more easily.

3.5.1 Hansen–Bliek–Rohn method

Herein, we describe a direct method for calculating the tightest enclosure to Σ, that is, �Σ. We make
use of the assumption Ac = In. This property may be achieved by preconditioning the constraint interval
matrix by the midpoint inverse, and by a slight inflation such that Ac = In exactly; cf. Section 3.2.1.
The method was developed independently by Hansen (1992) and Bliek (1992) and further improved by a
rigorous proof by Rohn (1993a); see also Ning and Kearfott (1997); Neumaier (1999).

Theorem 3.47. Let Ac = In and ρ(A∆) < 1. Denote

M := A−1,

x∗ := M mag(b).

For every i = 1, . . . , n, we have

sup(�Σ)i ≤ max
{

x∗i + Mii(b
c
i − |bci |), 1

2Mii−1 (x∗i + Mii(b
c
i − |bci |))

}

, (3.18a)

inf(�Σ)i ≥ min
{

−x∗i + Mii(b
c
i + |bci |), 1

2Mii−1 (−x∗i + Mii(b
c
i + |bci |))

}

. (3.18b)

Proof. By the Oettli–Prager Theorem 3.2,

|x− bc| ≤ A∆|x| + b∆.

from which we can derive two inequalities

x− bc ≤ A∆|x| + b∆,

and

|x| − |bc| ≤ A∆|x| + b∆.
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Taking the ith inequality from the former system and the other inequalities from the latter system we
have

|x| + (xi − |x|i)ei − |bc| − (bci − |bci |)ei ≤ A∆|x| + b∆,

or

(In −A∆)|x| + (xi − |x|i)ei ≤ |bc| + (bci − |bci |)ei + b∆.

By Theorem 1.10 we have

M =
(

In −A∆
)−1

=
∞
∑

k=0

(

A∆
)k ≥ In ≥ 0.

Thus, multiplying the previous inequalities by M gives

|x| + (xi − |x|i)Mei ≤ x∗ + (bci − |bci |)Mei.

The ith inequality draws

|x|i + (xi − |x|i)Mii ≤ x∗i + (bci − |bci |)Mii.

We distinguish two cases. If xi ≥ 0, then

xi ≤ x∗i + (bci − |bci |)Mii.

Provided xi < 0 we get

(2Mii − 1)xi ≤ x∗i + (bci − |bci |)Mii.

Since M ≥ In, we have 2Mii > 1 and so

xi ≤
1

(2Mii − 1)
(x∗i + (bci − |bci |)Mii) .

Putting together, we obtain (3.18a).

The lower bound (3.18b) can be proven by reducing to the previous case by transformation A(−x) =
−b. In this way, bc changes its sign and for any x ∈ Σ we have

−xi ≤ max

{

x∗i + Mii(−bci − |bci |),
1

2Mii − 1
(x∗i + Mii(−bci − |bci |))

}

.

from which (3.18b) follows.

We have even a stronger result – the Hansen–Bliek–Rohn method produces �Σ exactly, up to the
numerical accuracy.

Theorem 3.48. The Hansen–Bliek–Rohn method yields �Σ.

Proof. Let i ∈ {1, . . . , n}. We have M = A−1, x∗i = M mag(b). We will find two realizations of A and b

for which the ith entries of their solutions are equal to x∗i and 1
2Mii−1x

∗
i . This will prove the upper bound;

the lower bound can be proven accordingly.

For any y, z ∈ {±1}n consider the system Ayzx = by, i.e.,

(In − diag(y)A∆ diag(z))x = bc + diag(y)b∆.

Put z′ := z + (1 − zi)ei, and substitute x′ := diag(z′)x. Now, the system reads

(

In − diag(y)A∆ diag(z)
)

diag(z′)x′ = bc + diag(y)b∆.
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Note that the solutions of both systems have the same ith entry. Multiplying by diag(z′) we obtain

(

In − diag(z′) diag(y)A∆ diag(z) diag(z′)
)

x′ = diag(z′)bc + diag(z′) diag(y)b∆.

Now, we associate y := z′ and zj = z′j := sgn(bcj), j 6= i. Thus, the only free parameter is zi and the
system takes the form of

(

In −A∆ diag(z) diag(z′)
)

x′ = diag(z′)bc + b∆,

or
(

In −A∆ diag(z) diag(z′)
)

x′ =
∑

j 6=i

(|bcj | + b∆j )ej + biei.

We distinguish two cases. First, if zi := 1, then z = z′ and the system draws

(

In −A∆
)

x′ =
∑

j 6=i

(|bcj | + b∆j )ej + biei,

or

Ax′ =
∑

j 6=i

(|bcj | + b∆j )ej + biej ,

Its solution is

x′ = M

(

∑

j 6=i

(|bcj | + b∆j )ej + biei

)

=
∑

j 6=i

(|bcj | + b∆j )M∗j + biM∗i

with the ith entry x′i =
∑

j 6=iMij(|bcj | + b∆j ) + Miibi = x∗i .

Next, put zi := −1 = −z′i. Hence the system can be written as

(

A + 2A∆
∗i
)

x′ =
∑

j 6=i

(|bcj | + b∆j )ej + biei,

To determine its solution, we utilize the Sherman–Morrison formula (Theorem 1.2) to calculate the inverse
of (A + 2A∆

∗i). Put a := 2A∆
∗i = 2(ei −A∗i) = 2(ei −M−1

∗i ) and derive

(

A + 2A∆
∗i
)−1

=
(

A + aeTi
)−1

= M − 1

1 + eTi Ma
MaeTi M

= M − 2

1 + 2Mi∗(ei −M−1
∗i )

M(ei −M−1
∗i )Mi∗ = M − 2

2Mii − 1
(M∗i − ei)Mi∗.

The ith row of the inverse is

(

A + 2A∆
∗i
)−1

i∗ = Mi∗ −
2

2Mii − 1
(Mi − 1)Mi∗ =

1

2Mii − 1
Mi∗.

Hence the solution of the system has the ith entry x′i = 1
2Mii−1x

∗
i .

It follows from the above theorems and their proofs that bci ≥ 0 implies sup(�Σ)i = x∗i and inf(�Σ)i ≥
−x∗i , whence mag(�Σ)i = x∗i . Similarly, if bci ≤ 0 then sup(�Σ)i ≤ x∗i and inf(�Σ)i = −x∗i , whence
mag(�Σ)i = x∗i . In any case,

mag(�Σ) = x∗ = A−1 mag(b).

3.5.2 Comparison of methods

Suppose that Ac = In, and let A be regular. Denote by xK , xGS, xG, xHBR the limiting enclosures
of the Krawczyk and Gauss–Seidel method, the enclosure by the interval Gaussian elimination, and the
Hansen–Bliek–Rohn one, respectively.
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Figure 3.8: (Example 3.50) Comparison of methods for enclosing the solution set Σ.

Theorem 3.49. If Ac = In, then

mag(�Σ) = mag(xHBR) = mag(xG) = mag(xGS) = mag(xK) = A−1 mag(b),

�Σ = xHBR ⊆ xG ⊆ xGS ⊆ xK .

Proof. It follows from the results developed in the previous section. The comparison with the Gaussian
elimination comes from (Neumaier, 1990, Thm. 4.5.11).

Example 3.50. Consider the interval linear system of equations Ax = b, where

A =

(

[0.7, 1.3] [−0.4, 0.4]
[−0.4, 0.4] [0.6, 1.4]

)

, b =

(

[2, 3]
[0, 1]

)

.

Notice that Ac = In, so we do not apply preconditioning. Enclosures calculated by the particular methods
are:

xHBR =

(

[0.8510, 8.4616]
[−4.6154, 7.3077]

)

, xG =

(

[−1.3187, 8.4616]
[−4.6154, 7.3077]

)

,

xGS =

(

[−1.3187, 8.4616]
[−5.6411, 7.3077]

)

, xK =

(

[−3.4616, 8.4616]
[−6.3077, 7.3077]

)

.

Figure 3.8 illustrates the solution set Σ and the enclosures nested in the way as stated in Theorem 3.49.
Notice also, in accordance with the theorem, that in each entry the interval enclosures have at least one
bound tight (in this case the upper bound).

The theorem says that, under the assumption, all the basic enclosure methods are exact in at least
one endpoint of each coordinate, and their tightness differs only in the second endpoint. This property
motivated the magnitude method Hlad́ık (2014b) based on a special operator starting with the enclosure
[−A−1 mag(b), A−1 mag(b)] and trying to approach the Hansen–Bliek–Rohn bounds. It yields a tight
enclosure in a very low time.
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3.5.3 Tightening methods

By a tightening method, we mean a method that starts with an initial enclosure x of the solution set
Σ computed by a standard method (discussed in the previous sections) and tries to make it even more
tighter. Such tightening methods are expected to run in polynomial time, but the price for tightening
usually lies in higher computational cost than for the standard methods.

Monotonicity checking

Monotonicity checking (Hansen, 1969a) enables to fix some interval coefficients at either the lower or
upper bounds based on monotonicity of the solution w.r.t. the coefficient. Provided the kth entry of the
solution xk is nondecreasing on the domain, that is,

∂xk
∂aij

≥ 0, (3.19)

then Σk is attained for the matrix A ∈ A with aij = aij , and Σk is attained for aij = aij. This idea gives
rise to a method that improves the lower and upper bounds of the particular entries of the solution set.
Let k ∈ {1, . . . , n} and let us consider the upper bound case; the lower bounds are tightened accordingly.
We fix at upper endpoints aij := aij all i, j for which xk is nondecreasing with respect to xk, and we
fix at lower endpoints aij := aij all i, j for which xk is nonincreasing with respect to xk. Similarly for b.

Thus, we have a subset of A and an enclosure method yields a hopefully sharper upper bound on Σk.

Checking for monotonicity (3.19) is not easy in general, so we propose a simple sufficient condition.
Recall the formulae from Theorem 1.25

∂xk
∂aij

= −(A−1)kixj,
∂xk
∂bi

= (A−1)ki.

Let C ∈ IRn×n be an enclosure of the set of inverses {A−1; A ∈ A}; compare Section 5.4.4. Now, if
−ckixj ≥ 0, then (3.19) holds. Analogously, cki ≥ 0 implies monotonicity of xk with respect to bi.

Notice that similar ideas are used also for tightening enclosures of other functions; compare Chapter 6.

3.5.4 Hull methods

The previous methods are designed to efficiently calculate enclosures of the solution set. The calculated
enclosures are usually tight enough, but not optimal in general. Hull methods is a name for methods that
determine the interval hull of the solution set (exactly up to the numerical calculations). In view of the
NP-hardness, they are exponential in the worst case. However, they are not necessarily exponential in
every case.

Jansson’s algorithm

The first naive algorithm is based on Theorem 3.5. In each orthant, the solution set forms a convex
polyhedral set. Thus, we can go through all orthants, determine bounds of the particular convex polyhedral
sets (if they are non-empty) and output the maximal bounds. Since there are 2n orthants, this leads to
a very inefficient algorithm.

The naive approach can easily be improved by computing an enclosure x0 to Σ by any of the mentioned
methods. Now, it is sufficient to inspect orthants that have nonempty intersection with x0. Hence we check
the orthants corresponding to sign vectors s ∈ {±1}n satisfying si = 1 if x0i ≥ 0, si = −1 if x0i ≤ 0, and
si = ±1 otherwise. This approach is much faster in average, but may fail in the case we cannot determine
an initial enclosure. The initial enclosure may intersect all orthants, too.

Another hull method was proposed by Jansson (1997). It is based on the topological properties of the
solution set Σ.

Theorem 3.51 (Jansson, 1997). When Σ 6= ∅, then exactly one of the following alternatives holds true:

(1) A is regular, in which case Σ is bounded and connected.
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(2) A is irregular, in which case each topologically connected component of Σ is unbounded.

Proof. (1) Due to regularity, Ax = b has a unique solution xA,b, which is a continuous function with
respect to A ∈ A and b ∈ b. Therefore the range is compact and connected.

(2) Let x0 ∈ Σ be arbitrary, so there are A0 ∈ A, and b0 ∈ b such that A0x0 = b0. Suppose to the
contrary that the component K containing x0 is bounded. Hence A0 must be nonsingular.

Since A is irregular, there is a singular A1 ∈ A. Define A(λ) := (1 − λ)A0 + λA1 ∈ A with λ ∈ [0, 1],
and

λ∗ := inf{λ ∈ [0, 1]; A(λ) is singular}.
We have λ∗ > 0 since A(0) = A0 is nonsingular, so any sufficiently close matrix is nonsingular, too.
The solution x(λ) to the system A(λ)x = b0 depends continuously on λ ∈ [0, λ∗), so x(λ) ∈ K for any
λ ∈ [0, λ∗). Take a sequence λi ∈ [0, λ∗), i = 1, . . . , converging to λ∗, and select a subsequence such that
x(λi) converges to some x∗ ∈ K. Now,

A(λ∗)x∗ = lim
i→∞

A(λi) lim
i→∞

x(λi) = lim
i→∞

A(λi)x(λi) = b0.

Since A(λ∗) is singular, the solution set to A(λ∗)x∗ = b0 is unbounded and therefore also K.

Based on the above topological characteristics of Σ, the hull method works as follows: Find any
solution xc ∈ Σ, for instance, by solving the midpoint system Acx = bc. Next, check whether or not the
component K containing xc is bounded.

More precisely, let s = sgn(xc). Determine the interval hull, denoted by xs, of the part of Σ that
lies in the orthant determined by the sign vector s. Provided xs is unbounded, we stop; otherwise, for
each i ∈ {1, . . . , n} do the following. If xsi = 0, then we have to inspect the neighboring ortant that
corresponds to the sign vector (s1, . . . , si−1,−1, si+1, . . . , sn). Similarly, if xsi = 0, then we have to inspect
the neighboring ortant corresponding to the sign vector (s1, . . . , si−1, 1, si+1, . . . , sn). In this way, we
sequentially go through the orthants until we either decide on unboundedness or inspect all orthants in
which K is lying.

Rohn’s algorithm

Another approach to hull computation is due to Rohn (1989a, 2006a, 2012a); in a slightly different fashion
described also in (Neumaier, 1990, Chap. 6).

Theorem 3.52 (Rohn, 1989a). Let A ∈ IRn×n be regular and b ∈ IRn. For each y ∈ {±1}n, the system
Acx− diag(y)A∆|x| = by has a unique solution solution xy ∈ Σ and

convΣ = conv{xy; y ∈ {±1}n}.

Proof. See Rohn (1989a, 2006a).

The points xy, y ∈ {±1}n, are thus important points of the solution set. Geometrically, they are the
extremal vertices of Σ – the spires of the star-looking solution sets; see Figures 3.1, 3.2, 3.4 and 3.5. We
will consider these points also in Section 4.4.1, where they arise from another perspective.

These points relate to another result by Rohn (2012b): For each y ∈ {±1}n, the whole segment with
endpoints xy and x−y lies in Σ.

For solving the absolute value equation Acx − diag(y)A∆|x| = by, Rohn proposed The sign accord
algorithm (Rohn, 1989a, 2012a). The basic idea is the following. If we know the sign vector z = sgn(x)
of the solution, we can easily solve the equation. Using |x| = diag(z)x, it reduces to the linear equations
Ayzx = by. Since typically we do not know the signs in advance, we will solve the equation iteratively.
We can start, e.g., with z := sgn((Ac)−1bc), and while z does not meet the signs of the solution to
Ayzx = by, we switch the violated zi (i.e., zi 6= sgn(xi)) with the smallest index i, and solve Ayzx = by.
The pseudocode of the method is displayed in Algorithm 3.1.

Rohn (1989a) proved that the algorithm is finite for each y ∈ {±1}n and each starting z ∈ {±1}n as
long as A is regular. Nevertheless, if we switch the signs of z in other way, there is less known; cf. open
problems in Chapter 11.
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Algorithm 3.1 Sign accord

1: Solve Acx = bc, and put z := sgn(x),
2: solve Ayzx = by,
3: while ∃i : zixi < 0 do
4: put k := min{i; zixi < 0},
5: put zk := −zk,
6: solve Ayzx = by,
7: end while
8: return x

Using the sign accord algorithm directly to determine �Σ is not suitable since we have to solve 2n

linear equations. Utilizing the signs of an initial enclosure of Σ is not so easy here. However, by using a
dual approach, Rohn (2012a) proposed a not a priori exponential algorithm, which was implemented in
VERSOFT.

Theorem 3.52 directly implies the following result stating that the extremal points of the solution set
Σ are attained for the endpoints of A and b. This reduces the problem to 2n

2+n instances. A self-contained
proof of the statement can also be found in Mayer (2017).

Corollary 3.53 (Beeck, 1972; Nickel, 1977; Harfiel, 1980). Let A ∈ Rn×n be regular and b ∈ IRn. Then

convΣ = conv{A−1b; |A−Ac| = A∆, |b− bc| = b∆}.

3.5.5 Easy case – inverse nonnegative matrices

Even though computing �Σ is NP-hard in general, there are some polynomially computable subclasses.
One such subclass (Ac = In) was discussed in Section 3.5.1. Another easy-to-solve subclass is that with
inverse nonnegative matrices, and, as a particular case, M-matrices. M-matrices naturally appear in
diverse situations, e.g., in economics Jerrell (1996, 1997) and others; see Neumaier (1990) and references
therein.

If A is an M-matrix, then A−1 ≥ 0 for every A ∈ A. This inverse nonnegativity holds also for other
matrices, and, surprisingly, can easily be checked by handling two real matrices only (Kuttler, 1971). For
other characterization, see Neumaier (1990); Rohn (1987, 2012b).

Theorem 3.54 (Kuttler, 1971). An interval matrix A ∈ IRn×n is inverse nonnegative if and only if

A−1 ≥ 0 and A
−1 ≥ 0. In which case, �{A−1; A ∈ A} = [A

−1
, A−1].

Proof. Let A ∈ A. Then A ≤ A ≤ A implies

A
−1

A ≤ In ≤ A−1A. (3.20)

Denote B := A
−1

A; we want to show that it is an M-matrix. Indeed, Bij ≤ 0 for i 6= j from (3.20), and for

v := A−1e > 0 we have Bv = A
−1

Av ≥ A
−1

Av = A
−1

e > 0. Hence B is nonsingular and from B = A
−1

A

the matrix A is nonsingular, too. Thus, we can write A−1 = B−1A
−1 ≥ 0.

Eventually, multiplying (3.20) from right by A−1 we get A
−1 ≤ A−1 ≤ A−1.

Example 3.55. Notice that {A−1; A ∈ A} = [A
−1

, A−1] does not hold in general even for M-matrices,
as the following example illustrates:

(

1 a
−1 1

)−1

=

( 1
1+a −1 + 1

1+a
1

1+a
1

1+a

)

, a ∈ [−1
2 , 0].

The interval hull of the inverse matrices is
(

[1,2] [0,1]
[1,2] [1,2]

)

but, e.g., ( 1 1
1 1 ) is never attained. This example also

shows that [A
−1

, A−1] may contain a singular matrix.
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{A−1; A ∈ A}
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Figure 3.9: (Remark 3.56) Illustration of the set {A−1; A ∈ A} for inverse nonnegative interval matrices.

Remark 3.56. Figure 3.9 schematically illustrates the set of inverses {A−1; A ∈ A}. The point A
−1

is
the entrywise minimum and A−1 is the maximum. Even though {A−1; A ∈ A} is not a box in general,
it is a convex polyhedron. This is easy to see in view of Corollary 3.7 since the ith column of A−1 is the
solution of the system Ax = ei and this solution lives in the nonnegative orthant for every A ∈ A.

Inverse nonnegativity applies in solving linear equations in the following way.

Theorem 3.57. Let A ∈ IRn×n be inverse nonnegative. Then

(1) �Σ = [A
−1

b,A−1b] when b ≥ 0,

(2) �Σ = [A−1b,A
−1

b] when b ≤ 0,

(3) �Σ = [A−1b,A−1b] when 0 ∈ b.

Proof.

(1) Let A ∈ A and b ∈ b. Since b ≥ b ≥ b ≥ 0 and A−1 ≥ A−1 ≥ A
−1 ≥ 0, we get A

−1
b ≤ A−1b ≤ A−1b.

(2) Analogous to (1).

(3) Let A ∈ A and b ∈ b. Using b ≥ 0 ≥ b and A−1 ≥ A−1 ≥ A
−1 ≥ 0, we get A−1b ≤ A−1b ≤ A−1b ≤

A−1b ≤ A−1b.

For a general b ∈ IRn, the interval hull �Σ can be efficiently computed, too. The proof of the following
result by Neumaier (1990) describes an iterative process that produces inf(�Σ) in at most n+1 iterations;
the case of sup(�Σ) is analogous.

Theorem 3.58. Let A ∈ IRn×n be inverse nonnegative. Then �Σ = [(A−e,s)
−1b, (Ae,s′)

−1b], where
s = sgn(inf(�Σ)) and s′ = sgn(sup(�Σ)).

Proof. Denote A(x) := A−e,s, where s = sgn(x). For every A ∈ A, we then have

A(x)x ≥ Ax. (3.21)

First, we show that there is x∗ ∈ Rn such that A(x∗)x∗ = b. Consider the iterations, producing vectors

x0, x1, . . . , where we start with x0 = A
−1

b and then iterate xi+1 = A(xi)−1b. In view of (3.21), we have
A(x0)x0 ≥ Ax0 = b, and for i ≥ 1 we have A(xi)xi ≥ A(xi−1)xi = b. Due to inverse nonnegativity,
xi ≥ A(xi)−1b = xi+1. Hence x0 ≥ x1 ≥ . . . is a nonincreasing sequence. Since A(x) changes only when
some entry of x changes its sign, we have after at most n + 1 iterations that A(xi)xi = b for some i.

Now, we show that if x∗ ∈ Rn satisfies A(x∗)x∗ = b, then x∗ = inf(�Σ). Let A ∈ A and b ∈ b

be arbitrary and denote x := A−1b. Then Ax = b ≥ b = A(x∗)x∗ ≥ Ax∗, whence x ≥ x∗ by inverse
nonnegativity. Therefore x∗ = inf(�Σ).
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Rohn (1989a) gives an alternative characterization of Σ when A ∈ IRn×n is inverse nonnegative:

�Σ = [x−e, xe],

where x−e and xe are solutions of the absolute value equation from Theorem 3.52. Despite the elegance
of this formulation, efficiency of its calculation is not clear.

Inverse sign pattern matrices

The above results can be easily generalized to the so-called inverse sign pattern matrices (Rohn, 1989a,
2012b). An interval matrix A ∈ IRn×n has the inverse sign pattern (y, z), where y, z ∈ {±1}n, if
diag(y)A−1 diag(z) ≥ 0 for all A ∈ A.

In this case, diag(z)Adiag(y) is inverse nonnegative, its left endpoint matrix is diag(z)Ac diag(y)−A∆

and the right endpoint matrix is diag(z)Ac diag(y)+A∆, so we have the following consequence of Kuttler’s
Theorem 3.54.

Corollary 3.59. An interval matrix A ∈ IRn×n has the inverse sign pattern (y, z) if and only if
(diag(z)Ac diag(y) −A∆)−1 ≥ 0 and (diag(z)Ac diag(y) + A∆)−1 ≥ 0.

Analogously we proceed for an interval linear system Ax = b with A having the inverse sign pattern
(y, z). We just employ the substitution x′ := diag(y)x and solve the interval system (diag(z)Adiag(y))x′ =
diag(z)b with the inverse nonnegative matrix diag(z)Adiag(y).

Inverse stable matrices

Even more general class of interval matrices are those matrices whose inverse matrix entries keep their
signs. Formally, A ∈ IRn×n is inverse stable if no A−1, A ∈ A, contains a zero entry. This class of matrices
was studied, e.g., in Rohn (1993c, 2012a,b).

Notes

There are much more results and topics in interval linear systems that we did not mentioned. For instance,
block interval methods (Garloff, 1990), sparse systems (Neumaier, 1990, references on p. 168).

3.6 Regularity of interval matrices

Recall that an interval matrix A ∈ IRn×n is regular if every matrix A ∈ A is nonsingular; otherwise, A is
called irregular (Definition 3.15). Checking regularity of interval matrices is still a computationally hard
problem; NP-hardness was proved by Poljak and Rohn (1988, 1993).

Theorem 3.60. Checking regularity of an interval matrix is co-NP-hard on the class of interval matrices
A with Ac non-negative positive definite rational and A∆ = eeT .

Proof. By Theorem 1.35, checking solvability of |Ax| ≤ e, eT |x| ≥ 1 is NP-hard on the set of non-negative
positive definite rational matrices A. The system is equivalent to

∣

∣

∣

∣

(

A
0

)

x−
(

0
1

)∣

∣

∣

∣

≤
(

eeT

eT

)

|x| +

(

0
0

)

.

Clearly, if x solves the former system, then it solves the latter. If x solves the latter, then x 6= 0 and
x′ := 1

eT |x|x solves the former. By the Oettli–Prager Theorem 3.2, the latter system describes the solution

set of the interval linear system

[A− eeT , A + eeT ]x = 0, (3.22a)

[−eT , eT ]x = 1. (3.22b)

If [A− eeT , A + eeT ] is regular, then (3.22a) forces all solutions to be zero, which contradicts (3.22b). If
[A− eeT , A+ eeT ] is irregular, then there is a non-zero solution x to (3.22a), which can be normalized by
x′ := 1

eT |x|x to fulfill (3.22b). Thus, we reduced the NP-hard problem of checking solvability of a nonlinear

system to checking irregularity of an interval matrix.
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NP-hardness remains true even for other special subclasses of interval matrices. For example, interval
matrices with A∆ = In; this is due to NP-hardness of P-matrix property and by Rohn (2012c).

Forty necessary and sufficient conditions for regularity of interval matrices were surveyed by Rohn
(2009); most of them are explicitly exponential formulae. Below, we state some of the conditions. The first
one employs the Oettli–Prager description of interval linear equations. The second condition characterizes
regularity by determinants of matrices of type Ayz . The third condition states, among others, that if A
is not regular, then it contains a singular matrix of a special form Ac − ddiag(y)A∆ diag(z). The last
condition is one of many regularity characterizations by an absolute value equation.

Theorem 3.61. Necessary and sufficient conditions for regularity of A:

(1) The system |Acx| ≤ A∆|x| has the only solution x = 0.

(2) det(Ayz) is constantly either positive or negative for each y, z ∈ {±1}n.
(3) Each matrix of the form Ac − ddiag(y)A∆ diag(z), d ∈ [0, 1], y, z ∈ {±1}n is nonsingular.

(4) For each y ∈ {±1}n, the system Acx− diag(y)A∆|x| = y has a solution.

Proof. We prove only the first three conditions. The other proofs and formulations are found in Rohn
(2009) or in the references therein.

(1) It follows from the Oettli–Prager Theorem 3.2 applied on the interval system Ax = 0. The interval
matrix A is regular if and only if the interval system Ax = 0 has only the trivial solution.

(2) One implication is trivial due to continuity of the determinant. We show the second implication
by negation. Let A be irregular, so that there is a nonzero solution x to |Acx| ≤ A∆|x|. By the proof of
the Oettli–Prager Theorem 3.2 we have Ax = 0 for a matrix A having the form of Auz with u ∈ [−1, 1]n

and z ∈ {±1}n. Thus, det(Auz) = 0 and det(Auz) is a linear function in ui for each i ∈ {1, . . . , n}.

We claim that there exist y, y′ ∈ {±1}n such that det(Ay,t) ≥ 0 ≥ det(Ay′,t). First, we set u1 := y1 ∈
{±1} such that det(Au,t) does not decrease. Subsequently, we fix u2, . . . , un to the values y2, . . . , yn ∈
{±1}, which we can do due to linearity of uis, and we arrive at det(Au,t) ≥ 0. Analogously we get
det(Au′,t) ≤ 0.

Moreover, we can find y, y′ ∈ {±1}n that differ in only one entry. Simply construct a sequence
y1, . . . , ym ∈ {±1}n such that y1 = y, ym = y′ and each pair of neighbors yk, yk+1 differs in exactly
one entry. Since det(Ay1,t) ≥ 0 ≥ det(Aym,t), we must get det(Ayk ,t) ≥ 0 ≥ det(Ayk+1,t) for some
k ∈ {1, . . . ,m− 1}.

(3) One implication is trivial, and the second is proved by negation. Suppose that A is irregular.
If det(Ac) = 0 or det(Ayz) = 0 for some y, z ∈ {±1}n, then we are done. Otherwise, by the previous
result, there are y, y′, z ∈ {±1}n such that det(Ayz) det(Ay′z) < 0. Without loss of generality suppose
that det(Ac) det(Ayz) < 0. The function det(Ac − α diag(y)A∆ diag(z)) is continuous in α, so for some
α ∈ [0, 1] there is det(Ac − αdiag(y)A∆ diag(z)) = 0.

Kreinovich (2005) showed that the finite reduction in Theorem 3.61(2) is optimal in the sense that
regularity of A cannot be checked in general by inspecting a subset of those matrices.

Remark 3.62. If A is irregular, then it contains a singular matrix A of special form. By Rohn (1993b),
there are d ∈ [0, 1] and y, z ∈ {±1}n such that A := Ac − ddiag(y)A∆ diag(z) ∈ A is singular. Another
special form singular matrix lies on an edge of A (Rohn, 1989a), i.e., there is (k, ℓ) such that akℓ ∈ akℓ

and aij ∈ {aij , aij} for (i, j) 6= (k, ℓ).

Another form will be presented in Corollary 5.32. Various special forms are recorded in Rohn (2009,
2012a).

3.6.1 Jansson & Rohn algorithm

Even though checking regularity of an interval matrix is co-NP-hard, there is an algorithm by Jansson and Rohn
(1999) that is not a priori exponential. It was implemented by Hlad́ık et al. (2011a) for computing real
eigenvalues of interval matrices, and it turned out to be more effective than traditional exponential for-
mulae.
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The algorithm is based on the topological properties of the solution set of interval linear equations; see
Section 3.5.4. Let b ∈ Rn be arbitrary. An interval matrix A ∈ IRn×n is regular if and only if the solution
set Σ to the interval system Ax = b is non-empty and bounded. Boundedness of Σ can be checked by
the Jansson algorithm. Recall that this method calculates an initial x0 ∈ Σ and then check boundedness
of the connected component K of Σ containing x0. First, we check the orthant containing x0. Next, we
inspect the neighboring orthants having nonempty intersection with K and so on.

The vector b ∈ Rn can be set, e.g., as b := Ace. In this case, Σ is not empty since e ∈ Σ. More
sophisticated heuristic of selection of b is dealt with in Jansson and Rohn (1999). Notice that the choice
of b is important for the performance of the method as for various b ∈ Rn the component K intersects
various number of orthants and thus influences the computing time.

3.6.2 Sufficient conditions

Since checking regularity of A is intractable, one often utilizes sufficient regularity conditions. Sufficient
conditions are surveyed in Rex and Rohn (1998). First, we observe that preconditioning works here, too.

Lemma 3.63. Let C ∈ Rn×n and A ∈ IRn×n. If CA is regular, then A is regular.

Proof. Since CA is regular, every matrix in the form CA, where A ∈ A, is nonsingular. Thus, both
matrices C and A are nonsingular. This holds for every A ∈ A, so A is regular.

Now, we inspect the special case of Ac = In. Later in Theorem 3.72, we will see that the sufficient
condition below is also a necessary condition in this case.

Theorem 3.64 (Beeck, 1975). Suppose that Ac = In. If ρ(A∆) < 1, then A is regular.

Proof. For each A ∈ A we have |A − Ac| = |A − In| ≤ A∆. From Theorem 1.8 it follows ρ(A − In) ≤
ρ(A∆) < 1, so A has no zero eigenvalue and is nonsingular. Hence A is regular.

Condition Ac = In can be achieved by preconditioning with (Ac)−1. Indeed, interval matrix M :=
(Ac)−1A satisfies M c = In and M∆ = |(Ac)−1|A∆. In view of Lemma 3.63, we immediately have the
following sufficient condition.

Theorem 3.65 (Beeck, 1975). If

ρ(|(Ac)−1|A∆) < 1, (3.23)

then A is regular.

Condition (3.23) is one of the most frequently used sufficient conditions for regularity. In fact, interval
matrices satisfying the Beeck’s condition (3.23) are called strongly regular.

It may not be obvious at first sight, but strongly regular matrices are closed under subset inclusion:
If A is strongly regular and B ⊆ A, then B is strongly regular as well (Neumaier, 1990; Rohn, 2012b).

Implementation. We can view Beeck’s condition (3.23) as the preconditioning A by C := (Ac)−1, and
then checking regularity of CA by verifying ρ(rad(CA)) < 1. As mentioned in Section 3.2.1, we hardly
know the midpoint inverse exactly. Hence we do preconditioning by an approximation C ≈ (Ac)−1,
which gives an interval matrix the midpoint of which is only an approximation of In. Thus, for a safe
implementation, we use mag(In − CA) instead of rad((Ac)−1A); see Proposition 3.20. The numerical
version of the condition then reads

ρ(mag(In − CA)) < 1. (3.24)

This condition is equivalent to the commonly mentioned form (Rump, 1983; Rex and Rohn, 1998)

ρ(|In − CAc| + |C|A∆) < 1
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since

mag(In − CA) = mag(In − CAc + C[−A∆, A∆])

= mag(In − CAc) + mag(C[−A∆, A∆]) = |In − CAc| + |C|A∆.

The interesting property of (3.24) is that it is not theoretically stronger than the Beeck’s condition since
the provably optimal preconditioner is C := (Ac)−1.

Theorem 3.66 (Rex and Rohn, 1995). If (3.24) holds true for some C ∈ Rn×n, then Ac is nonsingular
and

ρ(|(Ac)−1|A∆) ≤ ρ(mag(In − CA)) = ρ(|In − CAc| + |C|A∆).

Proof. By Theorem 1.8, we have

ρ(In −CAc) ≤ ρ(|In − CAc|) ≤ ρ(|In − CAc| + |C|A∆) < 1. (3.25)

Thus, CAc is nonsingular, whence Ac is nonsingular as well.
Now, define

G := |In −CAc| + |C|A∆ + εeeT , α := ρ(G) < 1,

where ε > 0 is small enough. Since G > 0, by Perron–Frobenius Theorem 1.7 there is x > 0 such that
Gx = αx. Using also that α < 1, we derive

α|In −CAc|x + |C|A∆x ≤ |In − CAc|x + |C|A∆x < αx,

and from this
|C|A∆x < α(In − |In − CAc|)x.

By Theorem 1.10 and (3.25), In − |In − CAc| has a nonnegative inverse, which yields

(In − |In − CAc|)−1|C|A∆x < αx.

Now, from

(Ac)−1 = (In − (In − CAc))−1C =

∞
∑

i=0

(In − CAc)iC

we derive

|(Ac)−1| ≤
∞
∑

i=0

|In − CAc|i|C| = (In − |In − CAc|)−1|C|.

Putting all together, we obtain

|(Ac)−1|A∆x ≤ (In − |In − CAc|)−1|C|A∆x < αx.

By Theorem 1.9, ρ(|(Ac)−1|A∆) < α, from which the statement follows due to continuity of the spectral
radius (Horn and Johnson, 1985; Meyer, 2000).

Remarks. Notice that by Theorem 1.19, for any nonnegative A the condition ρ(A) < 1 is equivalent
to (In − A)−1 ≥ 0. The latter form can be more convenient from the computational and verification
viewpoints. In this way, we can replace the spectral radius computations from the above theorems by
matrix inverse calculations.

The strength of Beeck’s sufficient condition was studied by Rump (1997a,b). He showed that every
regular A ∈ IRn×n satisfies ρ(|(Ac)−1|A∆) < (3 + 2

√
2)n, and for any n ∈ N and ε > 0, there is regular

A ∈ IRn×n such that ρ(|(Ac)−1|A∆) > n − ε. He also proved that the upper bound can be tightened to
ρ(|(Ac)−1|A∆) < n for A∆ of rank one, and conjectures that this remains true for any matrix; cf. page
189.

Theorem 1.5 gives rise yet to another alternative. Since ρ(A) ≤ ‖A‖ for any matrix norm, we can
replace the spectral radii by matrix norms in the above theorems. We obtain slightly weaker conditions
for checking regularity of interval matrices, but with lower computational effort; some matrix norms, e.g.,
the maximum one, are very easily calculated.
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Relation to interval equations. It is surprising that solving interval equations is computationally
hard even for regular matrices. Morevover, it stays hard even a special kind of strongly regular matrices
(Rohn and Kreinovich, 1995); we show the proof by Fiedler et al. (2006).

Theorem 3.67 (Rohn and Kreinovich, 1995). Computing the interval hull of the solution set to Ax = b

is NP-hard on a class of problems with ρ(|(Ac)−1|A∆) = 0.

Proof. We proceed similarly as in the proof of Theorem 3.12. We know from Theorem 1.35 that checking
solvability of

−e ≤ Az ≤ e, eT |z| ≥ 1 (3.26)

is NP-hard on the set of non-negative positive definite matrices. Consider the interval system Ax = b,
where

A =

(

1 [−e, e]T

0 A

)

, b =

(

0
[−e, e]

)

, x =

(

y
z

)

.

It is easy to see that ρ(|(Ac)−1|A∆) = 0 since

|(Ac)−1|A∆ =

(

0 eT

0 0

)

.

Let xT = (y,zT ) be the interval hull of the solution set of Ax = b. We will show that checking y ≥ 1 is
NP-hard. By the Oettli–Prager Theorem 3.2, the value of y can be expressed as

y = max {y; |y| ≤ eT |z|, |Az| ≤ e}.

We have that y ≥ 1 if and only if (3.26) is solvable, which completes the proof.

As a simple consequence of co-NP-hardness of checking regularity we have that it is also hard to
decide on boundedness of the solution set (Rohn, 1994c).

Corollary 3.68 (Rohn, 1994c). Deciding whether the solution set of Ax = b is bounded is a co-NP-hard
problem.

Proof. By reduction of checking regularity of an interval matrix A ∈ IRn×n. Consider the interval system
Ax = 0. If A is regular, then the solution set is {0}. Otherwise, the solution set contains a line, and so
it is unbounded.

Another consequence is intractability of checking if all solutions of an interval linear system of equa-
tions Ax = b are nonnegative. It is an open problem if it remains intractable also in the case A is
regular.

Corollary 3.69. Deciding whether Σ ⊆ {x ≥ 0} is a co-NP-hard problem.

Proof. Consider the interval system Ax = 0. When A is regular, then Σ = {0} ⊆ {x ≥ 0}. When A is
irregular, then there are A ∈ A and x 6= 0 such that Ax = 0. Thus, {x,−x} ⊆ Σ and Σ cannot liy in the
nonnegative orthant only.

3.6.3 Necessary conditions

Necessary conditions for regularity of an interval matrix A help in checking regularity in the sense that
their negations work as sufficient conditions for irregularity; they can cheaply verify that A is irregular.

The following proposition is a direct consequence of Theorem 3.1.

Proposition 3.70. If 0 ∈ Ax for some x ∈ Rn \ {0}, then A is irregular.

Here, one must be careful when implementing the condition 0 ∈ Ax on a computer, and choose the
right rounding mode. Other possibility is to check the Oettli–Prager inequality |Acx| ≤ A∆|x|.

A promising candidate for x is to take a column of (Ac)−1. This leads to the following corollary, which
is originally from Rohn (1989a).
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Corollary 3.71. If (A∆|(Ac)−1|)ii ≥ 1 for some i ∈ {1, . . . , n}, then A is irregular.

Proof. We have A(Ac)−1 = [In−A∆|(Ac)−1|, In +A∆|(Ac)−1|], so its ith column includes the zero vector
iff (A∆|(Ac)−1|)ii ≥ 1.

Another sufficient condition for irregularity is (|(Ac)−1|A∆)ii ≥ 1 for some i ∈ {1, . . . , n}. It is a
consequence of the above theorem applied to the interval matrix AT . This form, however, has a nice
similarity with the Beeck’s sufficient condition for regularity of A.

For other necessary conditions see, e.g., Rex and Rohn (1998); Rump (1997b).

3.6.4 Special cases

The following result comes from Rohn (2012b). It draws a class of matrices for which Beeck’s sufficient
condition is also necessary for regularity. It is particularly the case when (Ac)−1 ≥ 0, or, more specifically,
when Ac = In. In the latter case, A is regular if and only if ρ(A∆) < 1.

Theorem 3.72. Suppose that (Ac)−1 ≥ 0. Then A is regular if and only if ρ(|(Ac)−1|A∆) < 1.

Proof. One direction is obvious. To prove the converse, suppose to the contrary that A is regular, but
ρ∗ := ρ(|(Ac)−1|A∆) ≥ 1. By the Perron–Frobenius Theorem 1.7, there is x 6= o such that

(Ac)−1A∆x = |(Ac)−1|A∆x = ρ∗x,

or,

(

In − 1

ρ∗
(Ac)−1A∆

)

x = o.

By premultiplying by Ac, we get

(

Ac − 1

ρ∗
A∆

)

x = o.

Since (Ac − 1
ρ∗A

∆) ∈ A, the interval matrix A is irregular; a contradiction.

The statement can be slightly generalized. Regularity of A is equivalent to regularity of diag(y)Adiag(z)
for any y, z ∈ {±1}n. Thus, we have the following result.

Corollary 3.73. Suppose there are y, z ∈ {±1}n such that diag(z)(Ac)−1 diag(y) ≥ 0. Then A is regular
if and only if ρ(|(Ac)−1|A∆) < 1.

Another special case is related to H-matrices (Neumaier, 1990, Prop. 4.1.7).

Theorem 3.74. Let Ac be an M-matrix. Then A is regular if and only if it is an H-matrix.

Proof. One direction is obvious as each H-matrix is nonsingular. To prove the converse, suppose to the
contrary that there is A1 ∈ A not being an H-matrix. Consider the matrix A(t) := Ac + t(A1 −Ac) ∈ A

depending on t ∈ [0, 1]. Define t0 := inft∈[0,1] such that A(t) is not an H-matrix. Obviously A(t0) is not
an H-matrix; otherwise, there is v > 0 such that 〈A(t0)〉 > 0 and this would hold even for a slightly
increased t0. Since t0 > 0, we have that A(t0 − ε) is an H-matrix for any sufficiently small ε > 0. Since
Ac has a positive diagonal and nonpositive offdiagonal, we have that 〈A(t0 − ε)〉 is an M-matrix that lies
in A. Hence the real eigenvalues of 〈A(t0 − ε)〉 are positive, and the real parts of the complex eigenvalues
are positive as well. Therefore, from continuity of eigenvalues, 〈A(t0)〉 ∈ A must have a zero eigenvalue,
which is a contradiction with regularity of A.

Notes and further reading. For tridiagonal interval matrices, Bar-On (2000); Bar-On et al. (1996)
presented a method based on LU decomposition, which makes regularity checking effective in this case.
Regularity of interval matrices finds an application also in robotics, e.g., in identification of singularities
in the workspace; see Remark 5.34.
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Figure 3.10: An inner estimation v of the solution set Σ in dark gray; the interval hull �Σ in light gray.

3.7 Inner estimation

By an inner estimation of the solution set Σ we mean any interval vector v ∈ IRn such that v ⊆ �Σ.
That is, it is a subset of the interval hull of Σ, but not of the solution set itself; see Figure 3.10.

The advantage of an inner estimation is that it provides us with the quality of an interval enclosure
x ⊇ Σ. For each i ∈ {1, . . . , n}, xi − vi and vi − xi are the maximal overestimations of x in the ith
coordinate from above and from below, respectively.

We already presented an inner estimation implicitly in Proposition 3.35 on the quality of Krawczyk
iterations. Indeed, it yields an inner estimation v in the form

v = inf(b + (In −A)xc) + mag(In −A)x∆,

v = sup(b + (In −A)xc) − mag(In −A)x∆,

where x ∈ IRn is any enclosure of Σ.

Notes and further reading. Inner estimations were initiated by Neumaier (1987), but we followed
more practical formulae by Rump (1990); see also Mayer (2017); Rump (2010) for various adaptations.

3.8 Overdetermined systems

Consider an interval linear system

Ax = b, (3.27)

where A ∈ IRm×n, b ∈ IRm and m > n.

3.8.1 Least square solutions

(Neumaier, 1990, p. 169)

The least square method is a well-known method to approximate a solution to overdetermined linear
equations Ax = b. The least square solution minimizes the difference between the right and left hand
sides in Euclidean norm, that is

min
x∈Rn

‖Ax− b‖2.

It is known that the solution can equivalently be characterized as a solution to the square system

ATAx = AT b,
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or, alternatively, as x-solution to the system

(

0 AT

A Im

)(

x
y

)

=

(

0
b

)

. (3.28)

Moreover, the least square solution has nice statistical properties. It is the best linear unbiased esti-
mator provided the errors have a mean of zero, are uncorrelated, and have equal finite variances. Under
these assumptions, it is also an asymptotically consistent estimator, that is, as the number of data points
increases, the resulting sequence of estimates converges in probability to the true parameters.

The least square solution set to (3.27) is defined as the set of all least square solutions

ΣLSQ := {x ∈ Rn; ∃A ∈ A∃b ∈ b : ATAx = AT b}.

The solution set is always non-empty, however, checking its boundedness is co-NP-hard (Černý et al.,
2013) even for real right-hand side systems (b∆ = 0).

Since ΣLSQ is defined as the solution set of a square interval system of size n with nonlinear depen-
dencies, we can employ any method from Section 3.9 to compute an enclosure to ΣLSQ. By (3.28), we
have an equivalent characterization

ΣLSQ = {x ∈ Rn; ∃A ∈ A∃b ∈ b∃y ∈ Rm : AT y = 0, Ax + y = b}.

It represents a solution set to a square interval system of size m+n with linear dependencies. Moreover, it
belongs to the symmetric case, so approaches from Section 3.9.2 are applicable. This form was discussed,
e.g., in Karĺık (2008); Neumaier (1986); Rump (1983) and extended to interval data with linear depen-
dencies in Popova (2006c). Despite the larger dimension, this form usually yields much tighter enclosures
(Černý et al., 2013). Moreover, when the systems are relaxed, the second form yields provably tighter
enclosures.

Proposition 3.75. Relaxing the dependencies, the solution set to ATAx = ATb is contained in the
solution set to

(

0 AT

A Im

)(

x
y

)

=

(

0
b

)

. (3.29)

Proof. Any instance of the system (3.29) reads

AT y = 0, A′x + y = b

for some A,A′ ∈ A and b ∈ b. Now, substituting y = b−A′x into the first equation gives AT (b−A′x) = 0,
whence ATA′x = AT b. Since ATA′ ∈ ATA and AT b ∈ ATb, we are done.

Notes. There are other alternative approaches to solve the problem (Markov, 1990). Some of them adapt
the QR factorization for interval data (Gay, 1988), for instance, by using interval Householder’s method
(Bentbib, 2002; Manteuffel, 1981). A monotonicity checking, similar to the one presented in Section 3.5.3,
but extended to the least square solutions, was discussed in Deif (1986); Shary and Moradi (2021).

If A = A is point and has full column rank, then ΣLSQ = {(ATA)−1AT b; b ∈ b} is a zonotope (see
page 33), and its interval hull is computable directly by interval arithmetic as �ΣLSQ = (ATA)−1ATb.
Inner and outer estimations by ellipsoids, and enumeration of the vertices and facets of the zonotope were
thoroughly investigated by Černý et al. (2013).

Applications in electrical networks are discussed in Deif (1986), and in stock market forecasting in
Hu and He (2007); He and Hu (2009).

3.8.2 True solutions

Notes and further reading (Section 3.8). Underdetermined interval systems of linear equations also
naturally appear in many situations. For example, in verification of optimization problems (Jansson et al.,
2007); see Section 10.1.
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3.9 Parametric interval systems

When solving interval linear systems of equations Ax = b, we have so far assumed that the matrix and
the right-hand side entries vary inside the corresponding intervals independently. However, this is hardly
true for real-life problems. Usually, the system reads A(p)x = b(p), where the entries of A(p) and b(p)
depend on parameters p1, . . . , pK , whose domains are intervals p1, . . . ,pK . Calculating the ranges (or their
enclosures) of A := A(p) and b := b(p) leads to the relaxed system of standard interval linear equations
Ax = b, but the loss of dependence structure may cause a huge overestimation. Thus, appropriate methods
for dependent linear systems are of high importance.

The solution set of a parametric interval system is defined as

Σp = {x ∈ Rn; A(p)x = b(p) for some p ∈ p}.
It may have a complicated structure and finding a tight enclosure is a very challenging task.

In general, we may apply preconditioning

CA(p)x = Cb(p).

Again, we may simply relax the system to standard interval linear equations, which is useful provided we
are able to somehow simplify and tightly evaluate the entries of CA(p) and Cb(p).

A promising approach is to employ the residual form (Section 3.2.2). Let x∗ ∈ Rn, for example, the
solution of A(pc)x = b(pc). Then we find an enclosure to Σp in the form of x∗ + y, where y encloses the
solution set to

CA(p)y = C(b(p) −A(p)x∗). (3.30)

Now, it depends on the special structure of dependencies how effectively we are able to enclose both terms
C(b(p) −A(p)x∗) and CA(p). Since the dependencies may be very complex, no general recipe can easily
be given.

Remark 3.76. Applying this approach to the residual Krawczyk method, the direct Krawczyk enclosure
(3.17) employed on our system works as follows. Let R := mag(In − CA(p)). If ρ(R) < 1, then

Σp ⊆ x∗ + [−1, 1](In −R)−1 mag(C(b(p) −A(p)x∗)).

This type of an enclosure was originally proposed by Skalna (2012).

As it is very hard to handle the parametric systems in the general form, we focus on the particular
case of a linear dependence structure.

Notes and further reading. General systems with nonlinear dependences between interval quantities
were handled, e.g., by Garloff et al. (2009); Kolev (2004a); Popova (2007).

3.9.1 Linear dependencies

We will consider a linear parametric structure, that is, a system

A(p)x = b(p), (3.31)

where A(p) =
∑K

k=1A
kpk, b(p) =

∑K
k=1 b

kpk and p ∈ p for some given interval vector p ∈ IRK , matrices
A1, . . . , AK ∈ Rn×n and vectors b1, . . . , bK ∈ Rn. This linear parametric case covers a wide area of interval
systems with dependencies. For instance, it comprises the interval system Ax = b, where the constraint
matrix is supposed to be symmetric, skew-symmetric, circulant, Toeplitz or Hankel.

Example 3.77 (Standard interval matrix). Obviously, linear parametric systems generalize the stan-
dard interval systems. For example, an interval matrix A ∈ IR2×2 can be expressed as a linear interval
parametric matrix A(p), p ∈ p ∈ IR4 as follows

A(p) =

(

p1 p2
p3 p4

)

=

4
∑

k=1

pkA
k = p1

(

1 0
0 0

)

+ p2

(

0 1
0 0

)

+ p3

(

0 0
1 0

)

+ p4

(

0 0
0 1

)

,

so that we associate p1 = a11, p2 = a12, p3 = a21 and p4 = a22.
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Example 3.78 (Symmetric interval matrix). Symmetric interval matrices have a linear interval paramet-
ric form, too. For example, any 2 × 2 symmetric interval matrix AS can be expressed as a linear interval
parametric matrix A(p), p ∈ p ∈ IR3 as follows

A(p) =

(

p1 p2
p2 p3

)

=

3
∑

k=1

pkA
k = p1

(

1 0
0 0

)

+ p2

(

0 1
1 0

)

+ p3

(

0 0
0 1

)

,

where we associate p1 = a11, p2 = a12 = a21 and p3 = a22.

Example 3.79 (Circulant interval matrix). Any 3 × 3 circulant interval matrix has the form of a linear
interval parametric matrix

A(p) =





p1 p2 p3
p3 p1 p2
p2 p3 p1



 =

3
∑

k=1

pkA
k = p1





1 0 0
0 1 0
0 0 1



+ p2





0 1 0
0 0 1
1 0 0



+ p3





0 0 1
1 0 0
0 1 0



 ,

where we associate p1 = a11, p2 = a12 and p3 = a13.

Characterization of the solution set. It is a tempting problem to determine a simple characterization
of Σp. By using a time consuming Fourier–Motzkin elimination (Alefeld et al., 2003; Popova, 2015) we
describe the parametric solution set by a possibly double exponential number of nonlinear inequalities.
The description, however, shows that the shape of Σp is characterized by polynomials. For special classes of
parametric interval systems, the explicit description of the solution set was developed by Hlad́ık (2008b);
Popova (2009). Shapes of the particular solution sets were first analyzed in Alefeld et al. (1997, 2003).
Deeper insight gives Section 5.2 in Mayer (2017).

The following necessary characterization of Σp is by Popova (2009); see also Hlad́ık (2012d).

Theorem 3.80 (Popova, 2009). If x ∈ Σp, then it solves

|A(pc)x− b(pc)| ≤
K
∑

k=1

p∆k |Akx− bk|. (3.32)

Proof. Let x ∈ Rn be a solution to A(p)x = b(p) for some p ∈ p. Then,

|A(pc)x− b(pc)| =

∣

∣

∣

∣

K
∑

k=1

pck(Akx− bk)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

pck(Akx− bk) −
K
∑

k=1

pk(Akx− bk)

∣

∣

∣

∣

=

∣

∣

∣

∣

K
∑

k=1

(pck − pk)(Akx− bk)

∣

∣

∣

∣

≤
K
∑

k=1

|pck − pk||Akx− bk| ≤
K
∑

k=1

p∆k |Akx− bk|.

Popova (2009) showed that it is the complete characterization of Σp as long as no interval parameter
appears in more than one equation. Thus, it can serve as a generalization of the Oettli–Prager Theorem 3.2
and a basis for deriving direct enclosures to the parametric solution set; see Hlad́ık (2012d).

Theorem 3.81 (Popova, 2009). Suppose that for every k = 1, . . . ,K, the matrix (Ak | bk) has only one
nonzero row. Then x ∈ Σp if and only if x solves (3.32).

Proof. By Theorem 3.80, we have necessity of (3.32). Here, we show sufficiency. Let i ∈ {1, . . . , n} and
Ki ⊆ {1, . . . ,K} the set of parameters appearing in the ith row. From (3.32), there is α ∈ [0, 1] such that

|A(pc)i∗x− b(pc)i| =
∑

k∈Ki

αp∆k |Ak
i∗x− bki |.

Hence we can find qk ∈ [−p∆k , p
∆
k ], k ∈ Ki such that

A(pc)i∗x− b(pc)i =
∑

k∈Ki

qk(Ak
i∗x− bki ),
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which after rearrangement reads

∑

k∈Ki

Ak
i∗(p

c
k − qk)x =

∑

k∈Ki

bki (pck − qk).

Therefore, x solves the realization A(p)x = b(p) with p = pc − q ∈ p, where qk := 0 for k 6∈ ∪iKi. Since
the sets Ki, i ∈ {1, . . . , n}, are mutually disjoint, there is no conflict in the selection of p.

Even though (3.32) is only a necessary condition, it is a basis for the following characterization. From
a certain viewpoint, the system (3.33) below is composed of a union of systems (3.32) over all possible
preconditionings. An open question here is how to obtain �Σp by a reduction to finitely many choices of
y ∈ Rn.

Theorem 3.82 (Hlad́ık, 2012d). We have that x ∈ Σp if and only if it solves

yT (A(pc)x− b(pc)) ≤
K
∑

k=1

p∆k |yT (Akx− bk)| (3.33)

for every y ∈ Rn.

Proof. Let x ∈ Rn. Then x ∈ Σp if and only if there is a vector q ∈ [−1, 1]K such that

A(pc)x− b(pc) =

K
∑

k=1

qkp
∆
k (Akx− bk).

Denote d := A(pc)x− b(pc), and let D ∈ Rn×K be a matrix whose kth column is equal to p∆k (Akx− bk),
k = 1, . . . ,K. Then x ∈ Σp if and only if there is a feasible solution of the linear system

Dq = d, −e ≤ q ≤ e,

or, in other words, if and only if the linear program

max 0T q subject to Dq = d, −e ≤ q ≤ e

has an optimal solution. Consider the corresponding dual problem

min dT y + eT (u + v)

subject to DT y + u− v = 0, u, v ≥ 0,

which is always feasible. According to the theory of duality in linear programming (Theorem 1.32),
existence of an optimal solution to one problem implies the same for the second one and the optimal
values are equal.

For an optimal solution of the dual problem and every i ∈ {1, . . . ,K} either ui = 0 or vi = 0; otherwise
we can subtract a small positive amount from both ui and vi and decrease the optimal value. If ui = 0
then (u + v)i = vi = (DT y)i ≥ 0. Similarly, vi = 0 implies (u + v)i = ui = −(DTy)i ≥ 0. Hence we can
derive u + v = |DT y|, and the dual problem takes the form

min dT y + eT |DT y| subject to y ∈ Rn.

Since the objective function is positive homogeneous, the problem has an optimal solution (equal to zero)
if and only if the objective function is non-negative, i.e.

dT y + eT |DT y| ≥ 0 ∀y ∈ Rn.

By substituting y := −y, we have yTd ≤ |yTD|e, and by substituting for D and d, we eventually
obtain (3.33).
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Checking x ∈ Σp. Even though it is hard to describe the solution set in general, checking x ∈ Σp for
a given x ∈ Rn is a polynomial problem carried out by a suitable linear programming solver since the
constraints A(p)x = b(p), p ∈ p are linear. On the other hand, we cannot check it much more efficiently
since it is a P-complete problem.

Theorem 3.83 (Hlad́ık, 2020a). Checking x∗ ∈ Σp is a P-complete problem (under NC-reduction).

Proof. Recall that checking solvability of a linear system Ax = b, x ≥ 0 is P-complete, where A ∈ Rm×n

and b ∈ Rm. We reduce this system to our problem. First, rewrite it to

∑

k

(A∗ke
T
k )xpk = b, p ∈ p, (3.34)

where p = [0, c]n and c > 0 is sufficiently large. Notice that (A∗keTk )e = A∗k. Thus, the linear system
Ax = b, x ≥ 0 is solvable iff x := e is a solution of (3.34). Since c can be chosen such that it has a
polynomial size with respect to the input size (Schrijver, 1998), and the transformation is obviously in
NC, the reduction is done.

This result also shows that we can hardly hope for having a simple Oettli–Prager type characterization
of Σp; it is believed that P-complete problems cannot have a closed form arithmetic characterization of
a polynomial size. Notice that an analogous result can be stated for the symmetric case discussed in
Section 3.9.2.

Enclosures of solutions.

Naive approach – direct relaxation. Relaxing the dependencies, we get an ordinary interval system
of equations Ax = b, where A and b are obtained by interval evaluation of particular entries as follows

A := A(p) =
K
∑

k=1

Akpk, b := b(p) =
K
∑

k=1

bkpk.

The solution set of Ax = b includes Σp, so any enclosure of the relaxed system also encloses the solution
set of the original system (3.31). This approach does not take into account the dependencies at all, and
so the overestimation can be high.

Preconditioning. Many interval system solvers use preconditioning, however, it is not effective to pre-
condition the relaxed system CAx = Cb. Provably tighter relaxation is obtained by preconditioning the
original system and after relaxing, which leads to the interval system A′x = b′ with

A′ :=

K
∑

k=1

pk(CAk), b′ :=

K
∑

k=1

pk(Cbk).

Observation 3.84. We have A′ ⊆ A and b′ ⊆ b.

Proof. From sub-distributivity of interval arithmetic, it simply follows

K
∑

k=1

(CAk)pk ⊆ C

K
∑

k=1

Akpk,

and similarly for the right-hand side.

Often, we use a numerical approximate of the midpoint inverse C ≈ A(pc)−1 as a preconditioner.
However, this need not be the best choice. In some sense optimal preconditioning related to the interval
parametric Gauss–Seidel method was proposed in Hlad́ık (2016b).
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Algorithm 3.2 Framework for a linear parametric system of equations (3.31)

1: Choose a preconditioner C ∈ Rn×n, for instance C ≈ A(pc)−1.
2: Choose a center x∗ ∈ Rn, for instance x∗ ≈ A(pc)−1b(pc).
3: Evaluate A′ :=

∑K
k=1 pk(CAk) and b′ =

∑K
k=1 pk(C(bk −Akx∗)).

4: Find an enclosure y of the solution set of A′y = b′ by a favourite solver.
5: return x := x∗ + y.

Residual form. As mentioned in the general case, it seems convenient to seek for an enclosure by using
the preconditioned residual form (3.30), which takes the form

( K
∑

k=1

pk(CAk)

)

y =

K
∑

k=1

pk(C(bk −Akx∗)). (3.35)

Due to the sub-distributivity law, the right-hand side interval vector of (3.35), and sometimes the interval
matrix, too, are in general tighter than the simple relaxation A := A(p), b := b(p) and transformation to

(CA)y = C(b−Ax∗).

On the other hand, using Ak and bk, k = 1, . . . ,K, explicitly may be time consuming. When K is
large, the matrices Ak are often sparse, and one can think of evaluating C(bk −Akx∗) without explicitly
constructing Ak and bk. This will be the case in Section 3.9.2 for the symmetric solution set, and similar
rearrangements can also be performed for other specific parametric matrices such as Toeplitz or Hankel
matrices. The idea of a delicate evaluation of the right-hand side vector is originally due to Jansson (1991).
He applied it on a special parametric system by utilizing the residual Krawczyk operator.

The resulting approach. Evaluating the interval matrix and right-hand side, (3.35) becomes a standard
interval linear system, which may be solved by any method presented in Section 3.2, depending on the
requirements on the running time and tightness of the enclosure. Thus, the general framework for solving
parametric interval systems is as described in Algorithm 3.2.

Remark 3.85. Some methods developed for solving the linear parametric system (3.31) are implicitly
following the template of Algorithm 3.2. For example, the residual Krawczyk operator applied to the
parametric system (3.35) takes the form

Kr(y) =

K
∑

k=1

C(bk −Akx∗)pk +

(

In −
K
∑

k=1

(CAk)pk

)

y.

The direct enclosure formula (3.17) reads as follows. Let R := mag
(

In −∑K
k=1(CAk)pk

)

. If ρ(R) < 1,
then

Σp ⊆ x∗ + [−1, 1](In −R)−1 mag
(
∑K

k=1C(bk −Akx∗)pk)
)

.

In a slightly different fashion, this enclosure was presented in Hlad́ık (2012d); Skalna (2006).
The Hansen–Bliek–Rohn enclosure for the system preconditioned by A(pc)−1 was addressed in Hlad́ık

(2012d) and the residual form in addition was discussed in Skalna (2018). A comparison of various methods
with and without preconditiong and the residual form was performed in Hlad́ık and Skalna (2019).

Example 3.86. Consider a two-dimensional linear parametric system A(p)x = b(p) with

A(p) =

(

5 + p1 −4 − p1 + p2
−5 − p2 6

)

, b(p) =

(

4 + p2
1

)

, p ∈ p =

(

[−2, 2]
[−2, 2]

)

.

Figure 3.11a illustrates the area determined by the solution set Σp. The direct relaxation of the parametric
system leads to a standard interval system Ax = b, the solution set of which is unbounded since A is
irregular.

Unfortunately, former preconditioning by C = A(pc)−1 also does not help here, producing again an
irregular interval matrix.



78 Chapter 3. Systems of interval linear equations

1.5 2 2.5 3 3.5

1

1.5

2

2.5

3

3.5

(a) (Example 3.86) Two-dimensional area in plane R2. (b) (Example 3.87) Two-dimensional surface in space R3.

Figure 3.11: Illustration of the solution set of a linear interval parametric system.

Example 3.87. Consider now a three-dimensional linear parametric system A(p)x = b(p) with

A(p) =





6 − p2 5 2 − p1
2 −4 − p1 4 + 2p1 + p2

−5 + p1 − p2 −3 7 − p1



 , b(p) =





−5 − p1
−5 − p2

5



 , p ∈ p =

(

[−2, 1.5]
[−2, 1.5]

)

.

Figure 3.11b depicts the two-dimensional surface determined by the solution set Σp. Also in this example
the direct relaxation of the parametric system produces an unbounded solution set.

Linear parametric systems appear in diverse problems. We show an example from structure mechanics.

Example 3.88 (Displacements of a truss structure (Skalna, 2006)). Consider a 7-bar truss structure as
depicted in Figure 3.12. Supposing a downward force at some nodes, the displacements of the nodes are
computed by solving the linear system of equations

Kd = f, (3.36)

where K is the stiffness matrix, and f is the vector of forces at particular nodes. The stiffness matrix has
the structure

K =



































s12

2
+ s13 −

s12

2
−
s12

2
−s13 0 0 0

−
s21

2

s21 + s23

2
+ s24

s21 − s23

2
−
s23

2

s23

2
−s24 0

−
s21

2

s21 − s23

2

s21 + s23

2

s23

2
−
s23

2
0 0

−s31 −
s32

2

s32

2
s31 +

s32 + s34

2
+ s35

s34 − s32

2
−
s34

2
−
s34

2

0
s32

2
−
s32

2

s34 − s32
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s34 + s32

2
−
s34

2
−
s34

2

0 −s42 0 −
s43

2
−
s43

2
s42 +

s43 + s45

2
0

0 0 0 −
s43

2
−
s43

2
0

s43 + s45

2



































.

The stiffness of a particular bar (i, j) is computed as sij = Eσ/ℓ, where E is Young’s modulus, σ is
the cross-sectional area, and ℓ is the length of the bar. Since Young’s modulus is usually given only
approximately with some error ∆E, the stiffnesses sij of bars are uncertain and known to lie in some
intervals only. Thus, (3.36) has a form of a linear parametric interval system.

Notes and further reading. The first paper on parametric interval systems with a special structure is
by Jansson (1991). The general problem of interval parameter dependent linear systems was first treated
in Rump (1994).
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Figure 3.12: (Example 3.88) A truss structure.

Direct methods for computing enclosures to the parametric solution set were studied in Hlad́ık (2012d);
Kolev (2006b); Skalna (2006). Iterative methods include parametrized Gauss-Seidel iteration Popova
(2001), a fixed-point method by Rump (1994, 2010), an effective method for a special class of parametric
systems by Neumaier and Pownuk (2007), and the approach by Kolev (2004b). Monotonicity approach
Popova (2004, 2006b); Rohn (2004); Skalna (2008) may substantially improve the accuracy of enclosures
since it reduces the domains of some parameters to the endpoints. Relations between the methods and
the effects of preconditioning and the residual form were analysed in Hlad́ık and Skalna (2019). To obtain
tighter enclosures, affine form concept (see Section 7.1.3) was employed in Skalna and Hlad́ık (2017, 2019)
A survey and a detailed description of the state-of-the-art methods are provided in the book by Skalna
(2018).

A small selection of a broad area of applications includes those of structural mechanics (Garloff et al.,
2009; Smith et al., 2010), mechanical systems (Dessombz et al., 2001), or tolerance analysis in linear cir-
cuits (Dreyer, 2007, 2006; Kolev, 1993). Fazzolari and Ferreira (2021) applied parametric interval system
solving in testing robust stability of dynamical systems via interval Lyapunov equations; the transfor-
mation of Lyapunov equations to standard equations by means of Kronecker product induces the depen-
dencies. Determinants of parametric interval matrices for singularity detection in robotics were applied
in Merlet and Donelan (2006) by means of symbolic preconditioning. Regularity of parametric interval
matrices was also used in Fazzolari and Ferreira (2021) to check existence of a controller in linear time-
invariant control systems.

A Mathematica package for solving parametric interval systems was introduced in Popova (2004), a
C-XCS implementation in Popova and Krämer (2007); Zimmer et al. (2012), and an interactive service
for computations webComputing in Popova (2006a).

3.9.2 The symmetric solution set

We focus on the symmetric case now. Symmetric matrices naturally appear in many situations, so being
able to handle the symmetric case is important. The corresponding solution set is

Σsym := {x ∈ Rn; Ax = b for some A ∈ AS}
= {x ∈ Rn; Ax = b for some symmetric A ∈ A}.

This interval system obeys the linear parametric structure mentioned above since the symmetry can be
simply modelled by using 1

2n(n − 1) interval parameters. However, using the explicit description of the

parametric matrix in the form
∑K

k=1A
kpk would be too much space (and hence also time) consuming.

Therefore it is better to handle the symmetry implicitly.
This symmetric case has been studied since 1985; see Rohn (2004). Hlad́ık (2008b) characterized

Σsym by an explicit system of exponentially many nonlinear inequalities. The high number of them is
justified by P-completeness of testing whether a given point x ∈ Rn belongs to Σsym – this means that
an adaptation of Theorem 3.83 is valid also for the symmetric solution set; see Hlad́ık (2020a). Improved
and extended expositions of the symmetric case are provided in a survey paper by Mayer (2012) and the
book by Mayer (2017).

Example 3.89. The symmetric interval system in two dimensional space draws ASx = b,

AS = a11

(

1 0
0 0

)

+ a12

(

0 1
1 0

)

+ a22

(

0 0
0 1

)

.
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Figure 3.13: (Example 3.89) The solution set
arbitrarily larger than the symmetric solution
set, a = 4.
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Figure 3.14: (Example 3.89) The solution set is
unbounded, but the symmetric solution set is
bounded.

Herein, interval entries a11,a12,a22 play the role of interval parameters p1,p2,p3. By Hlad́ık (2008b) (cf.
Mayer (2017)), the symmetric solution set is described by

|ac11x1 + ac12x2 − bc1| ≤ a∆11|x1| + a∆12|x2| + b∆1

|ac21x1 + ac22x2 − bc2| ≤ a∆21|x1| + a∆22|x2| + b∆2 ,

| − ac11x
2
1 + ac22x

2
2 + bc1x1 − bc2x2| ≥ a∆11x

2
1 + a∆22x

2
2 + b∆1 |x1| + b∆2 |x2|,

where the first two inequalities are the Oettli–Prager inequalities (3.1). Figure 3.13 illustrates the solution
set (light grey color) and symmetric solution set (grey color) for the system

A =

(

[1, 2] [0, a]
[0, a] −1

)

, b =

(

2
2

)

,

in which the solution set can be arbitrarily larger than the symmetric one, depending on the real parameter
a > 0. Figure 3.14 illustrates the case where the solution set is unbounded whereas the symmetric solution
set is bounded. The corresponding data are

A =

(

−1 [−5, 5]
[−5, 5] 1

)

, b =

(

1
[1, 3]

)

.

Regularity. Even for checking regularity of parametric interval matrices, we have to develop special
techniques since simple relaxation leads to overestimation. For example, let

A :=

(

1 [−1, 1]
[−1, 1] −1

)

.

This interval matrix is irregular as it contains the singular matrix
(

1 1
−1 −1

)

. On the other hand, there is
no symmetric matrix inside that would be singular. That is, the symmetric interval matrix AS is regular.
Moreover, the conditions for testing regularity of standard interval matrices are not straightforwardly
applicable. For example, both symmetric vertex matrices of the symmetric interval matrix

AS =

(

0 [−1, 1]
[−1, 1] 0

)S

are nonsingular, and have the same determinant and spectrum, so the direct adaptation of Theorem 3.61(3)
fails.
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Enclosures of Σsym. Now, let us focus on computing an enclosure of the symmetric solution set. Con-
sidering the symmetric interval matrix AS explicitly in the corresponding parametric form A(p), p ∈ p,
is not convenient here because there would be a quadratic number of parameters and the matrices A(k)

would be very sparse. Therefore, it is better to handle symmetry implicitly.

As in the previous section, we consider an enclosure in the form of x = x∗ + y, where x∗ is any real
vector (e.g., the solution of Acx = bc) and y ∈ IRn encloses the solution set of

(CAS)y = C(b−ASx∗).

Since in each column of AS every parameter appears at most once, we have

CA = �{CA; A ∈ AS}.

Thus, the best way to evaluate the constraint matrix is simply to use interval arithmetic and calculate
CA. Utilizing dependencies in AS cannot improve the enclosure of the constraint matrix.

What does, however, help is the utilization of dependencies in the evaluation the right-hand side vector
of the residual form. The direct evaluation by interval arithmetic will ignore the dependencies, leading to
needless overestimation. Taking into account the symmetry of AS, the ℓ-th entry of the right-hand side
is evaluated as

zℓ :=

n
∑

j=1

Cℓj(bj −Ajjx
∗
j) −

∑

i<j

(Cℓix
∗
j + Cℓjx

∗
i )Aij .

Since each interval quantity appears at most once in the above expression, by Theorem 2.16, zℓ is the
optimal interval. That is,

z = �
{

C(b−Ax∗); b ∈ b, A ∈ A, A = AT
}

.

Therefore, the enclosing interval vector y is computed by employing any solver for the standard interval
linear system of equations

(CA)y = z.

Interval Cholesky method. Interval Cholesky method for enclosing the symmetric solution set with a
positive definite interval matrix AS was introduced by Alefeld and Mayer (1993) and later dealt with in
Alefeld and Mayer (2008); Garloff (2012); Mayer (2017), among others. The basic idea is straightforward
– we replace the arithmetic operations by interval arithmetic, and the procedure yields a lower triangular
interval matrix L such that for each A ∈ AS there exists L ∈ L such that A = LLT . An enclosure of
Σsym is then obtained by forward and backward substitution.

Similarly as for the Gaussian elimination, the procedure may break down even for AS positive definite.
That is, the existence of Cholesky decomposition for each A ∈ AS does not imply the existence of the
interval Cholesky decomposition in general; for a counterexample see Mayer (2017); Reichmann (1979).

Mayer (2017) also shows an example, where the interval Cholesky decomposition yields an enclosure
of Σsym that is tighter (in some coordinates) than �Σ (the solution set obtained by relaxing symmetry).
On the other hand, it sometimes produces enclosures that are worse than those calculated by the interval
Gaussian elimination.

Analogies of Theorems 3.24 and 3.27 are valid, too. In particular, if AS is an H-matrix with positive
diagonal entries, then the interval Cholesky decomposition succeeds and L is again an H-matrix. If AS

is an M-matrix, then we can say more. The interval Cholesky decomposition succeeds and produces an
enclosure Σ ⊆ xCh, L is again an M-matrix and it has the form of L = [Lℓ, Lu], where A = LℓL

T
ℓ

and A = LuL
T
u are the corresponding Cholesky decompositions. Similarly as for the interval Gaussian

elimination, we have xCh = �Σsym if b ≥ 0, b ≤ 0 or 0 ∈ b holds true.

Garloff (2012) investigated pivot tightening, which prevents the interval Cholesky method to break
down and produces tighter Cholesky factors. For other references see Mayer (2017).
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3.10 AE solution set

So far, we considered existentially quantified interval systems

Σ := {x ∈ Rn; ∃A ∈ A∃b ∈ b : Ax = b}, (3.37)

also referred to as the united solution set. In some applications, universal quantifiers may appear. Sup-
pose that each interval parameter is quantified by some quantifier and universal quantifiers precede the
existential ones; this is called AE quantification. The interval quantities that are universally quantified
are denoted by A∀, b∀, and the existential ones by A∃, b∃. Thus, the interval system Ax = b can be
written as (A∀ + A∃)x = b∀ + b∃, and the so-called AE solution set is defined

ΣAE :=
{

x ∈ Rn; ∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : (A∀ + A∃)x = b∀ + b∃
}

.

Characterization of the AE solution set was developed by Shary (1995b).

Theorem 3.90 (Shary, 1995b). We have

ΣAE =
{

x ∈ Rn; A∀x− b∀ ⊆ b∃ −A∃x
}

. (3.38)

Proof.

ΣAE =
{

x ∈ Rn; ∀A∀ ∈ A∀ ∀b∀ ∈ b∀ ∃A∃ ∈ A∃ ∃b∃ ∈ b∃ : A∀x− b∀ = b∃ −A∃x
}

=
{

x ∈ Rn; ∀A∀ ∈ A∀ ∀b∀ ∈ b∀ : A∀x− b∀ ∈ b∃ −A∃x
}

=
{

x ∈ Rn; A∀x− b∀ ⊆ b∃ −A∃x
}

.

A reformulation by means of inequalities is due to Rohn; see Shary (2002).

Theorem 3.91 (Rohn, 1996). We have

ΣAE =
{

x ∈ Rn; |Acx− bc| ≤
(

radA∃ − radA∀)|x| + rad b∃ − rad b∀
}

.

Proof. By (2.1), two intervals p, q ∈ IR satisfy p ⊆ q if and only if |pc − qc| ≤ q∆ − p∆. In this way, the
inclusion (3.38) is written as

∣

∣mid
(

A∀x− b∀
)

− mid
(

b∃ −A∃x
)∣

∣ ≤ rad
(

A∃x− b∃
)

− rad
(

b∀ −A∀x
)

= rad(A∃)|x| + rad b∃ − rad(A∀)|x| − rad b∀,

or,
∣

∣

(

midA∀ + midA∃)x− (mid b∀ + mid b∃)
∣

∣ ≤
(

radA∃ − radA∀)|x| + rad b∃ − rad b∀.

Based on this characterization, we see that the AE solution set ΣAE has a similar geometric structure
as the standard solution set Σ. In particular, ΣAE is a non-convex polyhedral set, which is convex in each
orthant.

Example 3.92. Consider the interval system with quantificators
(

[3, 4]∃ [−2, 1]∃

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

. (3.39)

The corresponding AE solution set and the united solution set (3.37) are depicted in Figure 3.15.
For comparison, consider the same interval system with another quantification

(

[3, 4]∀ [−2, 1]∀

[0, 2]∀ [3, 4]∀

)

x =

(

[−4, 5]∃

[−4, 5]∃

)

. (3.40)

Now, the AE solution set is drawn in Figure 3.16. Notice that in this case we have the so-called tolerable
solutions, which will be discussed in Section 3.10.2.

The concept of AE solutions is quite general. In the following subsections, we inspect two particular
cases of controllable and tolerable solutions. Another case of strong solutions, defined by ∀-quantifiers
only, will be addressed later in Section 4.5.1.
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Figure 3.15: (Example 3.92) The AE solution
set ΣAE as a subset of the classical solution set
Σ for (3.39).
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Figure 3.16: (Example 3.92) The AE solution
set ΣAE as a subset of the classical solution set
Σ for (3.40).

3.10.1 Controllable solutions

Controllable solutions are a special case of AE solution. A vector x ∈ Rn is called a controllable solution
to the interval system Ax = b if for each b ∈ b there is A ∈ A such that Ax = b. They were first
introduced by Shary (1992) and later studied in Fiedler et al. (2006); Shary (2002).

Theorem 3.90 gives the characterization of a controllable solution by means of the inclusion b ⊆ Ax.
By Theorem 3.91 they are equivalently characterized by the system (Lakeev and Noskov, 1994)

|Acx− bc| ≤ A∆|x| − b∆.

It is known that checking existence of a controllable solution is NP-hard (Lakeev and Noskov, 1994);
see also (Fiedler et al., 2006, Thm. 2.30).

3.10.2 Tolerable solutions

Another special AE solution is a tolerable solution. A vector x ∈ Rn is a tolerable solution to Ax = b if
for each A ∈ A there is b ∈ b such that Ax = b. By Theorem 3.90, they are characterized by the inclusion
Ax ⊆ b, and Theorem 3.91 provides a description by means of the system

|Acx− bc| ≤ −A∆|x| + b∆. (3.41)

At first sight, it may seem that checking existence of a tolerable solution is NP-hard, too, but the converse
is true. Tolerable solutions can be described by linear inequalities and thus the problem becomes tractable
(Rohn, 1986); cf. (Fiedler et al., 2006, Thm. 2.28). Geometrically, the tolerable solution set forms a convex
polyhedron; see Figure 3.16.

Theorem 3.93 (Rohn, 1986). A vector x ∈ Rn is a tolerable solution if and only if x = x1 − x2, where

Ax1 −Ax2 ≤ b, Ax1 −Ax2 ≥ b, x1, x2 ≥ 0.

Proof. “⇐” Let A ∈ A. Then

Ax = Ax1 −Ax2 ≤ Ax1 −Ax2 ≤ b,

Ax = Ax1 −Ax2 ≥ Ax1 −Ax2 ≥ b

Thus, Ax ∈ b and Ax = b for some b ∈ b.
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“⇒” Let x ∈ Rn be a tolerable solution. Define x1 := max{x, 0} and x2 := max{−x, 0} the positive
and negative part of x, respectively. Then x = x1 − x2, |x| = x1 + x2, and the inequality (3.41) draws

Ac(x1 − x2) − bc ≤ −A∆(x1 + x2) + b∆,

−Ac(x1 − x2) + bc ≤ −A∆(x1 + x2) + b∆,

which is easily transformed to the desired form.

The early motivations for studying tolerable solutions came from the crane construction and from the
input-output planning (Rohn, 1978). Further research was conveyed in Fiedler et al. (2006); Lakeev and Noskov
(1994); Shary (1995a, 2002). The following application of tolerable solutions addresses the Leontief input–
output model with uncertain data; see also Dymova et al. (2013); Li and Liu (2008).

Example 3.94 (Input–Output Model). The input–output model is an economic technique that high-
lights the interdependencies between different branches of national or different economies. The model
was developed by Wassily Leontief in 1930s. Later, he was awarded the Nobel Prize in 1973 “for the
development of the input–output method and for its application to important economic problems”.

Let us we have an economy with n sectors (e.g., agriculture, industry, transportation, etc.). Sector i
produces a single commodity of amount xi. Assume that the production of each unit of the jth commodity
will require aij (amount) of the ith commodity. Denote by di the final demand in sector i. Now the model
draws

xi = ai1x1 + · · · + ainxn + di,

or, in a matrix form
x = Ax + d.

Suppose that ρ(A) < 1. Then In−A is an M-matrix and by Theorem 1.10the solution x = (In−A)−1d =
∑∞

k=0A
kd is nonnegative. This is essential in practice

The entries of A and d are often estimated and thus imprecise. Say we have lower and upper bounds
for the true values. Hence A varies within some interval matrix A and d within d. A natural question
arises whether a solution x exists such that for each A ∈ A there is d ∈ d satisfying (In − A)x = d. In
other words, whether the interval system (In −A)x = d has a tolerable solution.

A personal supplement to centrally planned economy in communist systems was given by Rohn
(2019a).

Notes and further reading. For some other motivations to tolerable and controllable solutions see
Kreinovich (2008). Rzeżuchowski and Wa̧sowski (2017) characterized the AE solution set by the theory of
convex sets, and they also extended the concept by considering more general domains for the parameters
than intervals.



Chapter 4

Systems of interval linear inequalities

Recall that a real system od linear inequalities Ax ≤ b describes a convex polyhedron. Theory of con-
vex polyhedra closely relates to linear programming. This chapter extends the theory to the case the
coefficients are interval-valued.

We present various solution concepts, including weak solutions, strong solutions, AE solutions, and
weak and strong solvability. The concepts concern not only interval systems of linear inequalities, but
also the linear equations and mixed linear equations and inequalities.

4.1 Weak solutions of interval linear inequalities

Let A ∈ IRm×n, b ∈ IRm, and consider an interval linear system of inequalities

Ax ≤ b, (4.1)

which is a shortcut for the family

Ax ≤ b, A ∈ A, b ∈ b.

Similarly as for interval equations, a vector x ∈ Rn is called a solution (or a weak solution) if Ax ≤ b for
some A ∈ A and b ∈ b. A basic characterization of solutions is due to Gerlach (1981).

Theorem 4.1 (Gerlach, 1981). A vector x ∈ Rn is a solution of Ax ≤ b if and only if

Acx ≤ A∆|x| + b. (4.2)

Proof. If x is a solution of (4.1), then Ax ≤ b for some A ∈ A and b ∈ b, and one has

Acx ≤ Acx + b−Ax = (Ac −A)x + b ≤ |(Ac −A)||x| + b ≤ A∆|x| + b.

Conversely, let x satisfy (4.2). Set z := sgn(x), so |x| = diag(z)x. Thus, (4.2) takes the form of Acx ≤
A∆ diag(z)x + b, or (Ac − A∆ diag(z))x ≤ b. Hence x fulfills Ax ≤ b for b := b and A := Aez =
Ac −A∆ diag(z).

By the above proof, we also have that Ax ≤ b is solvable if and only if Aezx ≤ b is solvable for at
least one z ∈ {±1}n. The number 2n of instances can be reduced to 2k provided the intervals in A are
situated in only k columns; cf. Remark 3.13. In particular, if the matrix is real, then the solution set of
Ax ≤ b is described by Ax ≤ b.

In the same way as for interval equations (Theorem 3.5), the characterization (4.2) reveals that the set
of all solutions forms a polyhedral set, which is convex in each orthant. In particular, for the nonnegative
orthant we have the following consequence.

Corollary 4.2 (Vajda, 1961). A vector x ∈ Rn is a solution of Ax ≤ b, x ≥ 0 if and only if Ax ≤ b,
x ≥ 0.

85
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Figure 4.1: (Example 4.3) Two examples of interval systems of linear inequalities and their solution sets.

Proof. By the Gerlach theorem, the solution set is described Acx ≤ A∆|x|+ b, x ≥ 0, which is equivalent
to Acx ≤ A∆x + b, x ≥ 0, or Ax ≤ x, x ≥ 0.

Example 4.3. Figure 4.1 gives an illustration of two interval systems of linear inequalities, inspired by
Chen et al. (2009). The first one is

[1, 2]x1 + [1, 2]x2 ≤ 4,

−[1, 4]x1 − [1, 4]x2 ≤ −12,

x1 ≤ 4,

−x2 ≤ 4,

and it is depicted in Figure 4.1a. The solution set of the second system

[−1, 1]x1 + [−1, 1]x2 ≤ −2,

−x1 − x2 ≤ 2,

−2 ≤ x1 ≤ 2,

−2 ≤ x2 ≤ 2

is depicted in Figure 4.1b.

Computational complexity. In the general case, however, the solution set need not be convex and
checking non-emptiness is an NP-hard problem (Fiedler et al., 2006; Rohn, 1995).

Theorem 4.4 (Rohn, 1995). Checking solvability of Ax ≤ b is an NP-hard problem.

Proof. By Theorem 1.35 we know that checking solvability of −e ≤ Ax ≤ e, eT |x| ≥ 1 is NP-hard. The
system is equivalent to

Ax ≤ e, −Ax ≤ e, 0x ≤ eT |x| − 1,

which is the Gerlach characterization (4.2) of the interval system Cx ≤ c with

Cc =





A
−A
0



 , C∆ =





0
0
eT



 , c =





e
e
−1



 .



4.1. Weak solutions of interval linear inequalities 87

In fact, the proof revealed that checking solvability of interval linear inequalities is NP-hard even if
the intervals are situated in one inequality only. We show now a modified statement, which will be useful
later on. Another computationally complexity result for related interval systems was presented in Hlad́ık
(2021).

Theorem 4.5 (Garajová et al., 2017). Checking solvability of Ax ≤ 0, bTx < 0 is an NP-hard problem.

Proof. By Theorem 1.36 we know that checking solvability of

|Ax| ≤ e, eT |x| > 1 (4.3)

is NP-hard. We now show that it is equivalent to checking solvability of the system

|Ax| ≤ ey, y ≥ 0, eT |x| > y. (4.4)

Clearly, if x solves (4.3), then the pair x and y = 1 solves (4.4). Conversely, let x, y be a solution to (4.4).
If y > 0, then x′ := 1

yx solves (4.3). When y = 0, then x satisfies Ax = 0, eT |x| > 0. Consider the vector

x′ := 1
eT |x|−εx, where 0 < ε < eT |x|. Then x′ solves (4.3) since |Ax′| = 0 ≤ e and

eT |x′| =
1

eT |x| − ε
eT |x| > 1.

Now, by the Gerlach characterization and its modification, system (4.4) describes the solution set of
the interval system

Ax− ey ≤ 0, −Ax− ey ≤ 0, −y ≤ 0, [−e, e]T x + y < 0,

which has the desired form.

In general, the standard transformations of interval systems are not possible for the interval case since
they cause dependencies; see Section 4.3. There are a few of exceptions, one of them stated below. Notice
that the interval system Ax ≤ b, Ax ≥ b is understood as a family of systems

A1x ≤ b1, A2x ≥ b2,

with A1, A1 ∈ A and b1, b1 ∈ b being chosen independently, which makes the statement nontrivial.

Theorem 4.6 (Rohn, 1985; Li, 2015). The solution set of Ax = b is the same as the solution set of
Ax ≤ b, Ax ≥ b.

Proof. By the Oettli–Prager Theorem 3.2, the solution set of Ax = b is characterized by

Acx− bc ≤ A∆|x| + b∆,

−Acx + bc ≤ A∆|x| + b∆.

By the Gerlach Theorem 4.1, the solution set of Ax ≤ b, −Ax ≤ −b is characterized by

Acx ≤ A∆|x| + b,

−Acx ≤ A∆|x| − b,

which is equivalent to the above one.

Not only checking non-emptiness, but also boundedness of the solution set is an intractable problem.

Corollary 4.7 (Garajová and Hlad́ık, 2019). It is co-NP-hard to decide whether the solution set of Ax ≤
b is bounded.

Proof. From Corollary 3.68 we know that checking boundedness of the solution set of Ax = b is co-NP-
hard. By Theorem 4.6, the system can be equivalently expressed as Ax ≤ b, −Ax ≤ −b, from which the
result follows.
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Figure 4.2: The solution set of interval system 2x+ 5y = 4, 3x+ [5, 15]y ≤ 1 consists of two disjoint rays.

Topological properties. We will now study more topological properties of the solution set

Σ := {x ∈ Rn; Ax ≤ b, A ∈ A, b ∈ b}.

We have already mentioned that Σ is a polyhedral set, which is convex in each orthant. However, it might
be disconnected. For instance, the solution set of

[−1, 1]x ≤ −1

consists of two disjoint sets (−∞,−1] and [1,∞). It might seem that disconnectedness is caused by the
interval containing the zero, but it is not hard to find another example of a disconnected solution set
without such an interval:

2x + 5y = 4, 3x + [5, 15]y ≤ 1.

The solution set consists of two disjoint rays and is depicted in Figure 4.2.
Below, we propose some sufficient conditions for connectedness.

Proposition 4.8. If b ≥ 0, then Σ is connected.

Proof. The condition b ≥ 0 implies 0 ∈ Σ. Since Σ is connected in each orthant, it is connected as a
whole via the origin.

This condition is very cheap, but not very strong in general. The following condition is obviously
stronger; consider, e.g., the interval system −x ≤ −1 with degenerate intervals.

Proposition 4.9. If the linear system of inequalities

Au−Av ≤ b, u, v ≥ 0 (4.5)

is solvable, then Σ is connected.

Proof. As we will see in Theorem 4.28, if u, v solves (4.5), then x∗ := u − v is a solution to Ax ≤ b for
every A ∈ A. Thus, every two points in Σ are connected via x∗.

Proposition 4.9 gives only a sufficient condition for connectedness, but not necessary in general. For
example, consider the interval linear system

−x ≤ −1, [1, 2]x ≤ 1.

Here, Σ = {1} is connected, but the sufficient condition is not satisfied.

Example 4.10. This example shows that one additional inequality may split a connected solution set
into an exponential number of components. Consider the interval linear inequalities

−K ≤ xi ≤ K, i = 1, . . . , n,

xi +
∑

j 6=i

[− 1
n−1 ,

1
n−1 ]xj ≤ 0, i = 1, . . . , n,
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where K > 0 is large enough. Due to the symmetry, it is sufficient to investigate the non-negative orthant
only. In this orthant, the restricted solution set is

0 ≤ xi ≤ K, i = 1, . . . , n,

xi −
∑

j 6=i

1
n−1xj ≤ 0, i = 1, . . . , n,

which describes the segment joining the origin and the point (K, . . . ,K)T . Thus, the solution set Σ is
connected. Now, consider an additional constraint

n
∑

i=1

[−1, 1]xi ≥ 1.

In each orthant, it cuts off the closer-to-the-origin part of the segment. For instance, in the non-negative
orthant, the restricted solution set will be the segment joining the points ( 1

n , . . . ,
1
n)T and (K, . . . ,K)T .

Hence the resulting solution set will consist of 2n components. Notice again that this exponential increase
of the components is not caused by the zero-containing intervals in the additional inequality. If the
inequality reads

n
∑

i=1

[ε, 1]xi ≥ 1,

where ε > 0 is sufficiently small, then the solution set splits into 2n − 1 connected components.

4.2 Systems of parametric linear inequalities

When the interval coefficients in the system do not take the values of their interval domains independently
of each other, then we speak about dependencies and the system is called a parametric interval system;
see Section 3.9 on parametric linear equations.

In this section, we consider merely a parametric system of inequalities with linear dependencies

A(p)x ≤ b(p),

where A(p) =
∑K

k=1A
kpk, b(p) =

∑K
k=1 b

kpk and p ∈ p for some given interval vector p ∈ IRK , matrices
A1, . . . , AK ∈ Rm×n and vectors b1, . . . , bK ∈ Rm. A vector x ∈ Rn is a solution of the parametric system
if it satisfies A(p)x ≤ b(p) for at least one p ∈ p.

In general, it is hard to characterize the solution set. We state at least a necessary condition.

Theorem 4.11 (Popova, 2015). If x ∈ Rn is a solution, then

A(pc)x− b(pc) ≤
K
∑

k=1

p∆k |Akx− bk|. (4.6)

Proof. Let x ∈ Rn be a solution to A(p)x ≤ b(p) for some p ∈ p. Then,

A(pc)x− b(pc) =
K
∑

k=1

pck(Akx− bk) ≤
K
∑

k=1

pck(Akx− bk) −
K
∑

k=1

pk(Akx− bk)

=

K
∑

k=1

(pck − pk)(Akx− bk) ≤
K
∑

k=1

|pck − pk||Akx− bk| ≤
K
∑

k=1

p∆k |Akx− bk|.

Similarly as for linear interval parametric equations (Theorem 3.81) we can show that the above system
fully characterizes the solution set provided each interval parameter influences at most one inequality.

Theorem 4.12 (Popova, 2015). Suppose that for every k = 1, . . . ,K, the matrix (Ak | bk) has only one
nonzero row. Then x ∈ Rn is a solution if and only if x solves (4.6).
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Proof. From the assumptions, the vector Akx − bk, k ∈ {1, . . . ,K}, has at least one nonzero element. If
Akx = bk, then put sk := 1; otherwise, denote by sk the sign of the nonzero element in Akx − bk. Now,
we have

A(pc)x− b(pc) ≤
K
∑

k=1

p∆k sk(Akx− bk),

from which
K
∑

k=1

(pck − p∆k sk)(Akx− bk) ≤ 0.

Therefore x is a solution of A(p)x ≤ b(p) for pk := pck − p∆k sk ∈ pk, k ∈ {1, . . . ,K}.

Notes and further reading. A characterization of the interval parametric system of equations and
inequalities was derived by Popova (2015); she also considered various kinds of solutions. Hlad́ık (2017)
presented allowable transformations of (standard and) parametric systems of equations and inequalities
for several types of solutions.

4.3 General interval linear systems

Now, we extend the previous ideas to an interval system of mixed equations and inequalities. Most of the
results described below come from Hlad́ık (2013b).

Let A ∈ IRm1×n1 , B ∈ IRm1×n2 , C ∈ IRm2×n1 , D ∈ IRm2×n2 , b ∈ IRm1 , and d ∈ IRm2 . Consider the
general interval linear system

Ax + By = b, Cx + Dy ≤ d, x ≥ 0, (4.7)

which is again a shortage for the family of linear systems

Ax + By = b, Cx + Dy ≤ d, x ≥ 0 (4.8)

with A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b, and d ∈ d.
Each interval linear system can be transformed into the form of (4.7). Inequalities of the form “≥”

are multiplied by −1, and the non-positivity condition z ≤ 0 is replaced by z′ ≥ 0 using the substitution
z′ := −z. None of these transformations causes dependencies in the interval system, and so does affect
neither solvability nor the solution set of any type.

The solution set. We say that a pair (x, y) ∈ Rn1+n2 is a solution of (4.7) if it satisfies (4.8) for some
A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b, and d ∈ d. The Oettli–Prager Theorem 3.2 characterizing interval
linear equations and Gerlach’s Theorem 4.1 for inequalities are generalized to the mixed interval linear
system in the following theorem.

Theorem 4.13. The solution set to (4.7) is described by

Ax + Bcy ≤ B∆|y| + b, (4.9a)

−Ax−Bcy ≤ B∆|y| − b, (4.9b)

Cx + Dcy ≤ D∆|y| + d, x ≥ 0. (4.9c)

Proof. By the Oettli–Prager theorem, to be a weak solution to Ax + By = b, x ≥ 0, any x ∈ Rn1 and
y ∈ Rn2 , have to fulfill

|Acx + Bcy − bc| ≤ A∆|x| + B∆|y| + b∆ = A∆x + B∆|y| + b∆,

that is,
Acx + Bcy − bc ≤ A∆x + B∆|y| + b∆, −Acx−Bcy + bc ≤ A∆x + B∆|y| + b∆.

By Gerlach’s theorem, weak solutions to Cx + Dy ≤ d, x ≥ 0, are described

Ccx + Dcy ≤ C∆x + D∆|y| + d, x ≥ 0.

Thus, any solution to (4.7) must satisfy both conditions, which results in the characterization by (4.9).
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Since |y| = diag(sgn(y))y for any y ∈ Rn2 , we can linearize the absolute value in the description of
weak solutions and obtain a characterization by means of 2n2 linear systems.

Corollary 4.14. A pair (x, y) ∈ Rn1+n2 is a solution to (4.7) if and only if there is s ∈ {±1}n2 such that

Ax + Bs,ey ≤ b,

−Ax−B−s,ey ≤ −b,

Cx + Ds,ey ≤ d, x ≥ 0.

Obviously, if the intervals are situated in the right-hand side only, then the system (4.9) becomes
linear, and the solution set is a convex polyhedron. Checking solvability is then easy. Similar reasoning
holds provided the intervals are situated in a fixed number k of columns of the constraint matrix; see
Remark 3.13. By the above corollary, the problem reduces to a fixed number 2k of linear systems.

Corollary 4.15. Checking solvability is a polynomial problem provided the constraint matrix is real or
the number of variables with interval coefficients is fixed.

Given a weak solution (x, y) ∈ Rn1+n2 , one may ask for a realization (4.8) of the interval system
having (x, y) as a solution.

Theorem 4.16. Let (x, y) ∈ Rn1+n2 be a weak solution to (4.7). Then (x, y) solves (4.8) with

A = Au,e, B = Bu,s,

C = C, D = De,s,

b = bu, d = d,

where s = sgn(y) and u ∈ [−1, 1]m1 is defined

ui =

{

(Acx+Bcy−bc)i
(A∆x+B∆|y|+b∆)i

if (A∆x + B∆|y| + b∆)i > 0,

1 otherwise,
i = 1, . . . ,m1.

Proof. The realizations concerning equations follow from Theorem 3.2. The realizations concerning in-
equalities easily follow from |y| = diag(sgn(y))y and the inequality

Cx + Dcy ≤ D∆|y| + d.

Transformations of interval systems. In the real case, one often applies various transformations
yielding equivalent linear systems. In the interval case, one has to be careful since transformations can
cause dependencies, and if one relaxes them, the transformation is no more equivalent. Below, we discuss
two commonly used transformations. For extensions see Hlad́ık (2017).

Splitting equations to double inequalities. This transformation replaces an interval system of linear
equations by Ax = b with interval linear inequalities Ax ≤ b, Ax ≥ b. In Theorem 4.6, we observed
that, surprisingly, this transformation does not affect the weak solution set. It can, however, change other
types of solutions and solvabilities, for instance the strong solvability discussed later in Section 4.4.

Imposing nonnegativity. This transformation applies the substitution x = x1 − x2, x1, x2 ≥ 0, which
induces nonnegative variables x1 and x2 in the case x was a free variable. We can impose nonnegativity
for both interval equations

Ax = b → Ax1 −Ax2 = b, x1, x2 ≥ 0,

and interval inequalities

Ax ≤ b → Ax1 −Ax2 ≤ b, x1, x2 ≥ 0.

Again, due to multiple occurrences of the interval coefficients, the transformation does not yield an
equivalent system (an exception is strong solvability, as we will see in Theorem 4.20).
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Example 4.17. Consider the interval system

x = 1, [1, 2]x = 3,

which has no weak solution. Imposing nonnegativity transforms the system to

x1 − x2 = 1, [1, 2]x1 − [1, 2]x2 = 3, x1, x2 ≥ 0.

The solution set is nonempty now since the realization

x1 − x2 = 1, 2x1 − x2 = 3, x1, x2 ≥ 0

has solution x = (2, 1)T .

Imposing equations. The transformation of Ax ≤ b to Ax + z = b, z ≥ 0 changes inequalities to
equations with slack nonnegative variables. Since no dependencies occur, the transformation is equivalent.
The transformed system, however, need not be more convenient. For example, we will see later that the
conditions for checking strong solvability are more expensive for inequalities than for equations.

4.4 Strong solvability of interval systems

Herein, we introduce another solvability concept for interval linear systems of equations and inequalities.
An interval linear system is strongly solvable if each realization is solvable. Notice that this concept differs
from AE solutions discussed in Section 3.10 since strong solvability does not require all realizations to
have a common solution.

Below, we state characterizations of strong solvability for various kinds of systems. More detailed
exposition is given in Hlad́ık (2013b); Rohn (2006a).

4.4.1 Interval equations

Let A ∈ IRm×n, b ∈ IRm and consider an interval system of linear equations Ax = b. First, we character-
ize strong solvability for the case with nonnegative variables, and then we extend the result to a system
without restriction on variables.

Theorem 4.18 (Rohn, 1981). An interval system Ax = b, x ≥ 0 is strongly solvable if and only if the
system

As,ex = bs, x ≥ 0 (4.10)

is solvable for each s ∈ {±1}m.

Proof. By negation, the interval system Ax = b, x ≥ 0 is not strongly solvable if and only if the system
Ax = b, x ≥ 0 is unsolvable for certain A ∈ A and b ∈ b. Equivalently, by Farkas’ lemma 1.33, the system
ATu ≥ 0, bTu ≤ −1 is solvable. That is, the interval system ATu ≥ 0, bTu ≤ −1 is (weakly) solvable. By
Gerlach’s Theorem 4.1, the system

(Ac)Tu + (A∆)T |u| ≥ 0, (bc)Tu− (b∆)T |u| ≤ −1

has a solution. Equivalently, there is s ∈ {±1}m such that the linear system

(Ac)Tu + (A∆)T diag(s)u ≥ 0, (bc)Tu− (b∆)T diag(s)u ≤ −1

has a solution. Eventually, by Farkas’ lemma again, it is equivalent to unsolvability of

(Ac + diag(s)A∆)x = bc − diag(s)b∆, x ≥ 0

for some s ∈ {±1}m. Substitution s := −s leads to (4.10).
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Theorem 4.19 (Rohn, 2003). Let A ∈ IRm×n and b ∈ IRm. An interval system Ax = b is strongly
solvable if and only if the system

As,ex
1 −A−s,ex

2 = bs, x1, x2 ≥ 0 (4.11)

is solvable for each s ∈ {±1}m.

We omit the proof since the statement directly follows from Theorem 4.18 applied to the following
result from Hlad́ık (2017).

Theorem 4.20. Let A ∈ IRm×n and b ∈ IRm. An interval system Ax = b is strongly solvable if and
only if the system

Ax1 −Ax2 = b, x1, x2 ≥ 0

is strongly solvable.

Proof. The system Ax = b is not strongly solvable if and only if there are A ∈ A and b ∈ b such that
Ax = b is unsolvable. By Farkas’ lemma 1.33, equivalently, the system

ATu = 0, bTu ≤ −1

is solvable. This means that the system

ATu = 0, bTu ≤ −1

is solvable. By Theorem 4.6, we can equivalently rewrite the system to

ATu ≥ 0, ATu ≤ 0, bTu ≤ −1.

That is, there are A,A′ ∈ A and b ∈ b such that the system

ATu ≥ 0, A′Tu ≤ 0, bTu ≤ −1

is solvable. Calling Farkas’ lemma once again,

Ax1 −A′x2 = b, x1, x2 ≥ 0

is unsolvable.

The solutions of systems (4.11) have an interesting interpretation for the particular realizations of
Ax = b. Even thought the points x1s − x2s, s ∈ {±1}m need not belong to the solution set Σ of Ax = b

(see Example 4.22 below), they do provide an enclosure of its (selected) solutions.

Theorem 4.21 (Rohn, 2003). If the interval system Ax = b is strongly solvable, then each realization
has a solution in the set

convs∈{±1}m{x1s − x2s}, (4.12)

where x1s, x
2
s, s ∈ {±1}m, is a solution to (4.11).

Proof. Let A ∈ A and b ∈ b. We want to find λs ≥ 0, s ∈ {±1}m, such that
∑

s λs = 1 and Ax = b for
x =

∑

s λs(x
1
s − x2s). In other words, we want to show that the linear system

∑

s∈{±1}m
λsA(x1s − x2s)) = b,

∑

s∈{±1}m
λs = 1, λs ≥ 0, s ∈ {±1}m

has a solution with respect to λs, s ∈ {±1}m. Equivalently, by Farkas’ theorem, for each p ∈ Rm and
q ∈ R it should hold that

(

∀s ∈ {±1}m : pTA(x1s − x2s)) + q ≥ 0
)

⇒ pT b + q ≥ 0.
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Figure 4.3: (Example 4.22): Enclosure of the solution set Σ by means of the convex hull of the four points
x1s − x2s, s ∈ {±1}2.

Let p ∈ Rm, q ∈ R and put s := sgn(p). Now,

0 ≤ pT (Ax1s −Ax2s) + q

≤ pT
(

Ac + diag(s)A∆)x1s − (Ac − diag(s)A∆)x2s
)

+ q

= pT (bc − diag(s)b∆) + q ≤ pT b + q,

which closes the proof.

Example 4.22. Consider the Barth & Nuding system of interval linear equations (3.6). For particular
s ∈ {±1}2 we compute solutions to (4.11) as follows

s = (1, 1)T : x1s = (7, 5)T , x2s = (0.5, 0)T ,
s = (1,−1)T : x1s = (5, 0.5)T , x2s = (0, 7)T ,
s = (−1, 1)T : x1s = (0, 7)T , x2s = (5, 0.5)T ,
s = (−1,−1)T : x1s = (0.5, 0)T , x2s = (7, 5)T .

Since A is regular, the set (4.12) provides an enclosure of the whole solution set Σ. This is illustrated
in Figure 4.3a. We see that the particular points x1s − x2s do not lie in Σ. The systems (4.11), however,
do not possess unique solutions. Consider another choice of solutions, which were indeed calculated by a
linear programming solver,

s = (1, 1)T : x1s = (4, 3)T , x2s = (0, 0)T ,
s = (1,−1)T : x1s = (3, 0)T , x2s = (0, 4)T ,
s = (−1, 1)T : x1s = (0, 4)T , x2s = (3, 0)T ,
s = (−1,−1)T : x1s = (0, 0)T , x2s = (4, 3)T .

Now, the points x1s − x2s belong to Σ and, even more, they form the spires of the solution set. Hence
convΣ = convs∈{±1}2{x1s − x2s} in this case; see Figure 4.3b.

The following characterization by Rohn (2014) on strong solvability might seem more complicated
than the above one, but it gives a useful technical tool and also a nice geometric insight.
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Theorem 4.23. An interval system Ax = b is strongly solvable if and only if the system

diag(s)Ax ≤ diag(s)b

is strongly solvable for each s ∈ {±1}m.

Proof. By negation, suppose that Ax = b is not solvable for some A ∈ A and b ∈ b. By Farkas’ lemma 1.33,
it is equivalent to solvability of

ATu = 0, bTu ≤ −1.

This means that there is u ∈ Rm being a weak solution of the interval system

ATu = 0, bTu ≤ −1.

Yet equivalently, there is s ∈ {±1}m such that v = diag(s)u is a weak solution of the interval system

AT diag(s)v = 0, bT diag(s)v ≤ −1, v ≥ 0.

By Farkas’ lemma again, there is s ∈ {±1}m such that the interval system

diag(s)Ax ≤ diag(s)b

is not strongly solvable.

Eventually, we show that checking strong solvability of interval linear equations is co-NP-hard, as well
as checking strong nonnegative solvability (Rohn, 1998b).

Theorem 4.24. Checking strong solvability of a square system Ax = b is co-NP-hard.

Proof. We know (Theorem 3.60) that checking regularity of interval matrices is co-NP-hard. We show
that a matrix A ∈ IRn×n is regular if and only if the interval system Ax = [−e, e] is strongly solvable.
If A is regular, then the system must be strongly solvable. If A is not regular, then there is a singular
A ∈ A. The system Ax = b is unsolvable for any b, ‖b‖∞ ≤ 1, lying outside the column space of A.

Theorem 4.25 (Rohn, 1998b). Checking strong solvability of an interval system Ax = b, x ≥ 0 is
co-NP-hard.

Proof. By Theorem 4.24, checking strong solvability of Ax = b is co-NP-hard. By Theorem 4.20, strong
solvability of Ax = b is equivalent to strong solvability of Ax1 −Ax2 = b, x1, x2 ≥ 0.

Interval right-hand side. Now, let us focus on the case when the intervals are situated in the right-
hand side vector only. It turns out that checking strong solvability is hard if we restrict to the nonnegative
variables, but the problem becomes polynomial provided the variables are free.

Theorem 4.26 (Garajová et al., 2017). Checking strong solvability of an interval system Ax = b, x ≥ 0
is co-NP-hard.

Proof. By Farkas’ lemma 1.33, the system Ax = b, x ≥ 0 is infeasible if and only if the system AT y ≥ 0,
bT y < 0 is feasible. Therefore, Ax = b, x ≥ 0 is strongly solvable if and only if the system AT y ≥ 0, bT y < 0
has no solution. However, checking solvability of this interval system is NP-hard by Theorem 4.5.

Theorem 4.27. Checking strong solvability of an interval system Ax = b is a polynomial problem.

Proof. Suppose that the ith row of A is linearly dependent on the others. If b∆i > 0, then the system is
not strongly solvable. Thus, we can assume that each such row has real right-hand side. If the ith row
of (A | b) is linearly dependent on the others, then we can omit it; otherwise, the system is not strongly
solvable. In this way, we end up with a matrix that has full row rank, and so its columns generate the
whole space. Therefore the system is strongly solvable.
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4.4.2 Interval inequalities

In contrast to equations, strong solvability of interval linear inequalities is characterized by linear con-
straints and so the decidability problem is polynomial.

Theorem 4.28 (Rohn and Kreslová, 1994). An interval system Ax ≤ b is strongly solvable if and only
if the system

Ax1 −Ax2 ≤ b, x1 ≥ 0, x2 ≥ 0 (4.13)

is solvable.

Proof. The interval system Ax ≤ b is not strongly solvable if and only if there are A ∈ A and b ∈ b such
that Ax ≤ b is unsolvable. By Farkas’ lemma 1.33, equivalently, the system

ATu = 0, bTu ≤ −1, u ≥ 0

is solvable. Thus, we have that the interval system

ATu = 0, bTu ≤ −1, u ≥ 0

is weakly solvable. By the Oettli–Prager and Gerlach theorems (or Theorem 4.13), the solution se is
described by

A
T
u ≥ 0, −ATu ≥ 0, bTu ≤ −1, u ≥ 0.

By Farkas’ lemma again, the system (4.13) is unsolvable.

Theorem 4.29 (Rohn and Kreslová, 1994). Suppose that the interval system Ax ≤ b is strongly solvable,
and define x∗ := x1 − x2, where x1, x2 solves (4.13). Then x∗ is a solution to Ax ≤ b for every A ∈ A

and b ∈ b.

Proof. Let A ∈ A and b ∈ b be arbitrary. Then

Ax∗ = A(x1 − x2) = Ax1 −Ax2 ≤ Ax1 −Ax2 ≤ b ≤ b.

Proof. One direction is trivial since Ax ≤ b, x ≥ 0 is a realization of the interval system. Conversely, let
x∗ be a solution to Ax ≤ b, x ≥ 0. Whenever A ∈ A and b ∈ b, we have Ax∗ ≤ Ax∗ ≤ b ≤ b.

Theorem 4.29 says an interesting property of interval linear inequalities. If they are strongly solvable,
then they possess the so-called strong solution, which is a solution common to all realizations; see also
Corollary 4.37. Naturally, interval equations cannot have a strong solution so easily. For example, the
interval system

x + y = [1, 2], x− y = [2, 3]

is strongly solvable, but there is no common solution.

In the case of non-negative variables, strong solvability is even more easy to check for. As a conse-
quence, we get that the transformation of imposing nonnegativity does not change strong solvability, so
that one can substitute x = x1 − x2, x1, x2 ≥ 0, for a free variable x and can ignore dependencies.

Theorem 4.30 (Vajda, 1961). An interval system Ax ≤ b, x ≥ 0 is strongly solvable if and only if the
system Ax ≤ b, x ≥ 0 is solvable.

Corollary 4.31. An interval system Ax ≤ b is strongly solvable if and only if the interval system
Ax1 −Ax2 ≤ b, x1, x2 ≥ 0, is strongly solvable.

Other transformations, however, can change strong solvability (cf. Section 4.3). A typical example is
splitting equations to double inequalities. For concreteness, consider the interval system x = [1, 2], which
is strongly solvable. The transformation yields the interval system x ≤ [1, 2], x ≥ [1, 2]. It is not strongly
solvable since it involves the infeasible realization x ≤ 1, x ≥ 2.
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4.4.3 General interval system

We extend the previous results to an interval system of mixed linear equations and inequalities (4.7) in
the lines of Hlad́ık (2013b).

Theorem 4.32. The system (4.7) is strongly solvable if and only if the system

As,ex + Bs,ey
1 −B−s,ey

2 = bs, (4.14a)

Cx + Dy1 −Dy2 ≤ d, (4.14b)

x, y1, y2 ≥ 0. (4.14c)

is solvable for every s ∈ {±1}m1 .

Proof. By negation, suppose that (4.8) is not solvable for some realization of interval data. By Farkas’
theorem (Corollary 1.34), there are u ∈ Rm1 and v ∈ Rm2 , v ≥ 0, such that

ATu + CT v ≥ 0, BTu + DT v = 0, bTu + dT v ≤ −1.

That is, (u, v) forms a weak solution to the interval system

ATu + CT v ≥ 0, BTu + DT v = 0, bTu + dT v ≤ −1, v ≥ 0

and by Corollary 4.14 there is s ∈ {±1}m1 such that

(A−s,e)
T y + C

T
v ≥ 0,

(B−s,e)
T y + D

T
v ≥ 0,

−(Bs,e)
T y −DT v ≥ 0,

(b−s)
T y + dT v ≤ −1, v ≥ 0.

Again, we utilize Farkas’ theorem, saying that there is no non-negative x, y1, y2 satisfying

A−s,ex + B−s,ey
1 −Bs,ey

2 = b−s,

Cx + Dy1 −Dy2 ≤ d.

This is equivalent to (4.14) by substituting s := −s.

Provided we check strong solvability by Theorem 4.32, we can also output a bounded set in which
each realization (4.8) has at least one solution; cf. Rohn (2006a). This generalizes the result provided by
Theorem 4.21.

Theorem 4.33. If the system (4.7) is strongly solvable, then each realization has a solution in the set

convs∈{±1}m1{(xs, y
1
s − y2s)},

where xs, y
1
s , y

2
s , s ∈ {±1}m1 , is a solution to (4.14).

Proof. Let A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b, and d ∈ d. Then for any convex combination

x =
∑

s∈{±1}m1

λsxs, y =
∑

s∈{±1}m1

λs(y
1
s − y2s),

with
∑

s∈{±1}m1 λs = 1 and λs ≥ 0, s ∈ {±1}m1 , we have

Cx + Dy =
∑

s∈{±1}m1

λsCxs +
∑

s∈{±1}m1

λsD(y1s − y2s)

≤
∑

s∈{±1}m1

λsCxs +
∑

s∈{±1}m1

λs(Dy1s −Dy2s)

≤
∑

s∈{±1}m1

λsd = d ≤ d.
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Thus, it suffices to find an appropriate convex combination satisfying the equations. That is, we want to
show that the system

∑

s∈{±1}m1

λs(Axs + B(y1s − y2s)) = b,
∑

s∈{±1}m1

λs = 1, λs ≥ 0, s ∈ {±1}m1

has a solution with respect to λs, s ∈ {±1}m1 . Equivalently, by Farkas’ theorem, for each u ∈ Rm1 and
v ∈ R it should hold that

(

∀s ∈ {±1}m1 : uT (Axs + B(y1s − y2s)) + v ≥ 0
)

⇒ uT b + v ≥ 0.

Let u ∈ Rm1 , v ∈ R and put s := − sgn(u). Now,

0 ≤ uT
(

Axs + B(y1s − y2s)
)

+ v

≤ uT
(

As,exs + Bs,ey
1
s −B−s,ey

2
s

)

+ v

= uT bs + v ≤ uT b + v,

which closes the proof.

A sufficient condition for strong solvability

In view of intractability of checking strong solvability, a sufficient condition is welcome. We propose the
following method:

1: Solve a linear program to obtain a suitable initial solution.

2: Based on the previous result, transform the equations to a square system.

3: Compute an enclosure x,y to the square system.

4: Check whether x,y fulfills the inequalities x ≥ 0 and Cx + Dy ≤ d.

Now, we describe particular steps in detail. In Step 1, we solve the linear program

max α subject to Acx + Bcy = bc, Ccx + Dcy + αe ≤ d, x ≥ 0.

In the case there are no inequalities, we solve

max α subject to Acx + Bcy = bc, x ≥ αe.

instead. The idea is to determine a sufficiently robust feasible solution. Let x∗, y∗ be an optimal solution. If
the linear program is infeasible, then strong solvability is not satisfied. If the linear program is unbounded,
then we take any solution on its unbounded edge.

In Step 2, we transform the system of equations Acx+Bcy = bc to a square one. Suppose m1 < n1+n2.
For each i such that x∗i = 0 we remove the ith column of A and C, and the ith entry of x∗. Thus, the
number of variables decreases. If there are more vanishing entries of x∗ than the value of m+n− k, then
we remove only n1 + n2 − m1 columns. After the dimension reduction, if the system is not square yet,
we add a suitable number of artificial equations A′x + B′y = b′. The natural choice for (A′ B′) is the
orthogonal basis of the null space to (Ac Bc), and the right-hand side is calculated b′ := A′x∗ + B′y∗.
The idea behind this choice is that the solution of the resulting system is supposed to be less sensitive to
perturbations of A ∈ A, B ∈ B and b ∈ b (the orthogonal matrices have the smallest condition number).

In Step 3, we solve the interval linear system of equations

Ax + By = b, A′x + B′y = b′.

We can employ any of the methods discussed in Sections 3.2–3.5. Even though x,y do not contain all
weak solutions of Ax + By = b, they do contain at least one solution of any realization Ax + By = b
with A ∈ A, B ∈ B and b ∈ b.
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In Step 4, we check whether x ≥ 0 and Cx+Dy ≤ d, that is, whether x ≥ 0 and sup(Cx+Dy) ≤ d.
If yes, then each realization of interval data has at least one solution fulfilling the constraints and we
output that the system is strongly solvable. If no, then we cannot decide.

The method requires solving one linear program, an orthogonal basis of the null space and an enclosure
to the solution set of interval linear equations, so the overall computational cost is very low. Moreover,
it is easy to implement it in a reliable way. Since the linear program and orthogonal basis play a role of
a heuristic only, they need not be computed verified. The other computation is done by using interval
arithmetic.

Notice that the method gives a new and strong sufficient condition for strong solvability of specific
cases of interval linear systems, namely, for Ax = b, x ≥ 0 and for By = b.

Example 4.34. Let

A =
(

−3
)

, B =
(

2 1
)

, b =
(

4
)

, C =

(

2
1

)

, D =

(

−1 2
1 −1

)

, d =

(

10
5

)

.

For a given parameter δ ≥ 0, we enlarge real quantities to intervals having radius δ. Thus, A is defined
as A := [A − δeeT , A + δeeT ] and analogously for B,C,D, b,d. The maximal value of δ, for which our
method confirms strong solvability of (4.7), is δ ≈ 0.6929. The maximal value of δ, for which (4.7) is
really strong solvable, is δ ≈ 0.7391.

4.5 AE solutions of general interval linear systems

Herein, we again consider a general interval linear system (cf. (4.7))

Ax + By = b, Cx + Dy ≤ d, x ≥ 0, (4.15)

where A ∈ IRm1×n1 , B ∈ IRm1×n2 , C ∈ IRm2×n1 , D ∈ IRm2×n2 , b ∈ IRm1 , and d ∈ IRm2 . Similarly as in
Section 3.10 we suppose that each interval is associated with quantifier ∀ or ∃. First, we focus on strong
solutions, which are solutions defined by ∀-quantification.

4.5.1 Strong solutions

Recall that interval system (4.15) is called strongly solvable if each realization is solvable (not necessarily
by the same pair (x, y)). Now, we introduce a strong solution of (4.7) as any (x, y) ∈ Rn1+n2 such that it
solves (4.8) for every realization A ∈ A, B ∈ B, C ∈ C, D ∈ D, b ∈ b, and d ∈ d. Clearly, existence of a
strong solution implies strong solvability, but not the conversely (an exception are pure inequalities; see
Corollary 4.37 below).

The strong solution set can be viewed as the intersection of all feasible solution sets of all realizations.
Therefore, the strong solution set is always convex.

Theorem 4.35. A pair (x, y) ∈ Rn1+n2 is a strong solution to (4.7) if and only if it satisfies

b∆ = 0, A∆x = 0, B∆|y| = 0, Acx + Bcy = bc, Cx + Dcy + D∆|y| ≤ d, x ≥ 0.

Proof. The pair (x, y) ∈ Rn1+n2 is a strong solution only if it satisfies

Ax + By − b = 0, Cx + Dy − d ≤ 0, x ≥ 0

for every realization. Equivalently,

Ax + By − b = 0, Cx + Dy − d ≤ 0, x ≥ 0,

where the left-hand sides of equations and inequalities are calculated by interval arithmetic. Two intervals
are identical if and only if they have the same midpoint and radius. So the interval condition Ax+By−b =
0 is equivalent to the equality of their centers, i.e., Acx + Bcy = bc, and equality of their radii, i.e.,
A∆x + B∆|y| + b∆ = 0. The latter can be written as b∆ = 0, A∆x = 0, B∆|y| = 0. The condition
Cx + Dy − d ≤ 0 holds true if and only if Cx + Dy − d ≤ 0. Since Cx = Cx and Dy = Dcy + D∆|y|
(see Proposition 2.11), we have the characterization in question.
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The strong solutions of an interval system of linear equations Ax = b in particular are characterized
by

b∆ = 0, A∆|x| = 0, Acx = bc.

Therefore, b must be a real vector and the strong solutions are equivalently described by linear equations

Acx = bc, xi = 0 ∀i : (A∆)∗i 6= 0.

This shows the the strong solution set is geometrically an affine space.
For an intervl system of equations, a strong solution is unlikely to exist, however, for inequalities, this

concept is more useful. Therefore, we summarize various characterizations of strong solutions of interval
linear inequalities. The second item comes from Theorem 4.35 and the third one from Theorem 4.29.

Corollary 4.36. For a vector x ∈ Rn, the following are equivalent:

(1) x is a strong solution to Ax ≤ b,

(2) Acx + A∆|x| ≤ b,

(3) x = x1 − x2, Ax1 −Ax2 ≤ b, x1, x2 ≥ 0.

Eventually, we state the observation we have already mentioned.

Corollary 4.37. An interval system Ax ≤ b is strongly solvable if and only if it has a strong solution.

The solution set characterized by the Gerlach Theorem 4.1 can also be viewed as the union of all
polyhedra described by Ax ≤ b, A ∈ A, b ∈ b, that is,

∪A∈A, b∈b {x; Ax ≤ b},
whereas the set of strong solutions is the intersection of all polyhedra described by Ax ≤ b, A ∈ A, b ∈ b,
that is,

∩A∈A, b∈b {x; Ax ≤ b},
This geometric viewpoint is also illustrated by the following example.

Example 4.38. Consider the interval system of linear inequalities Ax ≤ b in the form








[2, 4] [4, 6]
−5 −[1, 1]

[2, 4] −[4, 6]
−[1, 3] −[2, 4]









x ≤









[20, 25]
[20, 25]
[20, 25]

18









.

Figure 4.4 illustrates the weak solution set, which is a non-convex polyhedron, and the strong solution set,
which is always a convex polyhedron. Each realization Ax ≤ b of Ax ≤ b describes a convex polyhedron
lying in between these two sets w.r.t. inclusion. The figure depicts separately two realizations, Ax ≤ b
and Ax ≤ b, respectively.

Even though the linear characterization given by Corollary 4.36(3) gives an efficient tool for handling
strong solutions, some sideway problems can still be tough. The characterization describes the strong
solutions by using auxiliary variables x1 and x2. To project the polyhedron in the space of x and to
obtain a description of the strong solutions by linear inequalities in x cannot be done effectively. As
Example 4.39 illustrates, the number of inequalities can be exponential. Therefore, Corollary 4.36(3)
gives a convenient extended formulation of the strong solution set (Avis and Tiwary, 2015).

Example 4.39. Consider the interval linear inequality in n variables

[−e, e]Tx ≤ e

By Corollary 4.36(2), the strong solution set is described by eT |x| ≤ 1. This inequality characterizes the
unit ball in the Manhattan norm, which has 2n faces. Thus, the minimum number of linear inequalities
is 2n, and they have the form of ±x1 ± · · · ± xn ≤ 1, considering all combinations of ± sign.

Domes and Neumaier (2016) use a similar concept for feasibility of uncertain optimization problem.

Notes and further reading. Huang et al. (2021) addressed the reversed quantification – EA solutions
of general interval systems. Sharaya (2014a); Vatolin (1984) considered even more generally quantified
interval problems; surprisingly, they can be characterized by a simple formula.



4.5. AE solutions of general interval linear systems 101

5 10−5−10
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0 x1

x2

(a) The intermediate realization is Ax ≤ b.

5 10−5−10

−5

5

10

0 x1

x2

(b) The intermediate realization is Ax ≤ b.

Figure 4.4: (Example 4.38) The strong solution set in dark gray and the weak solution set in light gray.
The intermediate polyhedron in medium gray represents one particular realization of Ax ≤ b.
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Chapter 5

Properties of interval matrices

5.1 Eigenvalues of interval matrices

5.1.1 Symmetric case

Recall that a symmetric matrix A has always real eigenvalues and we sort them non-increasingly

λ1(A) ≥ · · · ≥ λn(A).

Now, let AS be a symmetric interval matrix and introduce the eigenvalue sets

λi(A
S) := {λi(A); A ∈ AS} , i = 1, . . . , n.

Each eigenvalue set λi(A
S) consists of ith eigenvalues of all symmetric matrices in A. By the continuity

of eigenvalues (Horn and Johnson, 1985; Meyer, 2000) and compactness and convexity of AS it is easy to
see that λi(A

S), i = 1, . . . , n are compact intervals. They may be disjoint or they may overlap, but one
interval can never lie in the interior of another one.

Example 5.1. For

A =





[1, 2] 0 0
0 [7, 8] 0
0 0 [4, 10]





we have λ1(A
S) = [7, 10], λ2(AS) = [4, 8] and λ3(AS) = [1, 2]; see Figure 5.1.

Calculation of the eigenvalue sets is intractable. We show that just checking if zero lies in some
eigenvalue set is NP-hard.

Theorem 5.2. Checking whether 0 ∈ λi(A
S) for some i = 1, . . . , n is NP-hard.

Proof. By Theorem 3.60 we know that checking regularity of A ∈ IRn×n is a co-NP-hard problem. Put

M :=

(

0 A

AT 0

)

.

The interval matrix A is regular if and only if MS is regular. Now, MS is regular if and only if no
M ∈ MS has zero eigenvalue.

A simple enclosure of the eigenvalue set is obtained by a Weyl theorem; cf. Hlad́ık et al. (2010); Rohn
(2012a).

Theorem 5.3. We have

λi(A
S) ⊆ [λi(A

c) − ρ(A∆), λi(A
c) + ρ(A∆)], i = 1, . . . , n.

103
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0 1 2 3 4 5 6 7 8 9 10 Re

λ3(A) λ2(A) λ1(A)

Figure 5.1: (Example 5.1) Eigenvalue sets of a symmetric interval matrix.

Proof. Let A ∈ AS, so |A−Ac| ≤ A∆. By Weyl’s Theorem 1.12 and Theorem 1.8 we have

λi(A) = λi(A
c + (A−Ac)) ≤ λi(A

c) + λ1(A−Ac) ≤ λi(A
c) + ρ(|A−Ac|) ≤ λi(A

c) + ρ(A∆).

Similarly for the lower bound.

The largest and smallest eigenvalues of AS can be calculated by the exponential formula by Hertz
(1992). These two extremal eigenvalues are attained by matrices of the form A−z,z and Azz. The other
boundary points of the eigenvalue sets need not be attained at these matrices, moreover, they need not
be attained at vertex matrices. The situation here is more complex and still challenging; cf. Hlad́ık et al.
(2011c).

Theorem 5.4 (Hertz, 1992). We have

λ1(AS) = max
z∈{±1}n

λ1(A−z,z), λn(AS) = min
z∈{±1}n

λn(Azz).

Proof. Notice that (A−z,z)ij = aij if zi = zj and (A−z,z)ij = aij otherwise. Suppose to the contrary that
there is A ∈ AS such that λ1(A) > maxz∈{±1}n λ1(A−z,z). Thus, Ax = λ1(A)x for some x 6= 0 with
‖x‖2 = 1. Put z∗ := sgn(x), and by the Rayleigh–Ritz Theorem 1.11 we have

λ1(A) = xTAx =
n
∑

i,j=1

xixjAij ≤
n
∑

i,j=1

xixj(A−z∗,z∗)ij = xTA−z∗,z∗x

≤ max
y:‖y‖2=1

yTA−z∗,z∗y = λ1(A−z∗,z∗).

This is a contradiction. The lower limit is proved accordingly.

Notice that A−z,z = A−(−z),−z, so in the Hertz formula it is sufficient to go through z ∈ 1 × {±1}n−1

instead of z ∈ {±1}n. This saves half the execution time. The exponentiality of the Hertz formula is
justified by intractability of computation of the extremal eigenvalues.

Theorem 5.5. All the conditions λ1(A
S) > 0, λ1(A

S) ≥ 0, λn(AS) < 0 and λn(AS) ≤ 0 are NP-hard to
check for.

Proof. The strict inequalities follow from co-NP-hardness of checking positive semidefiniteness (Sec-
tion 5.2). The others follow from co-NP-hardness of checking positive definiteness (Theorem 5.17), and
hence NP-hardness remains true even on the class of interval matrices with Ac non-negative positive
definite rational and A∆ = eeT .

In some specific cases, the extremal eigenvalues are polynomially solvable.

Theorem 5.6.

(1) If Ac is essentially non-negative, i.e., Ac
ij ≥ 0 ∀i 6= j, then λ1(AS) = λ1(A).

(2) If A∆ is diagonal, then λ1(A
S) = λ1(A) and λn(AS) = λn(A).

Proof.
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(1) For the sake of simplicity, suppose Ac ≥ 0 first. Then for any A ∈ AS we have

|A| ≤ |A−Ac| + Ac ≤ A∆ + Ac = A,

whence by the Perron–Frobenius Theorem 1.7 and Theorem 1.8,

λ1(A) = ρ(A) ≤ ρ(A) = λ1(A).

If Ac is not nonnegative, then Ac + αIn ≥ 0 for some α ∈ R. Thus, we shift the interval matrix A

by αIn, and the proof follows from

λ1(A
S) = λ1(AS + αIn) − α = λ1(A + αIn) − α = λ1(A).

(2) By Hertz’s theorem,

λ1(AS) = max
z∈{±1}n

λ1(Ac + diag(z)A∆ diag(z)) = λ1(A
c + A∆) = λ1(A),

and similarly for λn(AS).

Remark 5.7. Surprisingly, λ1(AS) and λn(AS) are polynomially computable by calling a suitable
semidefinite program. For simplicity, we discuss λn(AS) only. It may be formulated as an optimal value
of the optimization problem

λn(AS) = max α subject to A− αIn is positive semidefinite, A ∈ AS.

The constraint A ∈ AS can be expressed in terms of positive semidefiniteness, too. Consider a block
diagonal matrix M(A,α) with blocks

A− αIn, aij − aij, aij − aij, i ≤ j.

Then the optimization problem reads

λn(AS) = max α subject to M(A,α) is positive semidefinite.

Since the objective function is linear and M(A,α) depends linearly (or affinely) on variables aij, i ≤
j, and α, the optimization problem has the structure of a semidefinite program and can be solved in
polynomial time with arbitrary precision (Gärtner and Matoušek, 2012; Nesterov and Nemirovskii, 1994;
Vandenberghe and Boyd, 1996).

5.1.2 General case

We have shown that calculation eigenvalue bounds for symmetric interval matrices is a computationally
hard problem. Bounding (complex) eigenvalues for general interval matrix A ∈ IRn×n is much more
difficult.

The following enclosure for all eigenvalues of all A ∈ A is by Hlad́ık (2013a), and it is a special version
of a more general result for complex interval matrices.

Theorem 5.8. For any A ∈ A and its eigenvalue ν = λ + iµ we have

λn

(

1
2(A + AT )S

)

≤ λ ≤ λ1

(

1
2(A + AT )S

)

, (5.1a)

λn

(

0 1
2 (A−AT )

1
2(AT −A) 0

)S

≤ µ ≤ λ1

(

0 1
2(A−AT )

1
2(AT −A) 0

)S

. (5.1b)

Proof. Basically, it follows from Bendixson’s Theorem 1.13, but we present a more elementary proof here.
Let A ∈ A, its eigenvalue ν = λ + iµ and the corresponding eigenvector x + iy normalized such that
1 = ‖x + iy‖22 = xTx + yT y. The eigenvalue equation A(x + iy) = (λ + iµ)(x + iy) reads

Ax + iAy = λx− µy + i(λy + µx)
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or, by splitting the real and imaginary parts

Ax = λx− µy, Ay = λy + µx. (5.2)

Multiplying the first equation by xT , the second by yT , and summing we get

xTAx + yTAy = λxTx− µxTy + λyT y + µyTx = λ(xTx + yT y) = λ.

Now, by the Rayleigh–Ritz Theorem 1.11

λ1(12(A + AT )) = λ1

(

1
2 (A + AT ) 0

0 1
2(A + AT )

)

= max
u,v: uTu+vT v=1

(

uT vT
)

(

1
2(A + AT ) 0

0 1
2 (A + AT )

)(

u
v

)

= max
u,v: uTu+vT v=1

1

2
uT (A + AT )u +

1

2
vT (A + AT )v

= max
u,v: uTu+vT v=1

uTAu + vTAv ≥ xTAx + yTAy = λ.

Similarly for the lower bound.
Multiplying the first equation in (5.2) by −yT , the second by xT , and summing we get

xTAy − yTAx = −λyTx + µyT y + λxT y + µxTx = µ(xTx + yT y) = µ.

Hence xT (A−AT )y = µ. Now,

λ1

(

0 1
2(A−AT )

1
2(AT −A) 0

)

= max
u,v:uT u+vT v=1

(

uT vT
)

(

0 1
2 (A−AT )

1
2(AT −A) 0

)(

u
v

)

= max
u,v:uT u+vT v=1

1

2
uT (A−AT )v +

1

2
vT (AT −A)u

= max
u,v:uT u+vT v=1

uT (A−AT )v ≥ xT (A−AT )y = µ.

Similarly for the lower bound.

Theorem 5.8 reduces the problem of enclosing complex eigenvalues of interval matrices to bounding real
eigenvalues of symmetric interval matrices. Thus, we can apply any enclosing method for the symmetric
case. In particular, Theorem 5.3 yields

λ ≤ λn(12(Ac + AcT )) − ρ(12 (A∆ + A∆T )),

λ ≥ λ1(
1
2 (Ac + AcT )) + ρ(12(A∆ + A∆T )),

µ ≤ λn

(

0 1
2 (Ac −AcT )

1
2(AcT −Ac) 0

)

− ρ

(

0 1
2(A∆ + A∆T )

1
2 (A∆T + A∆) 0

)

,

µ ≥ λ1

(

0 1
2(Ac −AcT )

1
2(AcT −Ac) 0

)

+ ρ

(

0 1
2(A∆ + A∆T )

1
2(A∆T + A∆) 0

)

.

These are exactly the bounds developed by Rohn (1998a). Better bounds for the symmetric case would
result in a tighter enclosure to the general case.

Notice that the bounds (5.1b) can be slightly sharpened by realizing the dependency in the interval
matrix

(

0 1
2 (A−AT )

1
2(AT −A) 0

)

.

Concretely, the diagonal of A−AT is overestimated due to the properties of interval arithmetic. However,
for each A ∈ A the diagonal of A−AT is zero, so we can put to zero the diagonal of the resulting interval
matrix A−AT , too.
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(a) Matrix A.
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(b) Matrix B.

Figure 5.2: (Example 5.9) The eigenvalue sets of interval matrices A and B.

Formula (5.1b) can also be reformulated to the form similar to (5.1a), reducing the size of the matrix
by the factor of 2

λn

(

1
2i(A−AT )

)

≤ µ ≤ λ1

(

1
2i(A−AT )

)

.

In this case, however, the matrix i
2(AT −A) is handled as an interval Hermitian matrix, so the results

for symmetric interval matrices have to be adapted accordingly.

Example 5.9. Let

A =





3 1 [2, 3]
5 2 3
−5 1 1



 .

Figure 5.2a illustrates the eigenvalue set. One eigenvalue is always real and the other two are complex
conjugates. The gray rectangle determines the initial bounds calculated by means of Theorem 5.8; the
bounds on the eigenvalues of the symmetric interval matrices therein were computed by the basic enclosure
of Theorem 5.3.

As the second example, consider matrix

B =





1 2 [−1, 0]
−4 3 [0, 1]
3 2 1



 .

The eigenvalue set is depicted in Figure 5.2b.

5.1.3 Spectral radius

Let A ∈ IRn×n. Our focus is on the range of spectral radii

ρ(A) = {ρ(A); A ∈ A},
which forms a compact real interval. Computational complexity of determining the left or the right
endpoint of ρ(A) is an open problem. Indeed, there are only a few of results known for ρ(A).

Proposition 5.10. If A ≥ 0, then ρ(A) = [ρ(A), ρ(A)].

Proof. Let A ∈ A. By Theorem 1.8, 0 ≤ A ≤ A ≤ A implies ρ(A) ≤ ρ(A) ≤ ρ(A). By continuity of
eigenvalues, all intermediate values are attained. In particular, the range ρ(A) is obtained by the set of
spectral radii of the matrices of the form (1 − α)A + αA, α ∈ [0, 1].

Several bounds on the spectral radius of A were proposed in Hlad́ık (2011b).
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5.1.4 Eigenvectors

The surprising fact on eigenvectors of interval matrices is that while checking whether λ ∈ R is an
eigenvalue of A ∈ IRn×n is NP-hard, checking whether x ∈ Rn is an eigenvector of A is effectively
decidable. The explanation might be that for a given λ, knowledge of the corresponding n-dimensional
eigenvector x is missing, while knowing x, only one-dimensional parameter λ must be found.

Theorem 5.11 (Rohn, 1993b). A vector o 6= x ∈ Rn is an eigenvector of some matrix in A ∈ IRn×n if
and only if

(diag(z)Acx−A∆|x|)|x|T ≤ |x|(diag(z)Acx + A∆|x|)T , (5.3)

where z := sgn(x).

Proof. The vector x is an eigenvector corresponding to an eigenvalue λ ∈ R iff (A − λIn)x = o for some
A ∈ A. By the Oettli–Prager Theorem 3.2, x and λ have to satisfy

|Acx− λx| ≤ A∆|x|,
or,

Acx−A∆|x| ≤ λx ≤ Acx + A∆|x|.
Feasibility of this system is easily checked by linear programming. Since there is only one variable λ, we
can eliminate it and obtain an explicit characterization. Denoting y := [Acx − A∆|x|, Acx + A∆|x|], the
ith inequality reads

yci − y∆i ≤ λxi ≤ yci + y∆i .

Supposing xi 6= 0 (which case can be easily treated), we get

(yci − ziy
∆
i )/xi ≤ λ ≤ (yci + ziy

∆
i )/xi.

The Fourier–Motzkin elimination of λ yields inequalities by combining all left and right hand sides:

(yci − ziy
∆
i )/xi ≤ (ycj + ziy

∆
j )/xj , ∀i, j.

By multiplying xixj, we get

zi(y
c
i − ziy

∆
i )zjxj ≤ zj(y

c
j + ziy

∆
j )zixi, ∀i, j.

A compact matrix form (slightly redundant) is

diag(z)(Acx− diag(z)A∆|x|)|x|T ≤ |x|diag(z)(Acx + diag(z)A∆|x|)T ,
which is equivalent to (5.3).

In the symmetric case, the problem is also polynomially solvable by linear programming techniques,
however, there is not an explicit formula such as (5.3).

Observation 5.12. A vector o 6= x ∈ Rn is an eigenvector of some matrix in AS if and only if the linear
system

Ax = λx, A ≤ A ≤ A, A = AT

is solvable w.r.t. variables λ and A.

Proof. A vector o 6= x ∈ Rn is an eigenvector of some matrix in AS if and only if there is A ∈ AS such
that Ax = λx, from which the final form follows.

An adaptation for the general case of a complex eigenvector follows. Below, λ + iµ represents the
eigenvalue associated to the eigenvector x + iy.

Observation 5.13. A vector o 6= x+ iy ∈ Cn is an eigenvector of some matrix in A ∈ IRn×n if and only
if the linear system

Ax = λx− µy, Ay = λy + µx, A ≤ A ≤ A

is solvable w.r.t. variables λ, µ and A.
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Notes

One of the first results on computing the ranges of eigenvalues of interval matrices are due to Deif (1991a)
and Rohn and Deif (1992). They derived formulae for determining exact bounds for the complex and the
real eigenvalues, respectively. However, these results apply only under a restrictive assumption on the sign
pattern invariancy of the corresponding eigenvectors. Other theoretical properties of real eigenvalues are
in Rohn (1993b). Various methods for enclosing eigenvalues of A and/or AS were studied in Hlad́ık et al.
(2010); Kolev (2006a). A filtering method for making the enclosures tighter was proposed in Hlad́ık et al.
(2011b). Kolev and Petrakieva (2005) estimated the real parts of the eigenvalues by solving a specific
nonlinear system.

The generalized interval eigenvalue problem was dealt with in Leng and He (2010). The related prob-
lem of bounding singular values of an interval matrix was discussed, e.g., in Ahn and Chen (2007); Deif
(1991b); Hlad́ık et al. (2010).

Applications of the interval eigenvalue problem are found in diverse areas such as robotics (Chablat et al.,
2004), mass structures (Qiu et al., 1996), automobile suspension system (Qiu et al., 2001), vibrating sys-
tems (Dimarogonas, 1995) or principal component analysis (Gioia and Lauro, 2006).

For more on Perron vectors of nonnegative interval matrices see, e.g., (Rohn, 2012b, Sec. 3.4.4).
There are many papers studying (Hurwitz or Schur) stability of interval matrices: an algorithm giv-

ing a sufficient condition of instability of a symmetric interval matrix (Rohn, 1996). Gerschgorin-like
enclosures were investigated in Franzè et al. (2006). Mansour (1989) reviews diverse approaches to sta-
bility of interval matrices. Sufficient conditions by Lyapunov approach are in Petkovski (1991). More
exhausting algorithms based on the branch & bound framework with some useful sufficient conditions
were proposed in Ghosh et al. (2000); Wang et al. (1994). There are related problems of stability of linear
time-invariant systems Ahn and Chen (2008) and iterative control systems Ahn et al. (2007). Stability
checking by two-dimensional exposed faces was studied in Xiao and Unbehauen (2000).

The bounds for the symmetric case were utilized in Euclidean distance problems (Dias da Silva, 2017).
They are often used in constructing convex lower bounds of nonconvex functions (Section 8.3.1).

5.2 Positive semidefiniteness

We say that a symmetric interval matrix AS is positive semidefinite if every A ∈ AS is positive semidefi-
nite. The following theorem gives necessary and sufficient conditions for AS to be positive semidefinite.

Theorem 5.14 (Rohn, 1994b). The following statements are equivalent

(1) AS is positive semidefinite;

(2) Azz is positive semidefinite for each z ∈ {±1}n;
(3) xTAcx− |x|TA∆|x| ≥ 0 for each x ∈ Rn.

Proof.
“(1) ⇒ (2)” Obvious from Azz ∈ AS.
“(2) ⇒ (3)” Let x ∈ Rn and put z := sgn(x). Now,

xTAcx− |x|TA∆|x| = xTAcx− xT diag(z)A∆ diag(z)x = xTAzzx ≥ 0.

“(3) ⇒ (1)” Let A ∈ AS and x ∈ Rn. Now,

xTAx = xTAcx + xT (A−Ac)x ≥ xTAcx− |xT (A−Ac)x| ≥ xTAcx− |x|TA∆|x| ≥ 0.

Kreinovich (2005) showed that the finite reduction in Theorem 5.14 is optimal, that is, the set of matri-
ces Azz, z ∈ {±1}n, cannot be further reduced for checking positive semidefiniteness of AS. It was proved
by Nemirovskii (1993) that checking positive semidefiniteness of AS is co-NP-hard; cf. Kreinovich et al.
(1998). Thus, any sufficient or necessary condition may be useful. The following is a direct consequence
of Theorem 5.3 using the fact that AS is positive semidefinite if and only if λn(AS) ≥ 0.

Proposition 5.15 (Rohn, 1994b). AS is positive semidefinite if λn(Ac) ≥ ρ(A∆).
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5.3 Positive definiteness

In analogy to positive semidefiniteness, AS is called positive definite if every A ∈ AS is positive definite.
There are also similar characterizations and properties of positive definiteness, with an additional one.

Theorem 5.16 (Rohn, 1994b). The following are equivalent

(1) AS is positive definite;

(2) Azz is positive definite for each z ∈ {±1}n;
(3) xTAcx− |x|TA∆|x| > 0 for each o 6= x ∈ Rn;

(4) Ac is positive definite and A is regular.

Proof.
“(1) ⇔ (2) ⇔ (3)” is similar to the proof of Theorem 5.14.
“(1) ⇒ (4)” Suppose to the contrary that A is not regular, that is, there are A ∈ A and x 6= o such

that Ax = o. This implies 0 = xTAx = xT 1
2 (A + AT )x, and so 1

2(A + AT ) ∈ AS is not positive definite.
“(4) ⇒ (1)” Positive definiteness of Ac implies that for each i = 1, . . . , n the interval λi(A

S) contains
a positive value, and regularity of A implies that it does not contain zeros, so it must be a positive
interval.

Intractability of checking positive definiteness is a consequence of intractability of checking regularity.

Theorem 5.17 (Rohn, 1994a). Checking positive definiteness of AS is a co-NP-hard problem on the class
of interval matrices with Ac non-negative positive definite rational and A∆ = eeT .

Proof. By Theorem 3.60, checking regularity of A is co-NP-hard even on the class of interval matrices
with Ac non-negative positive definite rational and A∆ = eeT . By Theorem 5.16, such an interval matrix
is regular if and only if AS is positive definite.

An analogy of Proposition 5.15 follows.

Proposition 5.18 (Rohn, 1994b). AS is positive definite if λn(Ac) > ρ(A∆).

Remark 5.19. We say that AS is weakly positive definite if there is at least one positive definite matrix
in AS. In contrast to checking positive definiteness, checking the weak version is a polynomial time
problem (Jaulin and Henrion, 2005). Similarly as in Remark 5.7, we utilize a semidefinite programming
problem

max α subject to A− αIn is positive semidefinite, A ∈ AS.

Then AS is weakly positive definite if and only if the optimal value is positive.
For weak positive semidefiniteness, this is an open problem as semidefinite programming problems

can be solved efficiently but with an (arbitrarily small) precision. For weak positive definiteness, this does
not matter, since if AS includes a positive definite matrix, then there is one with a polynomially large gap
between the smallest eigenvalue and zero. This is easy to see since if AS is weakly positive definite, then
for every A ∈ AS we have λn(A) = λ−1

1 (A−1) ≥ ‖A−1‖−1. The value ‖A−1‖−1 is efficiently computable for
most of the matrix norms, and also the limits of the entries of the inverses {A−1; A ∈ A} have polynomial
size from the properties of interval linear systems (cf. the proof of Theorem 3.5 or Theorem 3.52).

5.3.1 Application: Convexity testing

It is well known (Bazaraa et al., 2006; Boyd and Vandenberghe, 2004; Luenberger and Ye, 2008) that a
function f : Rn → R is convex on a nondegenerate x ∈ IRn if and only if its Hessian ∇2f(x) is positive
semidefinite ∀x ∈ intx. Thus, we have the following sufficient condition for checking convexity of a
function on a box.

Proposition 5.20. Let f : Rn → R, x ∈ IRn, and A ∈ IRn×n such that ∇2f(x) ⊆ AS. Then f(x) is
convex on x ∈ IRn if AS is positive semidefinite.
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Example 5.21. Let

f(x, y, z) = x3 + 2x2y − xyz + 3yz2 + 8y2,

where x ∈ x = [2, 3], y ∈ y = [1, 2] and z ∈ z = [0, 1]. The Hessian of f(x) reads

∇2f(x, y, z) =





6x + 4y 4x− z −y
4x− z 16 −x + 6z
−y −x + 6z 6y



 .

The evaluation of the Hessian matrix by interval arithmetic gives

∇2f(x,y,z) ⊆ A =





[16, 26] [7, 12] −[1, 2]
[7, 12] 16 [−3, 4]
− [1, 2] [−3, 4] [6, 12]



 .

By Proposition 5.15 or 5.16, we check λn(Ac) = 7.5 > 7.1218 = ρ(A∆), from which positive definiteness
of AS follows. Thus, we can conclude that f(x) is convex on the interval domain.

It is interesting to check the minimal coefficient of y2 for which the interval Hessian is still positive
semidefinite. Proposition 5.15 has the threshold of about 7.49156. Beeck’s sufficient condition for checking
regularity of A has the threshold of about 7.13044. Surprisingly, condition (2) of Theorem 5.16 gives the
same boundary point. The reason is, however, simple as Beeck’s condition is both sufficient and necessary
in this case by Corollary 3.73.

In general, we cannot hope for a stronger test for convexity checking since the problem is co-NP-hard,
even when restricted to polynomials of degree three.

Proposition 5.22. Checking convexity of a polynomial of degree three in n variables and on an interval
domain is a co-NP-hard problem.

Proof. Consider the polynomial in variables x ∈ Rn and y ∈ R

p(x, y) = xTAx + dy2 + xTxy,

where A ∈ Rn×n is positive definite and d ∈ R. Let x ∈ IRn, y = [0, 1] be a domain, where we want to
test convexity of p(x, y). The Hessian of p(x, y) reads

∇2p(x, y) = 2

(

A + yIn x
xT d

)

.

It is sufficient to check positive definiteness for y = 0. Then the Hessian matrix is positive definite if
and only if d − xTA−1x > 0. In order to check positive definiteness for each x ∈ x, we have to compute
maxx∈x xTA−1x and compare with d. However, computing the maximum of a convex quadratic form on
an interval box is an NP-hard problem (Vavasis, 1991). More precisely, it is NP-hard to decide whether
the maximum value is at least d.

Notes and further reading. Positive definiteness and regularity of interval matrices play also an
important role in testing a generalized concept of convexity, called pseudoconvexity; see Hlad́ık (2018a)
for standard interval matrices and Hlad́ık et al. (2021) for linear interval parametric matrices. Positive
definiteness of parametric interval matrices was also considered in Fazzolari and Ferreira (2021) in the
context of solving interval Lyapunov equations.

5.4 Further topics

distance of interval vectors Mayer (1970).
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5.4.1 Linear independence

Linear independence of interval vectors will be presented in terms of a full column rank of an interval
matrix.

Definition 5.23. An interval matrix A ∈ IRn×k has the full column rank if rank(A) = k for each A ∈ A.

Checking full column rank is straightforwardly reduced to solving interval linear equations as A has
a full rank if and only if Ax = 0 has no nontrivial solution. The equivalent linear formulation avoiding
nontriviality of x states that Ax = 0, [−e, e]T x = 1 has no solution.

Sufficient conditions on the full column rank are obtained by a reduction to the square case and
utilizing regularity of an interval matrix.

Proposition 5.24. An interval matrix A ∈ IRn×k has a full column rank if (Ac)†A is regular.

Proof. Multiply A from the left by (Ac)†, which preserves the rank of every every A ∈ A.

For instance, applying the Beeck’s sufficient regularity condition (Theorem 3.65), we get a simple
sufficient condition from Rohn (2012a).

Corollary 5.25. An interval matrix A ∈ IRn×k has a full column rank if rank(Ac) = k and ρ(|(Ac)†|A∆) <
1.

Proof. The midpoint of (Ac)†A is (Ac)†Ac = Ik, and the radius is |(Ac)†|A∆.

Another sufficient condition is via regularity of a submatrix.

Proposition 5.26. An interval matrix A ∈ IRn×k has a full column rank if it contains a regular submatrix
of size k, but not conversely.

The proof is easy. The surprising point here is that the implication does not hold conversely (in
contrast to real matrices). A counterexample is given below.

Example 5.27. Consider an interval matrix by Irene Sharaya (see Shary, 2014)




1 [0, 1]
− 1 [0, 1]

[−1, 1] 1



 .

By Corollary 5.25, it has rank 2. Nevertheless, it contains no regular submatrix of size 2.

Notice, however, that extending the above interval matrix to a square matrix by including the column
(1, 1, 0)T produces a regular interval matrix.

5.4.2 Rank

In view of intractability of checking regularity of an interval matrix (Theorem 3.60) we have that certain
problems related to the rank of an interval matrix will be NP-hard as well. Nevertheless, there are also
some easy tasks.

Proposition 5.28 (). It is a polynomial problem to check if an interval matrix A ∈ Rn×n contains a
rank one matrix (and find it if it exists).

Proof. We want to find A ∈ A of rank one, that is, in the form A = xyT for some x, y ∈ Rn. If there is
j such that 0 ∈ aij for every i, then we can put yj = 0. So we can assume that this is not the case and
yj 6= 0 for every j. Now, we can formulate the problem as the feasibility problem

aij ≤ xiyj ≤ aij, ∀i, j,
or, equivalently

aij
1

yj
≤ xi ≤ aij

1

yj
, ∀i, j.

Substituting y′j := 1
yj

, we can state the problem as a linear program

aijy
′
j ≤ xi ≤ aijy

′
j, ∀i, j.



5.4. Further topics 113

5.4.3 Determinants

Given A ∈ IRn×n, the task is to determine the image of the determinant, that is, det(A) = {det(A); A ∈
A}. Since the determinant is a continuous functions w.r.t. matrix entries, the image det(A) is always a
compact interval.

Proposition 5.29 (Rohn, 1985). The endpoints of det(A) are attained for matrices A ∈ A satisfying
aij ∈ {aij , aij} for all i, j.

Proof. Since the determinant is a linear function in each entry, we can fix any entry either at the left or
the right endpoint.

This characterization requires to compute the determinants of 2n
2

real matrices, so it is not useful
for practical testing. An efficient method, however, hardly exists due to intractability (Kreinovich et al.,
1998).

Proposition 5.30. Computing the range det(A) is an NP-hard problem. In particular, checking 0 ∈
det(A) is NP-hard on the class of interval matrices A with Ac non-negative positive definite rational and
A∆ = eeT .

Proof. By Theorem 3.60, checking regularity of A is co-NP-hard. Now, we use the fact that A is not
regular if and only if 0 ∈ det(A).

Obviously, it is also NP-hard to compute just one of the endpoints det(A) or det(A). This is because
once we could efficiently determine det(A), then we can efficiently calculate det(A) as det(A) = −det(A′),
where A′ originates from A by multiplying the first row by −1.

For a symmetric interval matrix AS, computing the range det(AS) is an NP-hard problem, too (Hlad́ık,
2018a).

Proposition 5.29 concerns the endpoints of det(A). The intermediate values in det(A) are also attained
for matrices of a special form.

Theorem 5.31 (Rohn, 1985). Let A ∈ A. Then there is A′ ∈ A such that det(A) = det(A)′ and for at
most one entry we have a′ij 6∈ {aij , aij}.
Proof. Let A1, A2 ∈ A be the vertex matrices, for which det(A) and det(A) are attained, respectively.
We take the entries in which the matrices differ and one-by-one continuously move A1

ij to A2
ij . Since the

determinant is a continuous function, we eventually obtain the value of det(A) for some intermediate
value between A1

ij and A2
ij . The other entries are at endpoints.

Corollary 5.32 (Rohn, 1985). Let A ∈ A be irregular. Then there exists a singular A ∈ A such that for
at most one entry we have aij 6∈ {aij , aij}.

Enclosures. When computing an enclosure to det(A), one may follow Smith (1969) and employ the LU
factorization A ⊆ LU ; see Section 3.3.1 on Interval Gaussian elimination. As the diagonal of L consists
of ones, we have det(A) ⊆∏n

i=1 uii.
According to the numerical experiments carried out by Matějka (2017), it is convenient to precondition

A by the numerically computed C ≈ (Ac)−1, and they using Gaussian elimination or Cramer’s rule
(Theorem 1.1). To compensate the preconditioning, we have to multiply the result by det(C).

The Cramer’s rule method works here as follows. Suppose A is regular, and consider the interval
linear system Ax = e1. Let x be an enclosure to the solution set, and let B be the interval matrix A

after removing the first row and column. By Cramer’s rule for the first entry,

det(A) ⊆ det(B)

x1
.

This gives us an enclosing recursive formula for det(A), where det(B) is calculated recursively.
Determinant of a matrix is equal to the product of their eigenvalues. This observation can be also

used for bounding the range of the determinant. By Matějka (2017), this approach is competitive with
the above mentioned ones, particularly for symmetric interval matrices. Let AS be a symmetric interval
matrix and λ1, , . . . ,λn enclosures for its eigenvalue sets (cf Section 5.1). Then det(A) ⊆∏n

i=1 λi.
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Figure 5.3: (Example 5.33) Intersection test of a line and a rectangle.

Applications. Determinants often appear in geometric computation. Therefore determinants of interval
matrices are useful for numerically rigorous handling of geometrical objects and some positioning test; cf.
Section 10.5.2 and Ratschek and Rokne (2003). The positioning tests include, for instance, the position
and intersection of a box and a line, a plane, a circle or a sphere.

Example 5.33 (Ratschek and Rokne (2003)). Let three points x, y, z ∈ R2 in the plane be given. It is
well known that the absolute value of the determinant

d(x, y, z) =
1

2

∣

∣

∣

∣

∣

∣

x1 x2 1
y1 y2 1
z1 z2 1

∣

∣

∣

∣

∣

∣

gives the area of the triangle x, y, z. Thus, the points are collinear if and only if the determinant vanishes.
Moreover, the sign of d(x, y, z) coincides with the orientation of the three points. Now, suppose that
we have a rectangle z ∈ IR2 and the question is whether the line passing through x, y intersects the
rectangle or not. From the above observation, it is clear that the line intersects the rectangle if and only
if 0 ∈ d(x, y,z). Thus, it is sufficient to evaluate the determinant of the interval matrix. Luckily, it can
be done exactly in this case since

2d(x, y,z) =

∣

∣

∣

∣

∣

∣

x1 x2 1
y1 y2 1
z1 z2 1

∣

∣

∣

∣

∣

∣

= z1(x2 − y2) − z2(x1 − y1) + x1y2 − x2y1.

As a concrete example, let x = (2, 0)T , y = (4, 1)T and z = ([1, 3], [1, 2])T as depicted in Figure 5.3. The
line does not intersect the rectangle, which coincides with the value of the determinant

2d(x, y,z) = [1, 3](0 − 1) − [1, 2] ∗ (2 − 4) + 2 − 0 = [1, 5].

Remark 5.34. Determinants of interval matrices found applications in robotics. In the design of a
parallel manipulator, an important step is to detect singularities. Singularities are configurations that
may cause deadlocks or infinite forces, leading to a breakdown. A natural way to detect singularities is
as such configurations for which the determinant of the inverse Jacobian matrix vanishes. Considering all
configurations in the workspace, we end up with a problem of computing the determinant of an interval
matrix Merlet (1998, 2007); Merlet and Donelan (2006); Oetomo et al. (2009). The interval matrices are
often affected by nonlinear dependencies.

Notes and further reading. Determinants of interval matrices were also utilized in testing pseudo-
convexity (a generalized convexity) of a function on an interval domain (Hlad́ık, 2018a).

5.4.4 Inverse interval matrices

Numerical analysts recommend to avoid the computation of the matrix inverse. However, there are situa-
tions, where it is necessary; see (Higham, 1996, pp. 262) for references. Even in the interval environment,
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we need sometimes to compute the inverse of an interval matrix. For example, some methods for solv-
ing an interval system of linear equations need an enclosure of the interval matrix inverse (Kolev, 2016;
Skalna and Hlad́ık, 2019).

Let A ∈ IRn×n be regular. Since the set of all inverses of the matrices in A does not form an interval
matrix, we define the inverse interval matrix of A as its interval hull, that is,

A−1 := �{A−1; A ∈ A}.

The i-th column of A−1 is the interval hull of the solution set of the interval linear system Ax = ei,
so the methods from Section 3.2 are directly applicable to compute A−1 column by column. Note that
computing A−1 is NP-hard on a class of strongly regular interval matrices Coxson (1999).

More compact forms and specific results are as follows. A simple initial enclosure to A−1 is found in
(Neumaier, 1990, Thm. 4.1.11); see also references on page 166 therein. A method to tightly enclose A−1

is proposed in (Rohn, 1989a, Thm. 2.40), and exact calculations of A−1 are discussed in Rohn (1989a,
2012a). Inverse stability and its effect on determining A−1 is dealt with in Rohn (1993c), as well as
an inversion of A with A∆ having rank one. A particular case with Ac = In, which can be also used
to enclose A−1 in the general case after preconditioning, is considered in Rohn (1993a, 2011). An easy
case when A is an interval M-matrix was dealt with in Section 3.5.5; an economic application of interval
M-matrices and their inverses for determining the so-called multipliers was presented by Jerrell (1996).
Finally, Rohn and Farhadsefat (2011) survey recent results.

5.4.5 P-matrices

An interval matrix A ∈ IRn×n is a P-matrix if every A ∈ A is a P-matrix. The characterization below is
by Bia las and Garloff (1984); cf. Kreinovich et al. (1998); Rohn and Rex (1996).

Theorem 5.35. An interval matrix A ∈ IRn×n is a P-matrix if and only if Ayy is a P-matrix for every
y ∈ {±1}n.

By Theorem 5.16 we immediately have the following: As long as A and A are symmetric, A is a
P-matrix if and only if AS is positive definite.

5.4.6 Others

Powers of interval matrices.

Exponential of interval matrices. Let A ∈ IRn×n, and the aim is to compute as tight as possible
enclosure for the range of exponentials exp(A). Goldsztejn and Neumaier (2014) showed that a tight
enclosure is NP-hard to compute and they also suggested some methods. In particular, scaling and
squaring, together with an appropriate bound for a remainder, was a promising approach.
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Chapter 6

Range of a function

In Section 2.4, we stated the fundamental problem of interval analysis—evaluation of a function over
intervals. We introduced the basic method, the natural interval extension, to enclose the image of a
function. In this chapter, we present other methods and discuss the related topics.

Let f : Rn → R be a real function and x ∈ IRn. Our aim is to enclose the image f(x) = {f(x); x ∈ x}
as tightly as possible. Nevertheless, there are complexity issues; we mention some of them. The problem
of determining the range of a function is NP-hard, even for polynomial functions; this was proved already
in Gaganov (1981, 1985). Moreover, an ε-approximation of the range is NP-hard to calculate, too. As was
shown by Kreinovich et al. (2003), checking whether a natural interval extension produces exact bounds
for given interval domains and a function f is NP-hard as well. For general functions (it suffices to involve
trigonometric functions), the problem becomes undecidable; see page 144 in Chapter 8.

Monotonicity test

Detecting monotonicity of f(x) with respect to any variable is an important issue that often notably
reduces overestimations done by particular enclosing methods. Suppose that f(x) is non-decreasing with
respect to xi. The largest value of f(x) over x is attained for xi = xi and the smallest one for xi = xi.
Thus, we can fixed the ith variable and solve two sub-problems with one less dimensions. Put x1 :=
(x1, . . . ,xi−1, xi,xi+1, . . . ,xn)T and x2 := (x1, . . . ,xi−1, xi,xi+1, . . . ,xn)T , calculate enclosures f(x1) ⊆
y1 and f(x2) ⊆ y2 by any (inclusion monotonic) method and return the enclosure y := [y1, y2] ⊇ f(x).

Monotonicity of f(x) with respect to xi can be checked by calculating an enclosure f ′
xi

(x) to the

derivative f ′
xi

(x) over x. If f ′
xi

(x) lies in [0,∞), then f(x) is nondecreasing on x, and similarly if ∂f
∂xi

(x)
lies in (−∞, 0], then f(x) is nonincreasing on x. An enclosure of the derivative is calculated, e.g., by an
interval extension of symbolic or automatic differentiation; see section 6.6.

Checking monotonicity by using an endpoint analysis was presented by Hansen (1997).

Endpoint analysis

The endpoint analysis serves not to calculate an enclosure to f(x) but to check if the enclosure f(x) com-
puted by a natural interval extension is optimal, that is, f(x) = f(x) (Hansen, 1997; Hansen and Walster,
2004).

Example 6.1. Let x ∈ IR. The interval x + x = [2x, 2x] calculated in interval arithmetic is optimal
despite the dependency. However, x−x = [x− x, x− x] is not optimal in general. The reason is that the
lower (and upper) bound of the limit depends on both x and x.

Example 6.2. Let f(x) = x(x − 3). For x = [11, 12] we have f(x) = x(x − 3). For x = [2, 5] we have
f(x) = x(x− 3). Thus, the resulting bounds depend on the concrete data.

Theorem 6.3. If inf(f(x)) is calculated in interval arithmetic by using at most one limit from each of
the intervals x1, . . . ,xn, then inf(f(x)) = inf(f(x)). Analogously for the upper bound.

117
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Proof. Take x ∈ Rn such that xi is the value of xi that was used to calculate inf(f(x)); if xi was not
used at all, then take any xi ∈ xi. Now, inf(f(x)) = f(x), so the lower bound inf(f(x)) is attained at x
and hence is exact.

Refinement

Let f be an inclusion isotonic interval extension of f . The basic enclosure f(x) of f(x) can be improved
by a splitting of x into several sub-boxes and evaluation on them (Skelboe, 1974). Let us split x into k
sub-boxes x1, . . . ,xk so that x = ∪k

i=1x
i. Due to inclusion isotonicity of f ,

f(x) ⊆
k
⋃

i=1

f(xi) ⊆ f(x).

Thus, we obtain an enclosure that is never worse than f(x). The larger k, the tighter enclosure, but the
larger k also needs more computations. This is a trade-off that is user or application dependent. The
order of approximation and convergence to the image f(x) is discussed, e.g., by Mayer (2017).

Overestimation

Let us introduce the following property of a function f : Rn → R and a given box u ∈ IRn:

Property L. There is given an expression for f(x). For each variable xi in the expression, let
us replace all appearances of xi by mutually different variables with the same domain ui. Then
Property L is valid if the new expression defines a Lipschitz function on the corresponding domain.

This property is satisfied, for example, for real arithmetical operations +,−, · and / (division not by zero).
Below is an example of a Lipschitz function, which gives rise to a non-Lipschitz one.

Example 6.4. Consider f(x) = x1/3 − x1/3 and x ∈ x = [0, 1]. Then f(x) is Lipschitz on x. After
distinguishing particular occurrences of the variable x, we obtain the function g(x, y) = x1/3−y1/3, which
is not Lipschitz on [0, 1]2.

Theorem 6.5. Let f : Rn → R with u ∈ IRn satisfy Property L, and let f(x) be the natural extension of
f(x). Then there is γ > 0 such that for each x ∈ IRn, x ⊆ u, we have

rad(f(x)) − rad(f(x)) ≤ γ‖x∆‖.
Proof. Let g(z) be the function made from f(x) when all appearances of all variables are renamed by
z1, . . . , zm. The interval vector z is created from the corresponding interval domains of variables. Then
we have f(x) = g(z). For any z ∈ z we can change the entries such that those corresponding to the same
variable xi are equal. This change affects the function value, but due to Lipschitz property no more than
some constant multiple of x∆i , which in total is 2γ‖x∆‖ for some constant γ. Thus, any value in g(z) is
not far from a value in f(x) than 2γ‖x∆‖.

The above theorem quantifies overestimation in terms of an absolute deviation. A relative overestima-
tion can hardly be bounded as the following example illustrates. Consider f(x) = x−x and x ∈ x = [0, 1].
Then f(x) = 0, but f(x) = [−1, 1]. So, rad(f(x)) = 2 is infinitely larger than rad(f(x)) = 0.

As a consequence of Theorem 6.5, we have a linear convergence not only of the overestimation, but
also of the enclosure itself:

Theorem 6.6. Let f : Rn → R with u ∈ IRn satisfy Property L, and let f(x) be the natural extension of
f(x). Then there is γ > 0 such that for each x ∈ IRn, x ⊆ u, we have

rad(f(x)) ≤ γ‖x∆‖.
Proof. Since f(x) satisfies Property L, it must be also Lipschitz. That is, there is a constant c > 0 such
that |f(x) − f(y)| ≤ c‖x − y‖ for all x, y ∈ x. Thus, rad(f(x)) ≤ c‖x∆‖. Since f(x) overestimates the
true image f(x) also linearly (Theorem 6.5), the statement follows.

For more results on overestimation see (Alefeld and Herzberger, 1983, Chap. 3).
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xx xa

y

y = f(x)

f(a)

y = f(a) + d(x− a)

y = f(a) + d(x− a)

Figure 6.1: Enclosing a function f(x) by an interval linear function by means of (6.4).

6.1 Mean value forms

Apart from the natural interval extension, the mean value form (and slopes) is another commonly used
method to enclose the range of functions. It was originally proposed by Moore (1966).

While the natural interval extension converges with linear order (Theorem 6.5), the mean value form
enclosure converges with order two (Theorem 6.12). Thus, roughly speaking, the former is more suitable
for wide intervals, while the latter for more narrow intervals.

6.1.1 One-dimensional case

Let f : R → R be differentiable on an open superset of x ∈ IR. Let a ∈ x; usually we set a := xc, but
other selections may be used as well (and sometimes it is better). The mean value theorem implies that

for any x ∈ x there is c ∈ x such that f ′(c) = f(x)−f(a)
x−a , or f(x) = f(a) + f ′(c)(x − a). Thus, we have

the following enclosure f(x) ⊆ f(a) + f ′(x)(x − a). In practice, naturally, we enclose the image of the
derivative f ′(x) by its interval extension f ′(x) .

Theorem 6.7. For x ∈ IR and a ∈ x we have

f(x) ⊆ f(a) + f ′(x)(x− a), (6.1)

f(x) ⊆ f(a) + f ′(x)(x− a) ∀x ∈ x. (6.2)

Throughout this section, we use the notation d := f ′(x) and y for the mean value form enclosure.
Thus, formulae (6.1)–(6.2) read

f(x) ⊆ f(a) + d(x− a) ≡ y, (6.3)

f(x) ⊆ f(a) + d(x− a) ∀x ∈ x. (6.4)

The expression (6.3) provides an interval enclosure of the image f(x), while (6.4) encloses function f(x)
on x ∈ x by an interval linear function.. Example 6.8 illustrates the former and Figure 6.1 the latter.

Example 6.8. Let f(x) = x5 − 2x3 and x = [1.8, 2]. The natural interval extension yields f(x) ⊆
[2.8956, 20.3361]. For a := xc = 1.9, the mean value theorem gives f(x) ⊆ [4.9869, 17.0990], and for
a := x = 1.8, we get a different enclosure f(x) ⊆ [7.2316, 19.3437] with the same width.

However, for x = [1, 2] we get quite poor results. The natural interval extension yields f(x) ⊆ [−15, 30].
The mean value theorem enclosure are worse. For a := xc = 1.9 we have f(x) ⊆ [−36.1563, 37.8438], and
for a := x = 1.8, we have f(x) ⊆ [−20, 73]. This shows that the mean value theorem is useful mainly for
the narrow intervals.



120 Chapter 6. Range of a function

How to choose an appropriate a ∈ x? The center a := xc may not be the best choice, however, the
radius of the enclosure is mag(d)x∆, which is minimal for all selections. More generally, we have:

Proposition 6.9. If 0 6∈ d, then y∆ is constant for all a ∈ x. If 0 ∈ d, then y∆ is minimal for any
a ∈ xc + x∆ dc

d∆
[−1, 1].

Proof. If d > 0, then y = f(a) + d(x− a), y = f(a) + d(x− a), and therefore y∆ = dx∆ = mag(d)x∆. If

d < 0, then analogously y∆ = mag(d)x∆.
For the second part, we first show that a := xc yields the most narrow enclosure. This is easy to see

since
y∆ = rad(d(x− a)) ≥ rad(mag(d)(x− a)) = mag(d)x∆ = rad(d(x− xc)).

Now, let α ∈ [−1, 1], and denote a = xc + αx∆ dc

d∆
. Then,

f ′(x)(x− a) = d

(

x− xc − αx∆
dc

d∆

)

= −x∆

d∆
d[αdc − d∆, αdc + d∆]

= −x∆

d∆
mag(d)[αdc − d∆, αdc + d∆].

The radius of this interval is also mag(d)x∆.

If 0 6∈ d, then the function is increasing. Thus, the optimal choice is to take both a := x and a := x
and intersect the results since it produces the exact lower and upper bounds on f(x). The additional cost
of this bi-centered form is low as the interval derivative f ′(x) is calculated just once.

If 0 ∈ d, a useful selection of the center is the Baumann point (Baumann, 1988). For this center,
we achieve the tightest lower bound of f(x) by maximizing the left endpoint of the enclosure (6.1). In a
similar manner, we find a center a minimizing the right-end point of the enclosure.

Theorem 6.10 (Baumann, 1988). If 0 ∈ d, then y has the maximal value for

a =
dx− dx

2d∆
= xc − x∆

dc

d∆
∈ x. (6.5)

Proof. First, we show that the left endpoint of the interval d(x− a) = d(x− a) is maximal for the value
of a from (6.5). Since both intervals d and x− a contain the zero, we have

inf(d(x− a)) = min{d(x− a), d(x− a)}.

Since d(x− a) nondecreasing in a and d(x− a) nonincreasing in a, the minimum value is maximal when
both functions have the same value, that is

d(x− a) = d(x− a)

Expressing a from this equation, we arrive at the final form.
Now, we incorporate into considerations also the absolute term f(a). The idea is to show that a change

of the center to a point a′ may improve f(a′), but the decrease in the second term is superior. If a′ > a,
then

inf(d(x− a)) = d(x− a),

inf(d(x − a′)) = d(x− a′),

whence

inf(d(x − a)) − inf(d(x− a′)) = d(a′ − a).

On the other hand, by the mean value theorem,

f(a′) − f(a) ≤ d(a′ − a),
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from which the statement follows. Similarly, if a′ < a, then

inf(d(x− a)) = d(x− a),

inf(d(x− a′)) = d(x− a′).

Hence

inf(d(x − a)) − inf(d(x− a′)) = d(a′ − a).

On the other hand, by the mean value theorem,

f(a′) − f(a) ≤ d(a′ − a),

proving the second case.

This result is straightforwardly extended to a multi-dimensional case. In the original paper, Baumann
(1988) also considered a general Lipschitz function instead of the particular case of the derivative f ′.

We can also check quality of this enclosure. In general, quality of enclosures is measured via inner
estimations (Krawczyk, 1980; Markov, 1990). An inner estimation of f(x) is simply any interval a ∈ IR
such that a ⊆ f(x).

The inclusion f(x) ∈ f(a) +d(x− a) gives us lower and upper approximations of f(x). Function f(x)
lies between two lines ℓ1(x) = f(a) +d(x−a) and ℓ2(x) = f(a) +d(x−a). The maximum spread between
the lines is

max
x∈x

|ℓ1(x) − ℓ2(x)| = max
x∈x

2d∆|x− a| = 2d∆ mag(x− a).

Therefore y and y overestimate the exact minimum and maximum of the range by no more than

2d∆ mag(x− a), yielding:

Theorem 6.11 (Krawczyk and Neumaier, 1986; Neumaier, 1990). We have

sup(f(x) ≥ y − 2d∆ mag (x− a),

inf(f(x) ≤ y + 2d∆ mag (x− a).

As a consequence, we have a quadratic convergence of the mean value form, which is true also for
the multi-dimensional case (Alefeld and Herzberger, 1983; Chuba and Miller, 1972; Krawczyk and Nickel,
1982; Miller, 1972).

Theorem 6.12. Suppose that the derivative f ′(x) with some u ∈ IR satisfies Property L (page 118), and
its enclosure is calculated by the natural extension. Denote by f(x) the mean value extension of f(x).
Then there is γ > 0 such that for each x ∈ IRn, x ⊆ u, we have

rad(f(x)) − rad(f(x)) ≤ γ(x∆)2.

Proof. By Theorem 6.11 the overestimation of the mean value form y over the image f(x) is at most

4 rad(f ′(x)) mag(x− a).

We estimate mag(x−a) ≤ 2x∆, and by Theorem 6.6, we bound also rad(f ′(x)) from above by a constant
multiple of x∆.

Example 6.13. Consider the function

f(x) =
exp(x− 1) + x3 − 4x

x2 + 2

and the interval x = [1−δ, 1+δ], where δ is a parameter. Table 6.1 displays the enclosures (and their radii)
computed by the natural interval extension and by the mean value form for six values of parameter δ.

From the table, we see that the natural extension produces a tighter enclosure for wider input intervals,
whereas the mean value form yields a tighter enclosure for narrow input intervals. This is in correspondence
with the linear convergence of the natural extension (Theorem 6.5) and quadratic convergence of the mean
value form (Theorem 6.12).
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Table 6.1: (Example 6.13) Comparison of natural interval extension and mean value form.

δ natural interval extension mean value form
enclosure radius enclosure radius

0.1 [−0.9844,−0.3625] 0.3109 [−0.7737,−0.5597] 0.1070
0.2 [−1.3142,−0.0728] 0.6206 [−1.0578,−0.2755] 0.3911
0.3 [−1.6531, 0.3000] 0.9765 [−1.6166, 0.2833] 0.9499
0.4 [−1.9974, 0.7779] 1.3876 [−2.5735, 1.2402] 1.9068
0.5 [−2.3416, 1.3439] 1.8427 [−4.0741, 2.7408] 3.4074
0.6 [−2.6793, 1.9992] 2.3392 [−6.2748, 4.9415] 5.6081

Higher order expansion. In one-dimensional case, we can effectively use higher order derivatives and
the corresponding enclosures. Let f(x) be m + 1 times differentiable on x, and a ∈ x. For each x ∈ x we
have by Taylor’s Theorem 1.24

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x− a)2 + · · · +

f (m)(a)

m!
(x− a)m +

f (m+1)(c)

(m + 1)!
(x− a)m+1

for some c ∈ x. Thus, we have the enclosure

f(x) ⊆
m
∑

k=1

f (k)(a)

k!
(x− a)k +

f (m+1)(x)

(m + 1)!
(x− a)m+1.

Notice that this approach can be used not only to enclose the range of f(x) on x but also to approx-
imate f(x) from above and from below by a polynomial of degree m + 1 since

f(x) ∈
m
∑

k=1

f (k)(a)

k!
(x− a)k +

f (m+1)(x)

(m + 1)!
(x− a)m+1. (6.6)

Denote y := f(m+1)(x)
(m+1)! . Now,

m
∑

k=1

f (k)(a)

k!
(x− a)k + y(x− a)m+1 ≤ f(x) ≤

m
∑

k=1

f (k)(a)

k!
(x− a)k + y(x− a)m+1

for x ∈ x provided m is odd. As long as m is even, we have to distinguish the sub-intervals [x, a] and
[a, x].

Example 6.14. Let f(x) = ex, x = [0, 1], and a = 0. For m = 1 we have

f(x) ∈ 1 + t +
1

2
[1, e]t2,

which encloses the exponential between two polynomials of degree two on x. For m = 9 we obtain

f(x) ∈ 1 + t +
1

2
t2 + · · · +

1

10!
[1, e]t10,

which gives a tight enclosure to f(x). Notice that, however, higher degree expansion need not result in a
more tighter enclosure. For instance, take the exponential function on an interval with large values.

6.1.2 Multi-dimensional case

Suppose that f : Rn → R is differentiable on an open superset of x ∈ IRn, and let a ∈ x. By the mean
value theorem, we have for any x ∈ x

f(x) = f(a) + ∇f(c)T (x− a)
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for some c ∈ x. The naive intervalization results in the enclosure

f(x) ⊆ f(a) + ∇f(x)T (x− a)

=

n
∑

i=1

f ′
xi

(x1, . . . ,xn)(xi − ai), (6.7)

where ∇f(x) is an interval extension of the gradient ∇f(x) on x. Caprani and Madsen (1980) proved
that when a = xc and ∇f(x) is inclusion isotone, then the mean value form is inclusion isotone; cf.
Neumaier (1990).

Better enclosure is obtained when we apply the mean value theorem component-wisely as proposed
by Hansen (1968); cf. Hansen and Walster (2004). For each x ∈ x there is some c ∈ x such that

f(x) = f(x1, . . . , xn−1, an) + f ′
xn

(x1, . . . , xn−1, cn)(xn − an)

= f(x1, . . . , xn−2, an−1, an) + f ′
xn−1

(x1, . . . , xn−2, cn−1, an)(xn−1 − an−1)+

+ f ′
xn

(x1, . . . , xn−1, cn)(xn − an) = · · · =

= f(a) + f ′
x1

(c1, a2, . . . , an)(x1 − a1) + f ′
x2

(x1, c2, a3, . . . , an)(x2 − a2)+

+ · · · + f ′
xn

(x1, . . . , xn−1, cn)(xn − an).

Hence

f(x) ⊆ f(a) + f ′
x1

(x1, a2, . . . , an)(x1 − a1) + f ′
x2

(x1,x2, a3, . . . , an)(x2 − a2)+

+ · · · + f ′
xn

(x1, . . . ,xn−1,xn)(xn − an).

Obviously, this is a tighter enclosure than (6.7) since many arguments of the partial derivatives are fixed
to some ai, i = 2, . . . , n.

6.2 Slopes

Slopes were introduced by Herzberger and then studied by Krawczyk, Neumaier and others to replace
derivatives in the mean value theorem approach by something more subtle. For the sake of simplicity, we
consider the one-dimensional case with a function f : R → R on x ∈ IR and an arbitrary but fixed a ∈ x.
The multiobjective case is studied, e.g., in Ratz (2001).

The basic idea of slopes goes as follows. For x 6= a,

f(x) = f(a) +
f(x) − f(a)

x− a
(x− a).

Define

Sf (x, a) :=

{

f(x)−f(a)
x−a if x 6= a,

f ′(x) otherwise.

whence f(x) = f(a)+Sf (x, a)(x−a). If we can find a tight enclosure to Sf (x, a), then we have an efficient
enclosure to f(x) by

f(x) ⊆ f(a) + Sf (x, a)(x− a).

Thus, the problem is to compute a tight enclosure to Sf (x, a). By the mean value theorem, the value of
Sf (x, a) can be approximated by the derivative of f at some c ∈ x. But estimating Sf (x, a) ⊆ f ′(x) is
too conservative and results in the traditional mean value theorem enclosure. Since Sf (x, a) ⊆ Sf (x,x) =
f ′(x), often with the proper inclusion, the slopes are more efficient to derivatives.

Example 6.15. Let f(x) = 1
4x

2 − x + 1
2 and x = [1, 7]. Since f ′(x) = 1

2x− 1, we have f ′(x) = [−1
2 ,

5
2 ].

For slopes,

Sf (x, a) =
1
4x

2 − x + 1
2 − (14a

2 − a + 1
2)

x− a
=

1

4
(x + a) − 1.

For a := xc = 4, we have Sf (x, a) = [14 ,
7
4 ]. The enclosure to f(x) by slopes is
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1 2 3 4 5 6 7 8

1
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0 x

y f(x)

f ′(x)

Sf (x, xc)

Figure 6.2: (Example 6.15) The range of slopes (in red) and the range of derivatives (in green).

Table 6.2: Chain rules for computing slopes.

function its slope S(x, a)

constant 0

x 1

αf(x) αSf (x, a)

f(x) ± g(x) Sf (x, a) ± Sg(x, a)

f(x) · g(x) Sf (x, a)g(a) + f(x)Sg(x, a)

f(x)

g(x)

Sf (x, a) − f(a)
g(a)Sg(x, a)

g(x)

ef(x) ef(x)Sf (x, a)

ln(f(x))
Sf (x, a)

f(x)
sin(f(x)) cos(f(x))Sf (x, a)

cos(f(x)) − sin(f(x))Sf (x, a)

f(a) − Sf (x, a)(x − a) = 1
2 − [14 ,

7
4 ] ([1, 7] − 4) = [−19

4 ,
23
4 ],

while the mean value theorem approach gives only [−7, 8]; see Figure 6.2. For comparison, the natural
interval extension yields f(x) ⊆ [−25

4 ,
47
4 ]. Rewriting the expression to the form of f(x) = (12x− 1)2 − 1

2 ,
we get an expression with no dependencies and the natural interval extension gives the true range f(x) =
[−1

2 ,
23
4 ].

Calculation of slopes. Slopes can be calculated by rules similar to that for derivatives. Table 6.2
summarizes them for elementary operations and basic functions. Notice the slight differences to derivatives
in the multiplication and division rules. This makes the slopes more efficient to derivatives.

It is an easy exercise to prove the chain rules. For instance, take the multiplication rule. Herein,

Sfg(x, a) =
f(x)g(x) − f(a)g(a)

x− a
,

and

Sf (x, a)g(a) + f(x)Sg(x, a) =
f(x) − f(a)

x− a
g(a) + f(x)

g(x) − g(a)

x− a
=

f(x)g(x) − f(a)g(a)

x− a
.
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Notice that the chain rules for multiplication and division can be replaced by their equivalent forms

Sfg(x, a) = Sf (x, a)g(x) + f(a)Sg(x, a),

and

Sf/g(x, a) =
Sf (x, a) − f(x)

g(x)Sg(x, a)

g(a)
.

Indeed, INTLAB implements both alternatives and results the intersection of both in order to keep things
as tight as possible.

As for classical differentiation, slopes can be evaluated either automatically, or symbolically; cf. Sec-
tion 6.6.

Example 6.16 (Polynomials). Consider a polynomial p(x) =
∑n

k=0 ckx
k. The slope of p(x) can be

computed in diverse ways, but the following form is particularly convenient for interval evaluation (Alefeld,
1981; Alefeld and Herzberger, 1983)

Sp(x, a) =
p(x) − p(a)

x− a
=

n
∑

k=1

ck
xk − ak

x− a
=

n
∑

k=1

ck

k
∑

i=1

ak−ixi−1 =
n
∑

k=1

(

n
∑

i=k

cia
i−k

)

xk−1.

In this way, Sp(x, a) is expressed as a real polynomial and so an enclosure of the image Sp(x, a) is computed
by a suitable method for enclosing polynomials; see Section 6.5.

Overestimation. In a similar way as in Theorem 6.11 we can bound the overestimation of the slope
form; see Krawczyk and Neumaier (1985); Neumaier (1990).

Theorem 6.17 (Krawczyk and Neumaier, 1985). Let f : Rn → R, x ∈ IRn and a ∈ a. Denote

y := f(a) − Sf (x, a)(x − a).

Then

f(x) ≥ y − 2Sf (x, a)∆ mag(x− a),

f(x) ≤ y + 2Sf (x, a)∆ mag(x− a).

In particular, putting a := xc we get

f(x) ≥ y − 2Sf (x, xc)∆x∆,

f(x) ≤ y + 2Sf (x, xc)∆x∆.

Monotonicity test. Even though slopes outperform derivatives in many ways, they cannot be used
for monotonicity checking. As Example 6.15 or Example 6.18 below illustrate, it may happen that 0 6∈
Sf (x, a), but f(x) is not monotone on x.

Example 6.18. Let f(x) = sinx, let x = [−π, π] and take a := xc = 0. Now, Sf (x, a) = [0, 1], but the
sine is not non-decreasing on the whole interval [−π, π].

However, the situation is not so bad. Let us restrict our attention to the left endpoint f(x) only, and
suppose that Sf (x, a) > 0. Even though the condition 0 6∈ Sf (x, a) does not imply f(x) = f(x), we are
often able to significantly reduce the domain x, where the minimal value is attained; cf. Ratz (2001).

Theorem 6.19. Denote s := Sf (x, a), and p := a + (x− a)s/s. If s > 0, then p ∈ [x, a) and

min
x∈[x,p]

f(x) < min
x∈(p,x]

f(x).
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xx xa

y

f(x)

p

Figure 6.3: A geometrical interpretation of the value p from Theorem 6.19.

Proof. Obviously, p ∈ [x, a). Let s1 ∈ s be such that f(x) = f(a) + s1(x−a). Let minx∈(p,x] f(x) = f(x2),
and s2 ∈ s be such that f(x2) = f(a) + s2(x2 − a). Then we have

min
x∈[x,p]

f(x) ≤ f(x) = f(a) + s1(x− a) ≤ f(a) + s(x− a) = f(a) + s(p − a)

< f(a) + s2(x2 − a) = min
x∈(p,x]

f(x).

By this theorem, f(x) is achieved on [x, p] $ x, that is, f(x) = f([x, p]). A geometrical interpretation
of the value p is illustrated in Figure 6.3 by enclosing a function f(x) with help of the mean value form.

Notes. Look in Krawczyk and Neumaier (1985) for more results on overestimation and for slopes in
complex space. For an extension to a second order slope form see, e.g., Schichl and Neumaier (2004).
Ratz (1998) provided algorithmic and implementation details, extension to multidimensional case, and
applied slopes in nonsmooth global optimization.

6.3 Other methods

Centered form

We write f(x) as

f(x) = f(xc) + f(x) − f(xc) = f(xc) + f(y + xc) − f(xc) = f(xc) + yTh(y),

where y := x− xc and h : Rn → Rn is an appropriate function. We get the enclosure

f(x) ⊆ f(xc) + yTh(y),

where y := x − xc and h : IRn → IRn is an interval extension of h(y). We illustrate the centered form
and finding of the function h(y) by an example.

Example 6.20. Let f(x) = 1 − 5x + 1
3x

3 and write

f(x) − f(xc) = −5(x− xc) + 1
3(x3 − xc3) = (x− xc)(−5 + 1

3(x2 + xxc + xc2))

= y(−5 + 1
3((y + xc)2 + (y + xc)xc + xc2)) = y h(y).

Thus
f(x) ⊆ f(xc) + yTh(y) = f(xc) + y(−5 + 1

3 ((y + xc)2 + (y + xc)xc + xc2)).

For concreteness, let x = [2, 3]. The natural interval extension of f(x) yields f(x) ⊆ [−34
3 , 0], and the

optimal enclosure is f(x) = [−10
3

√
5+1,−5] ⊆ [−6.4546,−5]. The centered form yields f(x) ⊆ [−91

12 ,−5] ⊆
[−7.5834,−5].
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6.4 Continuity and convergence

For intervals a, b ∈ IR, we define their distance as

dist(a, b) := max{|a− b|, |a− b|}.
It is easy to see that it is a metric in IR, that is, it satisfies the axioms

(1) dist(a, b) ≥ 0 with equality if and only if a = b,

(2) dist(a, b) = dist(b,a),

(3) dist(a, b) ≤ dist(a, c) + dist(c, b).

For interval vectors a, b ∈ IRn, we extend the definition as follows

dist(a, b) := max
i=1,...,n

max{|ai − bi|, |ai − bi|}. (6.8)

Basically, this is the standard Hausdorff distance of two sets in the case the sets are boxes. In general,
for sets A,B ⊆ Rn, their Hausdorff distance is defined

dist(A,B) := max

{

sup
x∈A

dist(x,B), sup
y∈B

dist(y,A)

}

,

where
dist(x,B) := inf

y∈B
‖x− y‖

for a given vector norm; in (6.8), we used the maximum norm.
The distance function enables to define continuity of an interval function in a natural way, extending

the standard definition for real functions. Notice that a certain kind of Lipschitz continuity was already
addressed in Theorem 6.6.

Definition 6.21. An interval function f : IRn → IR is continuous if for every ε > 0 there is δ > 0 such
that for every x,y ∈ IRn :

dist(x,y) < δ ⇒ dist(f(x),f(y)) < ε.

Observation 6.22. The natural interval extension is a continuous function as long as there is no division
by an interval containing zero.

An interval extension f of a function f : Rn → R is convergent of order α on x ∈ IRn if there is a
constant K > 0 such that

dist(f(y),�f(y)) ≤ K
(

max
i=1,...,n

y∆i

)α

for every y ⊆ x. The natural interval extension (i.e., interval arithmetic) is convergent of order 1. This
may be useful for wide intervals, however, when we process boxes near true solutions, the convergence is
slow and the cluster effect of gathering many small boxes uses to happen.

Interval extensions of order 2 or higher have more suitable convergence properties for narrow intervals.
As we observed in the previous sections, the mean value forms using derivatives or slopes have quadratic
convergence.

6.5 Polynomials

Polynomials are frequently appearing functions and enclosing the range of polynomials on intervals is an
important issue; the basic approaches are described in Stahl (1995).

Evaluating polynomials with the variable degree and the number of variables is an NP-hard prob-
lem (Gaganov, 1981, 1985). Nevertheless, it becomes tractable when the number of variables is fixed; a
polynomial algorithm was proposed in Grigoryev and Vorobjov (1988).

Let p(x) = anx
n + · · · + a1x + a0 be a polynomial and x ∈ IR. The natural interval extension

p(x) := anx
n + · · · + a1x + a0

gives too conservative enclosures. Therefore, we discuss alternative forms.
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Horner form. Utilizing the Horner scheme

pH(x) := (· · · (anx + an−1)x + · · · + a1)x + a0,

we get much better results in general. Since it is a simple arithmetic expression, it is inclusion isotonic.

In some cases, such as the one mentioned below, the Horner scheme yields the exact range (Stahl,
1995). The intermediate evaluations of the Horner scheme are denoted as

pn(x) = an,

pi(x) = pi+1(x)x + ai, i = n− 1, . . . , 0.

Theorem 6.23 (Stahl, 1995). We have pH(x) = p(x) provided either

x ≥ 0 and pH
i

(x) ≥ ∀i = 0, . . . , n,

or

x ≤ 0 and inf
(

(−1)n−ipH
i (x)

)

≥ ∀i = 0, . . . , n.

From this point of view, it might be a good tightening technique for an interval x containing the zero in
its interior (i.e., x < 0 < x) to split x in the zero and evaluate separately the positive and negative parts.
Thus, we compute the enclosure pH

i ([x, 0]) ∪ pH
i ([0, x]). Indeed, Stahl (1995) showed that the resulting

overestimation decreases to less than one half provided xc = 0.

Mean value form form. This form was first developed by Hansen (1969b) and works in the same
manner as for the general functions. That is, the enclosure has the form of

p(x) ⊆ pM(x, a) := p(a) + p′(x)(x− a),

where a ∈ x, and p′(x) is some interval extension enclosing the derivative of p(x) on x ∈ x.

What is a good choice of the center a? The midpoint value a := xc is a simple choice, but does not yield
the tightest enclosure in general. Similarly as described in Theorem 6.10, we can calculate two centers
a1, a2 ∈ x. The first one aims to maximize the lower bound of the resulting enclosure, and the second
one minimizes the upper bound. In the case of polynomials, the bounds computed by Theorem 6.10 are
provably the best possible, that is,

pM (x, a1) ≥ pM (x, a) ∀a ∈ x,

pM (x, a2) ≤ pM (x, a) ∀a ∈ x.

The resulting enclosure

[

pM (x, a1), pM (x, a2)
]

is called the bicentred form. Both the basic mean value form and the bicentred version are inclusion
isotonic (Caprani and Madsen, 1980; Stahl, 1995).

The derivative in the mean value form can again be replaced by slopes. See Example 6.16. The slope
form pS(x), however, is not inclusion isotonic. To see it, consider the polynomial p(x) = −3x3 + 3x2 + 8x
with domains x1 = [0, 1] and x2 = [0, 2]. Then pS(x1) = [−0.75, 9.5], whereas pS(x2) = [0, 16].

Bernstein form. Bernstein polynomials over the interval x ∈ IR are defined

bk(x) =
1

(2x∆)n

(

n

k

)

(x− x)k(x− x)n−k, k = 0, . . . , n.

They satisfy the following basic properties.
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Observation 6.24. For any x ∈ x, we have

bk(x) ≥ 0,
n
∑

k=0

bk(x) = 1.

Proof. The former is obvious, and the latter follows from the binomial expansion:
∑n

k=0 bk(x) = 1
(2x∆)n

∑n
k=0

(n
k

)

(x− x)k(x− x)n−k

= 1
(2x∆)n

(x− x + x− x)n = 1.

Bernstein polynomials form a basis of the vector space of real polynomials of degree at most n.
Therefore, p(x) is a linear combination of these polynomials

p(x) =

n
∑

k=0

βkbk(x),

where βk, k = 0, . . . , n are the so-called Bernstein coefficients. Due to Observation 6.24, we directly have
the important range enclosing property (Cargo and Shisha, 1966).

Theorem 6.25 (Cargo and Shisha, 1966). We have

p(x) ⊆ �{βk, k = 0, . . . , n}.

Proof. For every x ∈ x,

p(x) =
n
∑

k=0

βkbk(x) ≤ max
k=0,...,n

(βk)
n
∑

k=0

bk(x) = max
k=0,...,n

βk,

p(x) =
n
∑

k=0

βkbk(x) ≥ min
k=0,...,n

(βk)
n
∑

k=0

bk(x) = min
k=0,...,n

βk.

This observation justifies introducing the Bernstein form of an enclosure as

p(x)B := �{βk, k = 0, . . . , n}

=

[

min
k=0,...,n

βk, max
k=0,...,n

βk

]

.

This form is inclusion isotonic (Hong and Stahl, 1995). The only problem that remains now to solve is
how to efficiently calculate the Bernstein coefficients βk, k = 0, . . . , n. They have the explicit description

βk =

k
∑

i=0

(k
i

)

(n
i

)

p(i)(x)

i!
(2x∆)i. (6.9)

As trivial special cases, we have

β0 = p(x),

βn =

n
∑

i=0

p(i)(x)

i!
(x− x)i = p(x),

where for the second one we used the Taylor expansion of p(x) about the point x. The formula (6.9)
is applicable for calculating the Bernstein coefficients, but there are more efficient techniques based on
two-dimensional recurrences (Ratschek and Rokne, 2003; Rokne, 1979; Stahl, 1995). See Ray and Nataraj
(2012) for a matrix method for computing the Bernstein coefficients.

Bernstein polynomials in an interval setting are also known to be useful in computer graphics. They
play an important role in approximation of functions via Bézier curves Sederberg and Buehler (1992);
Sederberg and Farouki (1992); Ratschek and Rokne (2003), but they were also applied in a robust ap-
proach to surface intersection Hu et al. (1997), for instance.
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Other forms. There were yet another forms studied. The Taylor form utilizes the fact that the poly-
nomial p(x) has a finite Taylor expansion. Nevertheless, the Taylor form turned out empirically not to be
more convenient for interval evaluation.

The interpolation form approximates p(x) by a quadratic function. By Taylor’s theorem 1.24, for any
a ∈ x, there is c ∈ x such that

p(x) = p(a) + p′(a)(x − a) +
1

2
p′′(c)(x − a)2.

From this we have the enclosure

p(x) ⊆ p(a) + p′(a)(x − a) +
1

2
p′′(x)(x− a)2,

where p′′(x) is an interval extension of the second derivative on x.

Comparison. Firment (2017) compared the computational performance of various forms. The Horner
scheme is the winner with respect to the running time, and even the enclosures are often not so bad.
On the other hand, the Bernstein form gives the tightest enclosures on average, but on account of high
computational cost. The bicentered mean value form, slope form and interpolation form are somewhere
in the middle. They give a reasonable trade-off between time and tightness provided x is narrow. For
wider intervals, the interpolation forms loses.

Interval polynomials. An interval polynomial is an interval function p(x) : R → IR

p(x) = anx
n + · · · + a1x + a0,

where a0, . . . ,an ∈ IR. Given xn ∈ IR, the problem is to compute the range

p(x) = ∪x∈x p(x)

or its tight enclosure. It is not hard to see that the range is always a compact interval. The problem
of range computation is easily reduced to two or four problems of range computation of real-valued
polynomials (Firment, 2017).

Theorem 6.26. We have

p(x) =











[

g
1
(x), g2(x)

]

if x ≥ 0,
[

g
3
(x), g4(x)

]

if x ≤ 0,
[

g
1
([0, x]), g2([0, x])

]

∪
[

g
3
([x, 0]), g4([x, 0])

]

if x < 0 < x,

where

g1(x) =
∑n

i=0 aix
i,

g2(x) =
∑n

i=0 aix
i,

g3(x) =
∑n

i=0

(

aci − (−1)ia∆i
)

xi,

g4(x) =
∑n

i=0

(

aci + (−1)ia∆i
)

xi.

Proof. Let x ∈ x. If x ≥ 0, then obviously

p(x) =
[
∑n

i=0 aix
i,
∑n

i=0 aix
i
]

.

If x < 0, then similarly

p(x) =
[

(acn − (−1)na∆n )xn + · · · + a2x
2 + a1x + a0,

(acn + (−1)na∆n )xn + · · · + a2x
2 + a1x + a0

]

=
[

g3(x), g4(x)
]

.

From these observations, the resulting formula follows; if x < 0 < x, we simply split the interval into the
positive and negative parts x = [x, 0] ∪ [0, x] and apply separately to both sub-intervals.
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Multivariate polynomials. The Bernstein form was extended to the multivariate case over the unit
n-dimensional box by Garloff (1986). Efficient evaluation of Bernstein coefficients for sparse multivari-
ate polynomials was presented by Smith (2009). Alternative generalizations consider the polynomials
over the unit simplex in Rn . Further extensions to multivariate rational functions were investigated by
Narkawicz et al. (2012); inclusion isotonicity of this extended form was proved by Garloff and Hamadneh
(2016).

Notes and further reading. Moore (1979) presents a finantial application of finding roots of (real and)
interval polynomials – the computation of the internal rate-of-return of investments and its sensitivity
analysis.

6.6 Symbolic and automatic differentiation

For the sake of simplicity, we consider a real function f : R → R and the first derivative, but it directly
extends to multivariate functions and higher order derivatives, including gradients and Hessian matrices.

Symbolic differentiation

Given an arithmetic expression for f(x) using standard arithmetic and basic functions, we easily compute
f ′(x) recursively by using the well-known rules

(g(x) ± h(x))′ = g′(x) ± h′(x),

(g(x) · h(x))′ = g′(x) · h(x) + g(x) · h′(x),
(

g(x)

h(x)

)′
=

g′(x) · h(x) − g(x) · h′(x)

h2(x)
,

and the knowledge of derivatives of basic functions such as

c′ = 0, (c is a constant)

x′ = 1,

exp′(x) = exp′(x),

sin′(x) = cos(x).

Computing the expression for f ′(x) in this way is called symbolic differentiation. Its advantage is that
we have an explicit expression for f ′(x) and can symbolically manipulate with it to equivalent forms. On
the other hand, evaluation of the derivative is superfluously costly since we have to parse the expression
twice – first to determine the expression for the derivative, and second, to evaluate the derivative.

Automatic differentiation

Automatic differentiation aims at computing the value of the derivative (but not the expression for it)
more efficiently with respect to time. The idea is to parse the expression for f(x) only once, and to
recursively compute the pair (f(x), f ′(x)). We adapt the differentiation arithmetic as follows

(g, g′) ± (h, h′) = (g ± h, g′ ± h′),

(g, g′) · (h, h′) = (g · h, g′ · h + g · h′),
(g, g′) / (h, h′) = (g / h, (g′ · h− g · h′) · h−2),

and for basic functions, the pair (f(x), f ′(x)) is analogously determined along the rules

c 7→ (c, 0),

x 7→ (x, 1),

exp(x) 7→ (exp(x), exp(x)),

sin(x) 7→ (sin(x), cos(x)).
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Example 6.27. Let

f(x) =
3x + 4

x2 + 1
, x0 := 2.

Its symbolic derivative is

f ′(x) =
3(x2 + 1) − (3x + 4)2x

(x2 + 1)2
, f ′(x0) = −1,

whereas the automatic derivative computation reads

(f(x0), f
′(x0)) =

(3, 0) · (x0, 1) + (4, 0)

(x20, 2x0) + (1, 0)
=

(10, 3)

(5, 4)
= (2,−1).

Interval domain

When computing an enclosure to f ′(x), we can adapt both the symbolic and automatic differentiation.
Usually, the automatic one is implemented (e.g., in INTLAB). In contrast, the symbolic one has a possi-
bility of simplifying the resulting expression and making the overestimation smaller. However, symbolic
manipulation of expressions to make them more convenient for interval evaluation is a big challenge.

Example 6.28. Consider the function

f(x) =
x + 1

x + 2
,

whose derivative reads

f ′(x) =
(x + 2) − (x + 1)

(x + 2)2
.

The direct evaluation on the interval x = [2, 3] yields the same enclosure on the derivative as the automatic
differentiation

f ′(x) ⊆ (x + 2) − (x + 1)

(x + 2)2
= [0, 0.125].

However, simplifying the expression for the derivative to f ′(x) = (x + 2)−2, we obtain the exact range of
the derivative f ′(x) = (x + 2)−2 = [0.04, 0.0625].

Notes and further reading. For more details on automatic differentiation see, e.g., Griewank and Corliss
(1991); Kulisch (2001, 2013); Rall (1981). Backward (reverse) mode of automatic differentiation, enabling
a more efficient evaluation when the number of variables is higher, is presented in Mayer (2017), for
instance.
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Other topics

7.1 Generalized interval arithmetic

Interval arithmetic can be generalized in diverse ways. Already in Section 2.3, we extended it to zero
containing interval division. Initial contribution in this topic is due to Kahan (1968b) (see also Laveuve
(1975)), who extended intervals to comprise also the infinite ones, and introduced the so-called exterior
intervals of type [−∞, a]∪ [b,∞], which enabled to divide zero containing intervals. Kahan arithmetic was
further adapted by Novoa and Ratz for use in nonlinear systems and optimization.

(interval.louisiana.edu/455/interval arithmetic.ps)

7.1.1 Kaucher interval arithmetic

Kaucher (1980) generalized interval arithmetic by relaxing the condition x ≤ x, x ∈ IR, and making the
arithmetic algebraically complete (meaning to satisfy basic algebraic properties). Besides the algebraic
advantages, Kaucher arithmetic also provides a new perspective of basic interval problems and brings
simplifications in many results. Most of the results presented in this section come from Shary (2002).

Kaucher intervals are just pairs of real numbers x := [x, x] without the condition x ≤ x and without
the classical meaning. Proper intervals are those with x ≤ x, while the others are called improper.
Dualization operation interchanges the endpoints of intervals. Formally, dual : [x, x] → [x, x], thus making
proper intervals from the improper ones.

Addition is defined as for the standard interval arithmetic

x + y := [x + y, x + y].

Without the restrictive condition x ≤ x, each Kaucher interval has its opposite interval (additive inverse)

⊖x = [−x,−x],

and that is why Kaucher arithmetic becomes an Abelian (commutative) group.
Multiplication is a little bit more complicated, one of several equivalent definitions reads

xy =
[

max
{

x+y+, x−y−
}

− max
{

x+y−, x−y+
}

, max
{

x+y+, x−y−
}

− max
{

x+y−, x−y+
}]

,

Nevertheless, multiplication by a real number still reduces to the classical case

xy =

{

[xy, xy] if x ≥ 0,

[xy, xy] otherwise.

Multiplication is commutative, associative, and there is the identity element [1, 1]. Nevertheless, inverses
need not exist. For instance, [−2, 3] has no inverse, while [1, 2]−1 = [1, 12 ].

While proper intervals follow sub-distributivity law, improper intervals follow super-distributivity.
Therefore, the classical enclosure interpretation of interval arithmetic makes no sense now. Nevertheless,
Kaucher arithmetic has a different, but not less meaningless, interpretation.
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Minimax interpretation. The remarkable property of Kaucher arithmetic is the minimax characteri-
zation of the resulting interval endpoints. Let ◦ stand for addition or multiplication. Then

x ◦ y =























[minx∈x miny∈y x ◦ y, maxx∈x maxy∈y x ◦ y] if x,y are proper,

[minx∈x maxy∈y x ◦ y, maxx∈x miny∈y x ◦ y] if x is proper and y improper,

[maxx∈x miny∈y x ◦ y, minx∈x maxy∈y x ◦ y] if x is improper and y proper,

[maxx∈x maxy∈y x ◦ y, minx∈x miny∈y x ◦ y] if x,y are improper.

Thus, concerning the left endpoint, “min” is associated with proper and “max” with improper intervals.
The minimax property can be used to compute lower and upper bounds on the minimax problems.

Let x ∈ IRm, y ∈ IRn be proper intervals, and let f(x, y) : Rm+n → R be a real function given by an
arithmetic expression. If the expression has at most one occurrence of the variables yj, j = 1, . . . , n, and
to the first power only, then

[

min
x∈x

max
y∈y

f(x, y), max
x∈x

min
y∈y

f(x, y)

]

⊆ f(x,dual(y)).

Similarly, if the expression has at most one occurrence of the variables xi, i = 1, . . . ,m, and to the first
power only, then

[

max
y∈y

min
x∈x

f(x, y), min
y∈y

max
x∈x

f(x, y)

]

⊇ f(x,dual(y)).

Modal interpretation. A consequence of the minimax characterization is the modal interpretation of
Kaucher arithmetic. Proper intervals can be interpreted as those associated with existential quantifiers,
and improper intervals are interpretable as their duals associated with universal quantifiers. From this
perspective, the result of an arithmetic operation consists of numbers fulfilling the quantification, sorted
from universal to existential quantifiers. Let ◦ be an addition or multiplication, and for the sake of
simplicity, suppose that x ◦ y is proper. Then for proper intervals x,y we have

x ◦ y = {z ∈ R; ∃x ∈ x∃y ∈ y : z = x ◦ y},
in accordance with the definition of standard interval arithmetic. For x improper and y proper, we have

x ◦ y = {z ∈ R; ∀x ∈ dual(x)∃y ∈ y : z = x ◦ y},
and x proper and y improper, we have

x ◦ y = {z ∈ R; ∀y ∈ dual(y)∃x ∈ x : z = x ◦ y}.
Example 7.1. The results of Kaucher multiplications:

[1, 2] [4, 3] = [4, 6],

[−2, 4] [3,−1] = 0.

Inner and outer enclosures. Kaucher arithmetic enables also to characterize the solutions of AE

solution set ΣAE from Section 3.10. We have x ∈ ΣAE if and only if

(A∀ + dual(A∃))x ⊆ dual(b∀) + b∃. (7.1)

Based on this result, it is easy to prove the following (cf. Shary (2002)).

Theorem 7.2 (Shary, 1995c). If (A∀ + dual(A∃))x = dual(b∀) + b∃ then x ⊆ ΣAE.

In other words, any formal solution to the interval system (A∀ + dual(A∃))x = dual(b∀) + b∃ gives
an inner enclosure to the solution set. The opposite implication does not hold in general. For example,
[−1, 1]x = [−1, 2] has no formal solution, but the tolerable solution set is [−1, 1].

Shary also proved that a formal solution maximal with respect to inclusion yields a maximal inner
solution. This is particularly the case when the formal solution is unique. Notice that it is NP-hard to
compute formal solutions, however, there are methods that work well in practice.

Based on (7.1), outer enclosures of ΣAE can be developed, too, but we will not discuss it in more
detail.
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Figure 7.1: Rectangular form
a + bi.

Re(c)

Im(c)

Re

Im

Figure 7.2: Circular form 〈c, r〉.
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Figure 7.3: Polar form a cis(ϕ).

7.1.2 Complex interval arithmetic

Complex intervals can basically be defined by three ways; see Figures 7.1–7.3.

• rectangular complex intervals a + bi := {a + ib; a ∈ a, b ∈ b}, where a, b ∈ IR,

• circular complex intervals 〈c, r〉 := {z ∈ C; |c− z| ≤ r}, where c ∈ C and r ≥ 0,

• polar complex intervals a cis(ϕ) := {a(cosϕ + i sinϕ); a ∈ a, ϕ ∈ ϕ}, where a,ϕ ∈ IR, a ≥ 0.

Once the complex interval form is specified, IC denotes the set of the corresponding complex intervals.

For all three concepts, we need to define complex interval arithmetic satisfying the fundamental
enclosing property. That is, for all complex intervals ũ, ṽ and any arithmetic operation ◦ ∈ {+,−, ·, /},

{u ◦ v; u ∈ ũ, v ∈ ṽ} ⊆ ũ ◦ ṽ.

The rectangular form. The rectangular form was pioneered by Boche (1966); Alefeld (1968), and the
corresponding complex interval arithmetic reads

(a + bi) ± (c + di) = a± c + (b± d)i

(a + bi) · (c + di) = ac− bd + (ad + bc)i

(a + bi)/(c + di) =
ac + bd

c2 + d2
+

bc− ad

c2 + d2
i, 0 6∈ c2 + d2.

Obviously by the properties of real interval arithmetic, addition, subtraction, and multiplication by reals
yield optimal results (Alefeld, 1968; Nickel, 1980). Multiplication produces the tightest interval enclosure,
i.e., the interval hull; see Figure 7.4.

Observation 7.3. For any complex intervals ũ and ṽ in the rectangular form

(1) {u± v; u ∈ ũ, v ∈ ṽ} = ũ± ṽ.

(2) �{u · v; u ∈ ũ, v ∈ ṽ} = ũ · ṽ.

On the other hand, the other operations are overestimating the actual image (which is not a rectangular
box); see Figure 7.5. In particular, the division does not produce the interval hull of the image in general;
see Figure 7.5, where 2/(1+[−1, 1]i) = [1, 2]+[−2, 2]i highly overestimates the imaginary part. Even in the
simple example a+bi = 1+0i, c+di = [1, 2]+0i the rectangular form overestimates a lot, producing the
interval [0.25, 2], while real interval arithmetic produces [0.5, 1]. Tighter results are obtained if the division
is defined as ũ/ṽ = ũ · (1/ṽ), where the inverse value value is computed exactly 1/ṽ = �{1/v; v ∈ ṽ}.
However, the computation of the interval hull is expensive (Rokne and Lancaster, 1971).

Inclusion isotonicity (Boche, 1966) is still fulfilled here simply because of the inclusion isotonicity of
real interval arithmetic.
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Figure 7.4: The exact image of (1 + [0, 1]i) · (1 +
[0, 1]i). Complex interval arithmetic yields [0, 1] +
[0, 2]i.
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Figure 7.5: The exact image of 2/(1 + [−1, 1]i).
Complex interval arithmetic yields [1, 2] + [−2, 2]i.

The circular form. The circular form was first investigated by Henrici (1971); see also Gargantini and Henrici
(1972); Hauenschild (1974). Its arithmetic is defined as follows. Let complex intervals ũ = 〈cu, ru〉 and
ṽ = 〈cv , rv〉,

〈cu, ru〉 ± 〈cv , rv〉 = 〈cu ± cv, ru + rv〉
〈cu, ru〉 · 〈cv , rv〉 = 〈cucv , |cu|rv + |cv |ru + rurv〉

1 / 〈cu, ru〉 =
〈

cu/(|cu|2 − r2u), ru/(|cu|2 − r2u)
〉

, ru < |cu|.

Similarly as above, addition, subtraction, multiplication by complex numbers, and inversion of a circle not
containing the zero are operations yielding the true image (Alefeld and Herzberger, 1983; Mayer, 2017;
Nickel, 1980). Multiplication of complex intervals ũ, ṽ overestimates in general, but as we show below,
the resulting circle is the smallest circle centered in the product of the centers of ũ, ṽ and containing the
true image.

Proposition 7.4. For any complex intervals ũ = 〈cu, ru〉 and ṽ = 〈cv , rv〉 in the circular form

(1) {u± v; u ∈ ũ, v ∈ ṽ} = ũ± ṽ,

(2) �{u · v; u ∈ ũ, v ∈ ṽ} $ ũ · ṽ = ∩{〈cucv , r〉; uv ∈ 〈cucv, r〉, ∀u ∈ ũ, ∀v ∈ ṽ},
(3) �{1/u; u ∈ ũ} $ 1/ũ.

Proof.

(1) Obvious.

(2) “The inclusion.” Let u ∈ ũ and v ∈ ṽ in the forms u = cu + reiα, 0 ≤ r ≤ ru, and v = cv + r′eiβ,
0 ≤ r′ ≤ rv. Then

uv = (cu + reiα)(cv + r′eiβ) = cucv + cur
′eiβ + cvre

iα + rr′ei(α+β))

So we have uv ∈ 〈cucv , s〉 for a value s such that

s ≤ |cur′eiβ + cvre
iα + rr′ei(α+β)| ≤ |cur′eiβ| + |cvreiα| + |rr′ei(α+β)| ≤ |cu|rv + |cv |ru + rurv.

“The equation.” Let cu = |cu|eiα and cv = |cv|eiβ . Put u := cu + rue
iα ∈ ũ and v := cv + rve

iβ ∈ ṽ.
Then

uv = (cu + rue
iα)(cv + rve

iβ) = (|cu| + ru)eiα)(|cv | + rv)eiβ

= (|cu||cv | + |cu|rv + ru|cv| + rurv)ei(α+β) = cucv + (|cu|rv + ru|cv| + rurv)ei(α+β),

which lies on the boundary of the circle ũṽ.
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Figure 7.6: (Example 7.5) The exact image of 〈1, 1〉 · 〈1, 1〉 in blue (in the shape of a cardioid) and the
result of complex interval arithmetic in gray. The smallest circle containing the true image is dashed and
crosses the real axis in the right at point ≈ 4.0981.
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Figure 7.7: (Example 7.6) The exact image of 〈−2, 1〉 · 〈2, 1〉 in blue does not contain the origin, but the
result of complex interval arithmetic in gray contains the origin.

(3) Let u ∈ ũ in the form u = cu + reiα, 0 ≤ r ≤ ru. We want to show that |(|cu|2 − r2u)/u− cu| ≤ ru.
Let us write

|cu|2 − r2u
cu + reiα

− cu =
|cu|2 − r2u − cu(cu + reiα)

cu + reiα
=

−r2u − cure
iα

cu + reiα
.

Its absolute value reads
|r2u + cure

iα|
|cu + reiα| ≤ −r2u + |cu|ru

|cu| − ru
= ru.

The following example illustrates that multiplication overestimates in general.

Example 7.5 (Mayer, 2017). Let ũ = ṽ = 〈1, 1〉. Then ũṽ = 〈1, 3〉, but the smallest enclosing circle is
〈1.5, 1.5

√
3〉; see Figure 7.6.

Example 7.6 (Mayer, 2017). Let ũ = 〈−2, 1〉 and ṽ = 〈2, 1〉. Then ũṽ = 〈−4, 5〉. So 0 ∈ ũṽ, even
though 0 6∈ ũ and 0 6∈ ṽ; see Figure 7.7.
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To compute optimal enclosing circles for multiplication and division is a nontrivial task, and the
corresponding arithmetic turns out not to be inclusion isotone (Krier, 1973; Nickel, 1980). On the other
hand, the overestimation produced by these operations is usually small. That is why circular arithmetic
was implemented, e.g., in INTLAB (Rump, 1999a). One can show that the multiplication operation over-
estimates the optimal enclosing circle by no more than 50% of the length of its radius. Even more, by
Krier (1973); Mayer (2017); Rump (1999b) we have for any complex intervals ũ, ṽ

rad(ũṽ) ≤ 3

2
max

{

1
2 |z1 − z2|; z1, z2 ∈ S

}

,

where S = {u · v; u ∈ ũ, v ∈ ṽ}.

Comparison. For both rectangular and circular forms, many algebraic properties of Theorem 2.5 remain
valid (Alefeld and Herzberger, 1983; Djanybekov, 2006).

Theorem 7.7. For rectangular or circular forms of complex intervals ũ, ṽ and w̃ we have

(1) ũ + ṽ = ṽ + ũ,

(2) (ũ + ṽ) + w̃ = ṽ + (ũ + w̃),

(3) ũṽ = ṽũ,

(4) ũ(ṽ + w̃) ⊆ ũṽ + ũw̃,

(5) z(ũ + ṽ) = zṽ + zũ, z ∈ C,

(6) complex interval arithmetic is inclusion isotonic.

For circular forms of ũ, ṽ and w̃ we have

(7) (ũṽ)w̃ = ṽ(ũw̃).

Property (7) does not hold for rectangular forms in general. For example,

[2, 3]
(

(1 + i)(1 − i)
)

= [2, 3]2 = [4, 6],
(

[2, 3](1 + i)
)

(1 − i) = ([2, 3] + [2, 3]i)(1 − i) = [4, 6] + [−1, 1]i.

As we have seen, none of the interval complex forms is preserved under all arithmetic operations.
Indeed, Nickel (1980) proved that there is no such a form with finite description that is closed under arith-
metic and contains real intervals as segments in the complex plane. Further, Kreinovich and von Gudenberg
(2000) showed that the best approximation family of sets that is shift-, rotation-, and scale-invariant have
piecewise linear or circular boundaries.

The polar form. In contrast to the previous forms, the polar form is closed under multiplication and
division (and also exponentiation) as we have (Candau et al., 2006; Klatte and Ullrich, 1980)

a cis(ϕ) · b cis(η) = (ab) cis(ϕ+ η),

a cis(ϕ)/b cis(η) = (a/b) cis(ϕ− η), 0 6∈ b.

On the other hand, addition and subtraction is rather cumbersome. Nevertheless, Candau et al. (2006)
proposed a method to enclose the resulting image in a minimal polar form with a reasonable cost. For the
polar form, Wang et al. (2019) proposed an optimal affine approximation, which reduces the overestima-
tion caused by dependencies. Other possibility is to use rectangular enclosure and addition / subtraction
for rectangular forms.

Notes and further reading. An important application of complex interval arithmetic is the compu-
tation of complex roots of polynomials (Gargantini, 1976, 1978; Gargantini and Henrici, 1972; Hansen,
1969b; Krier, 1973; Nickel, 1975).

A generalization of the circular form to ellipsoids was considered by Kahan (1967); see references in
(Nickel, 1980).
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7.1.3 Affine arithmetic

7.1.4 Interval unions

Interval unions are finite sets of closed and disjoint intervals. They enable for a finer representation of
enclosures and thus for more efficient algorithms. As an example of an interval union, consider

U = [−2,−1] ∪ [1, 2] ∪ [3, 3].

The range of the function f(x) = x2 on this domain is f(U) = [1, 4] ∪ [9, 9] and its interval hull is
�f(U) = [1, 9]. To compare, the range of the function an the interval hull x = �U = [−2, 3] is f(x) = [0, 9].

Arithmetic with interval union is analogous to interval arithmetic. One drawback of this representation
is that the number of intervals produces during computation may increase exponentially; to handle this
problem, various gap-filling strategies were proposed to keep the number of intervals reasonably large.
Due to non-convexity of interval unions, we we also have to be more careful when using the mean value
theorem.

Interval unions are particularly convenient when using extended interval arithmetic. In case of division,
extended interval arithmetic may produce a union of two intervals. This motivates to process the union
further. As a consequence, interval unions turn to be efficient in the interval Newton method (Section 8.1.1)
and in solving interval systems of linear equations by the interval Gaussian elimination or Gauss–Seidel
method.

Interval unions were introduced in Schichl et al. (2017), applied to solving interval systems of linear
equations in Montanher et al. (2017) and overviewed in Domes et al. (2020).

Notes and further reading. There are several related concepts. Multi-intervals (Yakovlev, 1986) are
defined as a union of closed but not necessarily disjoint intervals. They were implemented in a free software
UniCalc; see Babichev et al. (1993) and download at

http://www.rriai.org.ru/UniCalc/

Another concept are discontinuous intervals introduced by Hyvönen (1992). This concept deals with a
union of closed, open and half-open intervals. They were motivated by the propagation techniques in
constraint programming (Chapter 8).

7.1.5 Dependent operations

7.2 Other kinds of enclosures

Interval enclosures are sometimes too coarse approximations and highly overestimates the true set. Thus,
more subtle kinds of enclosures are in demand, too.

7.2.1 Ellipsoids

Ellipsoid enclosures for parameter identification problems with uncertain data are studied in Belforte et al.
(1990); Fogel and Huang (1982); Pronzato and Walter (1994).

Ellipsoid enclosures of zonotopes were discussed by Černý (2012); Černý and Rada (2012). They
adapted Goffin’s polynomial algorithm to construct an enclosing Löwner–John ellipsoid with the property
that if it is shrunk by the factor n (the dimension), we get an inscribed ellipse. This kind of ellipsoid was
applied by Černý et al. (2013) to enclose the set of the least square solutions for overdetermined system
of equations with interval right-hand side; cf. Section 3.8.1.

7.3 Integration

Enclosure of a real integral. Using interval computation for determining rigorous bounds of an integral
appears already in Moore (1966). Let f : R → R be continuous and [a, b] ∈ IR be given. By the mean

http://www.rriai.org.ru/UniCalc/
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value theorem there is c ∈ [a, b] such that

∫ b

a
f(x) dx ⊆ f(c)(b− a).

This gives rise to the enclosure
∫ b

a
f(x) dx ⊆ f([a, b])(b − a).

A refinement makes to enclosure tighter. The points

xk = a +
k

n
(b− a), k = 0, . . . , n

discretize the interval [a, b] equidistantly into n sub-intervals. Now, the interval version of the Riemann
sum

in :=
b− a

n

n
∑

k=1

f([xk−1, xk])

gives an enclosure of the integral

∫ b

a
f(x) dx ⊆ in.

This simple idea is straightforwardly adapted for non-uniform discretization of the interval [a, b].

Under some assumptions (e.g., when f(x) is given by an arithmetic expression using only arithmetic
operations) we have

∫ b

a
f(x) dx = lim

n→∞
in.

The rate of convergence of the interval extension of f(x) conveys roughly to the rate of convergence of
in. Thus, if we use the natural interval extension having linear convergence (cf. Section 6.4), then by
doubling n, the enclosure in approximately decreases the width by half.

Interval integral. Let f : IR → IR, where f and f are continuous, and let [a, b] ∈ IR. We definie the
interval integral as

∫ b

a
f(x) dx =

⋃

{
∫ b

a
f(x) dx; f(x) ∈ f(x) is continuous

}

.

It is easy to see (Moore, 1979) that

∫ b

a
f(x) dx =

[
∫ b

a
f(x) dx,

∫ b

a
f(x) dx

]

.

It is also obvious that the interval integral is inclusion isotonic. That is, given f ,g : IR → IR such that
f(x) ⊆ g(x) for every x ∈ [a, b], we have

∫ b

a
f(x) dx ⊆

∫ b

a
g(x) dx.

These properties turn out to be convenient when we enclose a real function f(x) by using a higher order
expansion (6.6). Then the integral of f(x) is simply enclose by the integral of the corresponding interval
polynomial.



7.4. Ordinary differential equation 141

Example 7.8 (Moore, 1979). Let f(x) = e−x2
and [a, b] = [0, 1]. By using the enclosure (6.6), we get

f(x) ∈ 1 − x2 +
1

2
x4 − 1

6
[e−1, e0]x6

⊆ 1 − x2 +
1

2
x4 − [0.0613, 0.1667]x6

Therefore

∫ 1

0
e−x2

dx ∈
∫ 1

0
1 − x2 +

1

2
x4 − [0.0613, 0.1667]x6 dx

=

[∫ 1

0
1 − x2 +

1

2
x4 − 0.1667x6 dx,

∫ 1

0
1 − x2 +

1

2
x4 − 0.0613x6 dx

]

⊆ [0.7428, 0.7580].

7.4 Ordinary differential equation

Validated methods for initial values problems for ordinary differential equations (Nedialkov and Jackson,
2001)

y′ = f(y), y(t0) = y0,

compute bounds that are guaranteed to contain the solution. They are based on Taylor series (Makino and Berz,
2005) and other approaches.
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Chapter 8

Constraint programming and global
optimization

Constraint programming is a discipline that deals with solving a set of constraints. Constraints may
involve equations, inequalities or other types of conditions. Global optimization is a slightly more general
problem to find a global minimizer over a set of constraints. Thus, we have not only to find a feasible
solution fulfilling the constraints, but also such of them that has a minimal value of the objective function.

Both disciplines are very hard, in fact undecidable in general. However, by using interval analysis, we
can enclose all solutions or global minimizers into verified intervals. Naturally, time effort is usually very
large as the dimension of the problem grows.

Complexity

Constraint solving. Some constraints can be solved efficiently. A system of linear equations Ax = b is
easy to solve by the Gaussian elimination, and a system of linear inequalities Ax ≤ b can be polynomially
handled by means of linear programming.

Polynomial equations are considerably harder to solve. Let p(x1, . . . , xn) be a polynomial in variables
x1, . . . , xn. The equation p(x1, . . . , xn) = 0 can be solved by Tarski’s theorem (Tarski, 1951). This theorem
says that the first-order theory of reals with +,×,= and > allows quantifier elimination. Hence we can
decide on solvability by elimination of the formula ∃x1 . . . ∃xn : p(x1, . . . , xn), and the roots can be found
by binary search to a given accuracy. A serious drawback is that the known methods for quantifier
elimination have double exponential time complexity.

Even worse, constraint solving is undecidable in general. That is, there is provably no algorithm
to solve it. Recall that the tenth Hilbert problem was to find an algorithm to determine whether a
given polynomial Diophantine equation with integer coefficients has an integer solution. It was shown by
Matiyasevich (1970) that this problem is undecidable. Undecidability holds also true for the continuous
case as long as we admit equations with the sine function (Zhu, 2006). Clearly, a Diophantine equation
p(x1, . . . , xn) = 0 has an integer solution if and only if the equation

p(x1, . . . , xn)2 +

n
∑

i=1

sin2(πxi) = 0 (8.1)

has a real solution.

Global optimization. Similar results hold for global optimization, too. Consider an optimization prob-
lem

min f(x) subject to c(x),

where f(x) is the objective function and c(x) the constraints in the form of polynomial equations, then
a ∈ R is the optimal value if and only if

∃x(a = f(x) ∧ c(x) ∧ ∀y(¬c(x) ∨ f(x) ≥ f(y))).

143
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Moreover, the optimal value a can be calculated by a suitable elimination and transformation to a dis-
junctive normal form. On the other hand, by minimizing the left-hand side function of (8.1) on Rn we
can decide on solvability of (8.1) as the zero optimal value shows solvability, while the positive optimal
value unsolvability. Thus, global optimization is undecidable in general, even with no constraints.

Range of a function. The above result implies that computing the range f(x) of a real function
f : Rn → R on an interval domain xıIRn is undecidable as well. The global optimization problem

min f(x) subject to x ∈ Rn

is transformed to

min g(y) subject to y ∈ (−π
2 ,

π
2 )n

by using the substitution xi := tan(yi), i = 1, . . . , n. Defining tan(±π
2 ) := 1

2 , for example, we obtain closed
intervals and the optimization problem reads

min g(y) subject to y ∈ y := [−π
2 ,

π
2 ]n.

The optimal value is then simply the left endpoint f(y).

8.1 Systems of nonlinear equations

First, we consider a basic problem of solving n nonlinear equations with respect to n variables. Let x ∈ IRn

and let f : Rn → Rn be differentiable in each component on an open superset of x. Our aim is to find
all roots of f on x, that is, all x ∈ x such that f(x) = 0. Since we cannot expect determining the roots
exactly, we focus on calculation of their tight enclosures.

A bisection method. A naive approach is a bisection method. We check if 0 ∈ fi(x) for all i = 1, . . . , n.
If it is not the case, there is no root of f in x and we stop. Otherwise, we split the box x into two or more
sub-boxes, and repeat the procedure recursively. This process produces sequences of nested sub-boxes
containing the possible roots, however, on account of huge time complexity. Computing the range fi(x)
is difficult, so the condition 0 ∈ fi(x) is usually replaced by the weaker one 0 ∈ fi(x), where fi(x) is an
interval extension of fi(x).

The above branch & prune approach approach is the basis of many interval methods; in Section 8.2,
we discuss it more in detail. However, in order to avoid the tremendous time complexity, we try not to
split boxes too frequently. One way to do it is to iteratively shrink the enclosing boxes by an appropriate
method that do not cut off any root.

A fixed point approach. Our problem is equivalent to the problem of finding a fixed point of a
function, which is a more suitable problem for designing iterative methods. Define g(x) := x + Cf(x),
where C ∈ Rn×n is nonsingular. Now, f(x) = 0 if and only if g(x) = x. Thus, we reduced the problem of
finding roots of f to finding fixed points of g. By Brouwer’s Theorem 1.26, we have the following sufficient
condition on the existence of a fixed point.

Theorem 8.1. If g(x) ⊆ x, then g has a fixed point in x.

Interval operators. Iterative methods for finding all fixed points of g(x) on x are usually based on an
interval operator O : IRn → IRn that must have the property that each fixed point in x is included also in
O(x) (cf. the linear case in Section 3.4). That is, we cannot miss any fixed point in x. As a consequence,
if O(x) ∩ x = ∅, there is no fixed point in x.

The first idea that comes into mind is to set O(x) := g(x). Such an operator, however, would not have
many nice properties. In the sequel, we describe two widely used iterative methods for solving nonlinear
equations, namely the interval Newton and the Krawczyk method.
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Figure 8.1: An illustration of the classical (real) Newton method.

8.1.1 Interval Newton method

Newton method is a traditional method of numerical analysis to approximately find the roots of a function.
It outperforms Newton method in many points: It finds guaranteed enclosures of roots, it has better
convergence and time properties, and it can rigorously prove that a box contains a unique root.

One-dimensional case

The real Newton method – a reminder. The Newton method is the classical method for finding
a root of a function. Let f : R → R be differentiable and let x0 ∈ R be an initial point. Construct a
tangent line to f(x) at point x0. The line has description ℓ(x) = f(x0) + f ′(x0)(x− x0). Now, determine
the crossing point of the line and the x-axis by solving the equation ℓ(x) = 0. This yields the solution
x1 := x0 − f(x0)/f ′(x0). Point x1 is the starting point of the next iteration and we produce a sequence
of points x0, x1, x2, . . . . It converges under certain assumptions. The basic idea of the Newton method is
illustrated in Figure 8.1.

The interval Newton method. Let x0 ∈ x be any point and x∗ a root. By The mean value theorem,
f(x∗)−f(x0) = f ′(c)(x∗−x0) for some c ∈ x. Since f(x∗) = 0, we have −f(x0) = f ′(c)(x∗−x0). Suppose
that f ′(c) 6= 0 (otherwise x0 is a root), whence x1 = x0 − f ′(c)−1f(x0). Therefore,

x∗ ∈ x0 − f ′(x)−1f(x0).

holds for any root x∗. This justifies the interval Newton operator

N(x, x0) := x0 − f ′(x)−1f(x0).

The interval Newton method then works as follows: Put k := 0, x0 := x, and repeat the iterations

1: choose xk ∈ xk,
2: xk+1 := xk ∩N(xk, xk),
3: k := k + 1.

The stopping criteria are discussed in the multi-dimensional case, as well as important theoretical and
algorithmic properties. Now, we mention applicability of extended interval arithmetic, analyse the order
of convergence and present a few of examples.

Extended interval arithmetic. Under some assumptions, we may incorporate extended interval arith-
metic (see Section 2.3) to the interval Newton method. Suppose that x∗ is a root and x0 is not a root. As
above, we derive that f(x∗) − f(x0) = f ′(c)(x∗ − x0) for some c ∈ x. Since f(x∗) 6= f(x0), the derivative
f ′(c) is not zero. Thus, even though we calculate an enclosure of f ′(x) and it contains the zero, so we
can omit the zero from the interval and compute N(xk, xk) := xk − f ′(xk)−1f(xk) by means of extended
interval arithmetic.
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Figure 8.2: (Example 8.2) The interval Newton method with extended interval arithmetic.

Example 8.2. Let

f(x) = 10 sin(x) + 5 cos(2x) + x2 − 1, x = [−3, 2],

and choose x0 := −1. First, we compute f ′(x) ⊆ [−25.9, 24]. Since 0 ∈ f ′(x), we cannot proceed by using
standard interval arithmetic. However, using extended interval arithmetic, one iteration of the interval
Newton method draws

N(x, x0) = x0 − f(x0)

f ′(x)
⊆ −1 − [−10.4955,−10.4954]

[−25.9, 24]
⊆ (−∞,−1.4052] ∪ [−0.5626,∞).

Now,

N(x, x0) ∩ x = [−3,−1.4052] ∪ [−0.5626, 2].

This allows us to split the interval domain into two sub-intervals, x′ := [−3,−1.4052] and x′′ :=
[−0.5626, 2], and to seek for the roots of f(x) recursively therein. Anyway, in the actual step, we are
able to remove the set (−1.4052,−0.5626) from the domain x; see Figure 8.2.

Convergence. Suppose that 0 6∈ f ′(xk) for the interval extension f ′ of f ′ used. The interval Newton
iteration reads

xk+1 :=
(

xk − f(xk)/f ′(xk)
)

∩ xk.

It is easy to see the linear convergence rad(xk+1) ≤ 1
2 rad(xk) provided xk ∈ xk is chosen as the center

xk = mid(xk). The assumption 0 6∈ f ′(x) implies that f ′(xk)−1f(xk) lies either in [0,∞) or in (−∞, 0], so
N(xk, xk) := xk−f ′(xk)−1f(xk) cuts off at least one half of xk when making intersection xk∩N(xk, xk).

Another linear convergence result is the following; the speed of convergence depends on the range of
derivatives.

Theorem 8.3. Denote d := f ′(xk). If d > 0, then

rad(xk+1) ≤
(

1 − d/d
)

rad(xk).

Proof. Denote y := xk+1 and x := xk. Without loss of generality, assume that f(xk) ≥ 0. If f(xk) ≤ 2x∆d,
then

2y∆ = y − y = xk − f(xk)/d− y

≤ xk − f(xk)/d− xk + f(xk)/d = f(xk)(1 − d/d)/d

≤ 2x∆(1 − d/d).

Otherwise, if f(xk) > 2x∆d, then

2y∆ = y − y = xk − f(xk)/d− y = (xk − y) − f(xk)/d

≤ 2x∆ − 2x∆d/d = 2x∆(1 − d/d).
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Figure 8.3: (Example 8.5) Four iterations of the interval Newton method with extended interval arithmetic.

Below, we also show the quadratic convergence of the interval Newton method (the same as for the
classical Newton method).

Theorem 8.4. Suppose that the derivative f ′(x) with some u ∈ IR satisfies Property L (page 118), its
enclosure is calculated by the natural extension and does not contain zero. Then there is γ > 0 such that

rad(xk+1) ≤ γ · rad(xk)2.

Proof. Using Theorem 6.6 and the notation and the statement of Theorem 8.3,

rad(xk+1) ≤
(

1 − d/d
)

rad(xk) =

(

d− d

d

)

rad(xk)

≤ 2 rad(f ′(xk))

f ′(x0)
rad(xk) ≤ 2γ̃

f ′(x0)
rad(xk)2.

for certain γ̃. Thus, we can put γ := 2/f ′(x0).

Example 8.5 (Floudas and Pardalos, 2009, Moore: Interval Analysis: Systems of Nonlinear Equations,
1721–1727). Consider function f(x) = x3 − x+ 0.2, illustrated in Figure 8.3. It is known that all roots of
a polynomial xn + an−1x

n−1 + · · · + a1x+ a0 lie in the interval with the center at the zero and the radius
∑n−1

i=0 |ai|. Thus, take the initial enclosure x0 := [−1.2, 1.2].
After one iteration, we have N(x0) = (−∞,−0.06024] ∪ [0.05154,∞), so we split x0 into two sub-

intervals x1 := [−1.2,−0.06024] and x2 := [0.05154, 1.2]. In the four next iterations, x1 is contracted to
[−1.0880568,−1.0880142], which provable contains a unique root.

Since 0 ∈ N(x2), the interval x2 is split into sub-intervals x3 := [0.05154, 0.44359] and x4 :=
[0.68020, 1.2]. The former is contracted to [0.2091487, 0.2091490] in three iterations, and the latter is
contracted to [0.8781166, 0.8797997] in three iterations as well. Both contain unique roots. The precision
of the resulting enclosures is between 10−3 and 10−7, but only one additional iteration applied to each
interval increases the accuracy to one between 10−7 and 10−15.

Example 8.6. Consider the function by Moore (1993)

f(x) = x2 + sin(x−3).

All 318 roots of in the interval [0.1, 1] were found with accuracy 10−10 in 1538 seconds of that CPU time.
The left most root is contained in [0.10003280626, 0.10003280628].
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Figure 8.4: (Example 8.7) One step of the Interval Newton method by using slopes instead of derivatives.

Example 8.7. To make the interval Newton operator more efficient, we can use slopes instead of deriva-
tives (see Section 6.2). The theory remains valid, only the uniqueness property of Theorem 8.10 may not
hold. For illustration, consider a similar function as in Example 6.15

f(x) = 1
4x

2 − x + 3
4

and the initial domain x0 = [1, 7]. For x0 := xc = 4, the interval slope is Sf (x0, x0) = [14 ,
7
4 ], and we

calculate N(x0, x0) = [1, 257 ]. The initial interval x0 = [1, 7] thus was significantly reduced to x1 = [1, 257 ];
see Figure 8.4. On the other hand, there are two roots in x0 (the values of 1 and 3), even though we
have N(x0, x0) ⊆ x0. This shows that employing slopes yields tighter enclosures, but we lost evidence of
uniqueness as stated in Theorem 8.10.

Further iterations will not improve the enclosure x1 when we use the midpoint value as the center
of linearization. However, if we use an appropriate value (e.g., xk := (3 + xk)/2), then the iterations will
converge to [1, 3], which is the interval hull of the roots.

Multi-dimensional case

An interval linearization. The underlying idea of the Interval Newton (and the Krawczyk method
presented in Section 8.1.2) is to linearize the hard nonlinear functions and reduce the problem to interval
linear equations.

Let x0 ∈ x. Proceeding as in Section 6.1.2, we can write

f(x) ∈ f(x0) + ∇f(x)(x− x0), x ∈ x.

Thus, we enclose a nonlinear function f(x) by an interval linear function. Now, if x∗ ∈ x is a root of f ,
then

0 ∈ f(x0) + ∇f(x)(x∗ − x0). (8.2)

That is, x∗−x0 belongs to the solution set of interval linear equations with the interval constraint matrix
∇f(x) and the real right-hand side −f(x0). This is the essence of the Interval Newton method.

The interval Newton method. We introduce the interval Newton operator as an operator yielding
the following interval vector

N(x, x0) := �{x ∈ Rn; ∃A ∈ ∇f(x) : A(x− x0) = −f(x0)}.

Since it is hard to determine its value exactly, we will be content with a tight enclosure. Practically, we
proceed as follows. Consider the system of interval linear equations Ay = b, where A := ∇f(x) and
b := −f(x0). Let y ∈ IRn be an enclosure of the solution set. Then we set N(x, x0) := x0 +y. Due to the
properties of interval methods, we immediately have:
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Theorem 8.8. If x∗, x0 ∈ x and f(x∗) = 0, then x∗ ∈ N(x, x0).

Thus, the interval Newton operator misses no root of f(x) on x. We emphasize this property in the
following.

Corollary 8.9. All roots of f in x are contained in x ∩ N(x, x0). In particular, if x ∩ N(,x, x0) = ∅,
then there is no root in x.

We can say even more. If N(xk, xk) ⊆ xk, then there is provably a unique root (Nickel, 1971). This
(unique) existence property is one of the most important issues in interval analysis.

Theorem 8.10 (Nickel, 1971). If ∅ 6= N(x, x0) ⊆ x, then there is a unique root in x and ∇f(x) is
regular.

Proof. “Regularity.” Since ∅ 6= N(x, x0) ⊆ x, the interval Jacobian ∇f(x) must be regular by Theo-
rem 3.51.

“Existence.” By the Mean value theorem, for each x ∈ x and i ∈ {1, . . . , n}, there is ci(x) ∈ Rn

such that fi(x) − fi(x
0) = ∇fi(ci(x))T (x − x0). Let A(x) ∈ Rn×n be the matrix with rows ∇fi(ci(x))T ,

i = 1, . . . , n (Notice that in general there is no c(x) ∈ x such that A(x) = ∇f(c(x)), so we had to proceed
for the particular functions separately.). Then we have

f(x) − f(x0) = A(x)(x − x0).

Now, consider the function

p(x) := x−A(x)−1f(x) = x−A(x)−1(f(x) − f(x0)) −A(x)−1f(x0) = x0 −A(x)−1f(x0).

Since p(x) ∈ N(x, x0) ⊆ x ∀x ∈ x, we have p(x) ⊆ x, and by Brouwer’s fixed-point Theorem 8.1, there
is a fixed point x∗ ∈ x of p(x), which gives

x∗ = p(x∗) = x∗ −A(x∗)−1f(x∗)

and therefore f(x∗) = 0.
“Uniqueness.” Suppose to the contrary that there are two different roots x1 and x2 in x. By the Mean

value theorem, f(x1) − f(x2) = A(x1 − x2) for some A ∈ ∇f(x); notice that this does not mean that
A = ∇f(x) for some x ∈ x. Since f(x1) = f(x2) = 0, we get A(x1 − x2) = 0 and by the nonsingularity
of A, the roots are identical.

The algorithm. The above results justify the interval Newton method. It is an iterative method de-
scribed below. At the beginning, we put k := 0 and x0 := x, and the kth iteration is

1: choose xk ∈ xk,
2: calculate N(xk, xk),
3: xk+1 := xk ∩N(xk, xk),
4: k := k + 1.

The typical stopping criteria of the iterations are some (or a mixture) of the following conditions:

• ∑n
i=1 rad(xk

i ) < ε for a given threshold ε > 0,

• ‖f(xk)‖ < ε′ for a given threshold ε′ > 0 and vector norm ‖ · ‖,

• 0 ∈ f(xk), the Jacobian ∇f(xk) is regular and N(xk, xk) ⊆ intxk.

As we mentioned earlier, in step 2 we calculate N(xk, xk) simply by solving the interval linear system

∇f(xk)
(

N(xk, xk) − xk
)

= −f(xk). (8.3)

We may employ any method from Sections 3.2–3.5.5, but usually the preconditioned Gauss–Seidel or
Krawczyk method is employed since they are iterative and give a sufficiently tight enclosure with small
effort. When using these iteration methods, however, we must be careful about Theorem 8.10 since the
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iteration methods typically utilize xk as the starting enclosure. So they compute directly N(xk, xk) ∩ xk

instead of N(xk, xk) itself, which is good from the performance viewpoint, but we cannot check for the
inclusion N(xk, xk) ⊆ xk.

In order that the interval Jacobian ∇f(x) is as narrow as possible, we are free to employ the succes-
sive mean value form as described in Section 6.1.2. Instead of derivatives, we can compute the interval
Jacobian ∇f(x) by using slopes (Section 6.2); see the illustration in Example 8.7. More details are in
Kearfott (1996a); Neumaier (1990); Rump (1994) and the second order slope form was employed by
Schichl and Neumaier (2004). As we observed in Example 8.7, however, the uniqueness property of The-
orem 8.10 may not hold.

The performance of the method depends on the choice of xk ∈ xk. See Alefeld and Herzberger (1983);
Chernous’ko (1968) for a thorough discussion on the selection of this point and for observing that the
choice xk := mid(xk) is an optimal choice with respect to some robustness criteria. For this commonly
used choice, we then simply write N(xk) instead of N(xk,mid(xk)).

Splitting boxes. The interval Newton operator need not shrink the input box x. This usually happens
when x is too wide and there are multiple roots inside, the interval Jacobian matrix is overestimated or
some other conditions are not satisfied. In this case, we have to split the actual interval vector x into
smaller sub-boxes. The most straightforward approach to split the box along the widest edge is not always
the best choice. An appropriate may dramatically improve the overall time complexity. One possibility is
to split along that ith coordinate for which

x∆i

n
∑

j=1

mag(∇f(x))ji

is maximal (Hansen and Walster, 2004).

Convergence. In the multidimensional case, quadratic convergence is observed under some general
assumptions (Alefeld and Herzberger, 1983). However, as the following example shows, the iterations
need not converge in every case even if the interval Jacobian ∇f(x) is regular; cf. Mayer (2017).

Example 8.11 (Schwandt, 1981). Let

f(x) = (−x21 + x22 − 1, x21 − x2)T , x = ([1.1, 1.9], [1.1, 1.9])T .

Function f(x) has the unique root x∗ in x

x∗ =
(

√

1+
√
5

2 , 1+
√
5

2

)T
.

Even though ∇f(x) is regular, the interval Newton method does not shrink the initian box since x ⊆
N(x, xc) when computing N(x, xc) by the interval Gaussian elimination.

For other asymptotic properties see, e.g., Alefeld et al. (1998); Mayer (2017).

Remark 8.12. As we mentioned at the beginning of Section 8.1, the classical methods for finding the
roots of f(x) are often based on iterations converging to a fixed point of g(x) = x+Cf(x). In particular,
the iterations of the Newton method have the form

xk+1 := xk −∇f(xk)−1f(xk), k = 0, 1, . . .

However, the direct interval extension

xk+1 := xk −∇f(xk)−1f(xk)

will almost never work since the intervals tend to blow up; cf. Rump (2010). This shows the typical
behavior of interval methods – the direct intervalization usually fails, and one has to proceed in a more
sophisticated way.
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Notes and further reading. The pioneering works on the interval Newton method are Sunaga (1958);
Moore (1966); Chernous’ko (1968). There are variants of the interval Newton method known (Ratschek and Rokne
2003), including methods for non-smooth functions (Kearfott, 2002).

8.1.2 Krawczyk method

The Krawczyk iterations were introduced independently by Kahan (1968b) and Krawczyk (1969), and
it is a variation of the interval Newton method. Instead of the Newton operator, we use the Krawczyk
operator

K(x, x0, C) := x0 − Cf(x0) + (In − C∇f(x))(x− x0),

where x0 ∈ x and C ∈ Rn×n is a regular matrix, usually C ≈ ∇f(x0)−1. We will write simply K(x) for
K(x, x0, C) provided x0 and C are fixed.

Theorem 8.13. Any root of f(x) in x is included in K(x).

Proof. Consider the system of interval linear equations (8.2) and write it as

Ay = b, where A := ∇f(x), b := −f(x0), y := x− x0.

Applying the Krawczyk method from Section 3.4.2 on the preconditioned system (CA)y = Cb, we obtain
the interval operator

K(y) := Cb + (In − CA)y = −Cf(x0) + (In − C∇f(x))y.

Substitution y := x− x0 then concludes the proof.

Krawczyk method can be seen as the interval Newton method, in which we solve the interval linear
system (8.3) by the Kraczyk method for linear systems and run only one iteration. That is, each iteration
we update the interval Jacobian matrix ∇f(x).

By utilizing fixed point theory, we can state a condition for solvability. Under slightly stronger as-
sumption, we can achieve uniqueness of a solution.

Theorem 8.14. If K(x) ⊆ x, then there is a root in x.

Proof. We know that the roots of f(x) are the fixed points of g(x) := x − Cf(x). By the mean value
theorem, g(x) ∈ g(x0) + ∇g(x)(x− x0) for each x ∈ x, whence

g(x) ⊆ g(x0) + ∇g(x)(x− x0) = x0 − Cf(x0) + (In − C∇f(x))(x− x0) = K(x) ⊆ x.

By Theorem 8.1, there is a fixed point of g(x) in x, which corresponds to a root of f(x).

Theorem 8.15. If K(x) ⊆ intx, then there is a unique root in x and ∇f(x) is regular.

Proof. The inclusion K(x) ⊆ intx reads

−Cf(x0) + (In − C∇f(x))(x− x0) ⊆ int(x− x0)

By Theorem 3.41, applied for b := −f(x0), A := ∇f(x) and x := x− x0, we have that ∇f(x) is regular.
Regularity now implies uniqueness in the same manner as in the proof of Theorem 8.10.

A nice property of the Krawczyk method is that the interval operation is applicable even though
∇f(x) is irregular. The radius of K(x) is minimal for x0 := xc, and then the smallest value of K(x)
with respect to inclusion is achieved when preconditioned by C = ∇f(xc)−1; see Mayer (2017); Neumaier
(1990). We prove the former.

Theorem 8.16. We have rad(K(x, xc, C)) ≤ rad(K(x, x0, C)).

Proof. Using the property mag(A) rad(B) ≤ rad(AB) (Table B.3), we can write

rad(K(x, xc, C)) = mag(In − C∇f(x)) rad(x− xc)

= mag(In − C∇f(x)) rad(x− x0)

≤ rad
(

(In − C∇f(x))(x− x0)
)

= rad(K(x, x0, C)).
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Convergence. If β := ρ(mag(In−C∇f(x))) < 1, and we choose the midpoints as the centers xk-s, then
the Krawczyk method converges with a sequence of nested intervals the radii of which converge linearly
to zero with a factor β. Notice that by the proof of Theorem 3.41, the condition β < 1 is satisfied when
the strong Krawczyk test K(x) ⊆ intx succeeds.

Theorem 8.17. Suppose β < 1 and we choose x0 := xc. Then there is a vector norm (not depending on
x) such that

‖K(x)∆‖ ≤ β‖x∆‖.

Proof. Assume that the matrix M := mag(In − C∇f(x)) is componentwisely positive. If it is not the
case, we can replace the zero entries by sufficiently small ε > 0. Now, let v > 0 be the Perron vector
corresponding to the eigenvalue β of the matrix MT . We will utilize the 1-norm with the scaling given
by v, that is, ‖x‖ := ‖diag(v)x‖1. Then the induced matrix norm is ‖M‖ = ‖diag(v)M diag(v)−1‖1 = β.
Eventually, we have

‖K(x)∆‖ = ‖(In − C∇f(x))(x− xc)‖ = ‖M [−x∆, x∆]‖
≤ ‖M‖ · ‖x∆‖ = β‖x∆‖.

If β < 1
2 , then we have two stronger results: First, the convergence is superlinear (Alefeld and Herzberger,

1983). Second, the linear convergence is true for any selection of the centers xk ∈ xk (Mayer, 2017;
Neumaier, 1990).

Under certain assumptions, the Krawczyk method converges quadratically; see (Mayer, 2017, Thm. 6.3.5)
or Moore et al. (2009).

Notes. Mayer (2017) discusses several variants of the Krawczyk method. In particular, he addresses
several combinations of the Krawczyk and the Gauss–Seidel methods.

Remark 8.18 (Another linearizations). The principle of the interval Newton method is to linearize the
nonlinear constraints f(x) = 0 to obtain an interval linear system of equations Ax = b, the solution set
of which encloses the original solutions. Nevertheless, such a linearization can be performed in diverse
ways. For instance, the nonlinear system

x21x2 + x2 sin(x2) − exp(x1) + 1 = 0,

3x51 − x2 cos(x1) − 7 = 0

can be written as
(

x1x2 sin(x2)
3x41 − cos(x1)

)(

x1
x2

)

=

(

exp(x1) − 1
7

)

.

Evaluating the ranges of particular entries of the constraint matrix and the right hand side vector, we
obtain an interval linear system of type Ax = b.

Notes and further reading (Section 8.1). There are basically two approaches to solving nonlinear
systems by interval computation. The first one (including the interval Newton method) is based on
evaluation of the interval Jacobian matrix ∇f(x) and solving the corresponding interval linear system of
equations. The second approach (including the Krawczyk method) is based on an iterative method and
updates the interval Jacobian matrix during each iteration. Another popular method belonging to the
second class is that by Hansen and Sengupta (1981), who apply Gauss–Seidel iterations and show similar
properties as for the Krawczyk method (cf. Mayer (2017)). Goldsztejn (2007) then considers the Jacobi
iterations.

For more information about the interval Newton or Krawczyk method, see, e.g., Floudas and Pardalos
(2009); Neumaier (1990); Rump (2010). Reinforcement learning approaches to this problem were incor-
porated by Goualard and Jermann (2008). Interval methods for finding real and complex roots of poly-
nomials are discussed in Alefeld and Herzberger (1983). Some test problems are recorded in Kearfott
(1987).
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An existence of a solution can also be proved based on other topological theorems than Brouwer’s
fixed-point theorem, for instance, on the theorems of Kantorovich, Miranda or Borsuk (Alefeld et al.,
2004; Franek et al., 2018).

It is a basic problem of numerical mathematics to solve a system of nonlinear equations and it finds
applications everywhere. As an example, Moore (1979) finds rigorously the optimal solutions of a nonlinear
programming problem by utilizing optimality conditions and solving the associated system of equations.

8.2 Constraint satisfaction problem

Constraint programming is a discipline in which we are solving a set of constraints. It became popular
especially in the discrete case, when the domains of variables are finite sets. Herein, we consider a general
constraint programming problem, but the main applicability is for continuous domains. Surveys on this
topic are provided, e.g. in Benhamou and Granvilliers (2006); Hyvönen (1992); Jaulin et al. (2001).

The setup. We are given a set of constraints ck(x), k = 1, . . . ,K with variables x1, . . . , xn, and the
aim is to find a verified enclosure to the solution set Σ. Let x0 ∈ IRn be an initial box for domains of
variables, in which we are seeking for solutions. Constraints may involve:

• equations fj(x) = 0, j = 1, . . . , j∗,

• inequalities gℓ(x) ≤ 0, ℓ = 1, . . . , ℓ∗,

• other constraints, e.g., inequations h1(x) 6= h2(x), integer conditions xk ∈ Z for some k, using
quantifications and logical operators (∃y ∈ y : f(x) = y), various orderings (e.g., lexicographic) etc.

We suppose that the functions characterizing the constraints are real-valued, however, the methods that
we will describe apply to interval-valued functions, too.

Branch & prune algorithm. The basic algorithms to compute verified enclosures of all solutions follow
a branch & prune scheme. Let x ∈ IRn be given. One of the three possibilities may happen; we find out
that:

1. There is no solution in x, that is, x ∩Σ = ∅.

2. The box x consists only of solutions, that is, x ⊆ Σ.

3. We cannot decide, i.e., the box x possibly contains both solutions and not feasible solutions.

If the first condition holds true, then we remove x. Some simple tests for the first case are as follows:

• If 0 6∈ fi(x), then the ith equation holds for no x ∈ x.

• If gj(x) > 0, then the jth inequality cannot hold.

Since determining the range of a function on intervals is a difficult problem, too, it suffices to utilize
an appropriate interval extension. Not surprisingly, the more tighter enclosure on the range, the more
stronger condition we get. Other constraints than equations and inequalities require special treatment.

If we know that the second condition is true, then we output x to be a box containing no infeasible
point. For equations, this case is not likely to happen. However, if all constraints are inequalities, then
gℓ(x) ≤ 0 for each ℓ = 1, . . . , ℓ∗ implies that this is the case.

If we cannot decide for the first or second condition, we split the box x into two or more sub-boxes
and recursively repeat the process. The termination condition is that the box is sufficiently small, for
instance, maxi=1,...,n x

∆
i < ε for a given threshold ε > 0.

Algorithm 8.1 displays a scheme of the branch & prune algorithm. We keep three lists of boxes, L, V
and S. The first one is the list of working boxes, whereas the remaining ones go for output. Boxes in L
and V possibly contain solutions and boxes in S contain only solutions. A threshold parameter ε > 0 the
accuracy of approximation of the solution set by boxes. As the outpu, we get an inner approximation of
Σ in the form ∪S and an outer approximation of Σ in the form ∪(V ∪ S). Covering the solution set by
the boxes from S and V is called a subpaving (Jaulin et al., 2001); see Figure 8.5. Sometimes, we keep
also the set of removed boxes.
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Algorithm 8.1 Branch & prune algorithm

1: L := {x0}, V := ∅, S := ∅,
2: while L 6= ∅ do
3: choose x ∈ L and remove x from L,
4: contract x,
5: if x contains only solutions then
6: put x into S,
7: else if x contains possibly a solution then
8: if maxi x

∆
i > ε then

9: split x into sub-boxes and put them into L,
10: else
11: put x into V,
12: end if
13: end if
14: end while
15: return Sets V,S such that ∪S ⊆ Σ ⊆ ∪(V ∪ S).

(a) The exact solution set.
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(b) Subpaving approximation.

Figure 8.5: (Example 8.19) The exact solution set and its subpaving.

Efficiency of the branch & prune method depends on several factors. The choice how to split the box
is important, since we can split along various coordinates and to two or more sub-boxes, not necessar-
ily uniformly. More importantly, the overall performance is highly improved by consistency contractors
(step 4); they reduce boxes without omitting any feasible solution, and we discuss them in the following
sections.

Example 8.19. Consider the constraints

x2 + y2 ≤ 16, x2 + y2 ≥ 9

with the initial domain x, y ∈ [−5, 5] and precision ε = 0.25. Figure 8.5 illustrates the solution set and
its subpaving obtained by Algorithm 8.1. The red boxes are contained in the solution set Σ (boxes in S),
the yellow are not decidable or distinguishable (boxes in V), and the white ones contain no solution.
Figure 8.6 shows subpavings for three different precisions; the running time (computed in 2014) is for
the simple branch & prune method with no improvements and contractions discussed in the following
sections.

Example 8.20. Consider the constraints

(x− 1)2 + (y − 2)2 ≤ 1
7 ,

(x2 + y2 − 9)(13x− y2) ≥ 1
2 .

The solution set and its subpaving are illustrated in Figure 8.7. The inner part of the solution set is now
in yellow and the outer part in white.
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−4 −2 0 2 4

(a) ε = 1.0, time: 0.952 s. (b) ε = 0.5, time: 2.224 s. (c) ε = 0.125, time: 9.966 s.

Figure 8.6: (Example 8.19) Subpavings for different precisions.

(a) The exact solution set. (b) Subpaving approximation.

Figure 8.7: (Example 8.20) Exact solution set and its subpaving.

Notes and further reading. Instead of boxes, we can cover the solution set by other geometrical
objects, for instance, by polyhedral sets (Araya et al., 2012; Lebbah et al., 2005). They may be more
efficient by means of their number and accuracy, but one has to effectively evaluate the range of a
function, prune, branch and contract over polyhedral sets.

A more general constraint programming equipped with quantifiers was treated, e.g., in Ratschan
(2006), and implemented in RSolver by Ratschan et al. (2004).

8.2.1 Consistency and contractors

The branching in the branch & prune method, as described in Algorithm 8.1, may produce a lot of boxes
to be processed, which in turn cause high time complexity. To enhance efficiency of the method, we have
to postpone the splitting as far as possible and apply strong contractor techniques first. Contractors are
methods that reduce the domains of variables without omitting any feasible solution. A framework for con-
tractor programming was set up in Chabert and Jaulin (2009); Jaulin et al. (2001); Lebbah and Lhomme
(2002).

But how much we can or is possible to shrink the interval domains? The limit state we can achieve is
called consistency. There are several types of consistencies (Collavizza et al., 1999).

2B-consistency. A set of constraints ck(x), k = 1, . . . ,K, on a box x0 ∈ IRn is 2B-consistent if for
each k ∈ {1, . . . ,K} and each i ∈ {1, . . . , n} there are some x, x′ ∈ x0 such that xi = x0i , x

′
i = x0i , and

conditions ck(x) and ck(x′) are valid.
2B-consistency says that, looking at the constraints separately, we cannot shrink any domain without

omitting a feasible point.

Example 8.21. Consider a constraint x1 = x22 over x0 = ([1, 4], [−2, 2])T . This setting is 2B-consistent
even though, for instance, for x2 = 0 there is no corresponding x1 ∈ [1, 4] to solve the constraint. Thus,
2B-consistency slightly differs from arc-consistency studied in discrete constraint programming.
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3B-consistency. Checking constraints separately for a consistency may be very restrictive. 3B-consistency
tries to overcome this drawback by interconnecting the particular constraints in the following manner. A
set of constraints ck(x), k = 1, . . . ,K, on a box x0 ∈ IRn is 3B-consistent if for each i ∈ {1, . . . , n} there
are some x, x′ ∈ x0 such that xi = x0i , x′i = x0i , and conditions ck(x) and ck(x′), k = 1, . . . ,K, are valid.
Notice that after fixing a variable to the lower or upper limit, the program may become 2B-inconsistent,
but we care only about solvability.

In other words, a system is 3B-consistent if each facet of the box x contains at least one solution. It
is easy to see that 3B-consistency implies 2B-consistency.

Example 8.22. Consider a system x + y = 0, x − y = 0 on x, y ∈ [−1, 1]. We cannot shrink any input
interval if we process the constraints separately. Thus the domains are 2B-consistent. However, the unique
solution is (x, y) = (0, 0), so the initial domains are not 3B-consistent.

Consistency and contractors. Contractors can be viewed as techniques that try to approach the
desired kind of consistency. In the following sections, we describe several contractors. Most of them,
including constraint programming, box and hull consistency contractors approach 2B-consistency since
they process the constraints separately. In practice, it is a good habit to combine the contractors to
achieve the highest efficiency (Granvilliers, 2001).

8.2.2 Constraint propagation

Constraint propagation is a simple but efficient contractor, that is, it shrinks the interval domains with
omitting no solution (Hickey et al., 1998). It processes the constraints individually.

The basic idea is to express the particular variables by means of the others and by evaluation by
interval arithmetic a new interval domain is obtained. For example, consider variables x, y, z with interval
domains x,y,z ∈ IR. The interval x can be shrunk as follows, depending on the form of the constraint:

1. If the constraint reads x + y = z, then we contract x := x ∩ (z − y).

2. If the constraint reads xy = z, then we contract x := x ∩ (z/y).

3. If the constraint reads x2 = z, then we contract x := x ∩ [
√

mig(z),
√

mag(z)].

We handle other operations (subtraction, division, . . . ) and basic functions (exp, sin, . . . ) similarly. If the
function f is more complex, which is the typical case, then we recursively propagate the contractions to
the sub-expressions.

From this viewpoint, the Gauss–Seidel method for interval linear equations (Section 3.4.1) can be
viewed as a constraint propagation contracting the diagonal entries only.

Example 8.23. Consider the constraint

x + yz = 7, x ∈ [0, 3], y ∈ [3, 5], z ∈ [2, 4].

The tightening of the domains of variables proceeds as follows:

• Express x

x = 7 − yz ∈ 7 − [3, 5][2, 4] = [−13, 1].

Thus, the domain of x is [0, 3] ∩ [−13, 1] = [0, 1].

• Express y

y = (7 − x)/z ∈ (7 − [0, 1])/[2, 4] = [1.5, 3.5].

Thus, the domain of y is [3, 5] ∩ [1.5, 3.5] = [3, 3.5].

• Express z

z = (7 − x)/y ∈ (7 − [0, 1])/[3, 3.5] = [127 ,
7
3 ].

Thus, the domain of z is [2, 4] ∩ [127 ,
7
3 ] = [2, 73 ].
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Table 8.1: (Example 8.24)Domain reductions of particular iterations.

iteration x y z

1 [4, 4.2485] [3.4991, 4] [2.6243, 3]
2 [4, 4.1106] [3.6165, 4] [2.7124, 3]
3 [4, 4.0831] [3.6409, 4] [2.7306, 3]
4 [4, 4.0775] [3.6458, 4] [2.7344, 3]
5 [4, 4.0764] [3.6469, 4] [2.7351, 3]
...
∞ [4, 4.0761] [3.6471, 4] [2.7353, 3]

Even though the domains have shrunken, no further propagation makes sense because each variable
appears just once in the expression. The reason is simply that in the domain reduction for z we removed
values in z that are not in the image of x, so the shrunken domain for z makes no progress in reducing
the domain of x (Trombettoni et al., 2010).

Example 8.24. Consider the constraint

ex − xyz = 10, x ∈ x = [4, 5], y ∈ y = [3, 4], z ∈ z = [2, 3].

• Express the first occurrence of x

x = log(10 + xyz) ∈ log(10 + xyz) ∩ x = [3.5263, 4.2485] ∩ x = [4, 4.2485].

• Express y

y = (ex − 10)/(xz) ∈ (ex − 10)/(xz) ∩ y = [3.4991, 7.5001] ∩ y = [3.4991, 4].

• Express z

z = (ex − 10)/(xy) ∈ (ex − 10)/(xy) ∩ z = [2.6243, 4.2868] ∩ z = [2.6243, 3].

• Express the second occurrence of x

x = (ex − 10)/(yz) ∈ (ex − 10)/(yz) ∩ x = [3.7165, 6.5339] ∩ x = [4, 4.2485].

Now, we need not stop as double the appearance of x in the expression causes that the propagation is
not perfect and other iterations may further reduce the domain. In our example, the iterative propagation
converges to the domains shown in Table 8.1.

The above example shows that constraint propagation cannot effectively handle dependencies. Indeed,
this is a difficult problem, and the methods presented later can deal with them only partially.

In principle, the domain of parameters may be the whole space R. The following example show that
we can process even unbounded intervals.

Example 8.25. Let
x2 + y2 = 1, x, y ∈ R.

By a simple propagation,
x ∈

√

1 − y2 ⊆
√

1 − [0,∞) = [−1, 1],

whence also y ∈ [−1, 1]. Thus, both domains were reduced to [−1, 1] in one step.
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=

+ 7

x ∗

y z

[0, 3]

[3, 5] [2, 4]

[6, 20]

[6, 23] [7, 7]

=

+ 7

x ∗

y z

[0, 3] → [0, 1]

[3, 5] → [3, 3.5] [2, 4] → [2, 7/3]

[6, 20] → [6, 7]

[6, 23] → [7, 7] [7, 7]

Figure 8.8: (Example 8.23) Upward and downward propagation.

The expression tree. The constraint propagation is more useful to describe (and implement) by using
the expression tree. Figure 8.8 shows the tree for the constraint from Example 8.23. Each iteration can
be implemented as an upward and downward evaluation and domain reduction. In the upward phase, we
evaluate the expression by interval arithmetic. In the downward phase, we reduce the domains of variables
on the intermediate expressions.

8.2.3 Other contractors

First we describe box and hull consistency contractors according to Hansen and Walster (2004). Suppose
that the constraints have the form of equations fj(x) = 0, j = 1, . . . , J , and the initial domain is x0 ∈ IRn.
In principle, any inequality gℓ(x) ≤ 0 can be transformed to an equation by writing gℓ(x) + [0,∞] = 0.

Both contractors work coordinate by coordinate, so they can be easily parallelized.

Box consistency contractor. Box consistency was pioneered by Benhamou et al. (1994). Let i ∈
{1, . . . , n}, j ∈ {1, . . . , j∗} and define an interval-valued function

h(y) := fj(x
0
1, . . . ,x

0
i−1, y,x

0
i+1, . . . ,x

0
n).

We say that the domain x0
i of variable xi is box consistent with the jth constraint if

x0
i = �{xi ∈ x0

i ; 0 ∈ h(xi)}.

Provided h(y) overestimate the true range, box consistency is weaker than 2B-consistency.

To narrow the interval domain x0
i and approach the box consistency, we iteratively cutt off the left

part of the domain, and similarly for the right part of the domain. Define y0 := [x0i , x
0
i +α rad(x0

i )], where
0 ≤ α ≤ 2 is a parameter. A recommended choice of the parameter is to put α = 1

2 and dynamically
adjust according to the computation. The smaller α, the more effective is the consistency, but the smaller
the cuts are.

Now, we call the interval Newton method to shrink the interval y0. The interval Newton operator is

N(y) := y − h′(y)−1h(y),

where y ∈ y is arbitrarily chosen, and the shrinking step reads

y1 := y0 ∩N(y0).

If we reduce y0 to a sub-interval y∗, then the ith domain is narrowed to [y∗, x0i ]. If we reduce y0 to the
empty set, then the ith domain is shrunken to [x0i + α rad(x0i ), x

0
i ].
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Hull consistency contractor. As in the box consistency, we go through particular equations and for
each we fix all variables but one and define a function

h(y) := fj(x
0
1, . . . ,x

0
i−1, y,x

0
i+1, . . . ,x

0
n)

on y := x0
i . Now, the idea is to express h(y) as h(y) = h1(y) − h2(y), where h1(y) is an easily invertible

function. Then for any root y, we can write y = h−1
1 (h2(y)), which gives rise to the operator

C(y) := h−1
1 (h2(y)),

which does not omit any root in y. Hence we have a contracting

y1 := C(y) ∩ y.

The expansion h(y) = h1(y) − h2(y) is not unique and there are usually many ways to do it. It is hard
to choose the right one, however, when we find a suitable expansion, then the contractor works very well.

Example 8.26. Consider the constraint x4 +x−2 = 0 on x ∈ [−100, 100]. The good choice is h1(x) = x4

and h2(x) = 2 − x, since we derive x4 = 2 − x ∈ [−98, 100]. Due to non-negativity of the fourth power,
we get x4 ∈ [0, 100], and so x ∈ [−

√
10,

√
10] ⊆ [−3.17, 3.17].

Example 8.27. Let x2(2 + sin(πx)) ≤ 2 be a constraint with x ∈ [2,∞]. Derive x2 ≤ 2
2+sin(πx) ∈

[

2
3 , 2
]

,

whence x ∈ [−
√

2,
√

2]. Therefore there is no solution on x ∈ [2,∞].

Interval extensions. When constructing a contractor, we are free to employ any interval extension of
the functions involved.

For instance, consider a constraint f(x) ≤ c with a function f : R → R and c ∈ R. Let us have a mean
value form

f(x) ∈ f(a) + s(x− a),

where a ∈ x and s ∈ IR is a slope (Section 6.2). Suppose s > 0; the case s < 0 is dealt similarly. Relaxing
the constraint to

f(a) + s(x− a) ≤ c, s ∈ s, x ∈ x,

we easily express the variable x

x ≤ c− f(a)

s
+ a, s ∈ s, x ∈ x,

from which we derive a new upper bound on x

x ≤
{

c−f(a)
s + a if c ≤ f(a),

c−f(a)
s + a if c > f(a).

.

This approach was utilized in Ratz (2001) for contracting the domain in global optimization when an
upper bound c on the optimal value is known; see Section 8.3.

Another utilization of the mean value forms will be discussed in Section 9.4.2.

Linear combination. The above-mentioned methods process particular constraints separately, which is
often too restrictive. As illustrated by Example 8.28, a combination of constraints may be very productive.

Example 8.28 (Example 8.22 continued). Consider a system x+y = 0, x−y = 0 on x, y ∈ [−1, 1]. Since
it is 2B-consistent, we cannot narrow any interval when considering the equations individually. However,
summing up the equations, we get 2x = 0, from which we immediately have the solution x = y = 0.
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In general, it is a nontrivial problem to find a right linear combination. People use to precondition the
system f(x) = 0 by the matrix C ≈ ∇f(xc)−1, since the Jacobian matrix characterizes the tangents at xc

and preconditioning by its inverse transforms the tangents to be more-or-less parallel to the coordinate
system.

Remark 8.29. Consistency techniques enable to improve enclosures on the range of functions over
intervals, the problem studied in Chapter 6. Let f : Rn → R, x ∈ IRn and f(x) an enclosure to the range
f(x). Next, let a ⊆ f(x) be an inner approximation to the range of f . It is determined, for example, by
evaluating f at several points, and a is taken as their minimum and a as their maximum. To improve the
lower bound on the range, we consider the inequality f(x) ≤ a on x ∈ x. Consistency techniques may
narrow the domain intervals in x, which in turn leads to tighter evaluation of an enclosure. We proceed
analogously for the upper bound by employing f(x) ≥ a with x ∈ x.

Software. We list some of the free software for solving constraints. Some of them return a subpaving of
the solution set and enable its visualization.

• Alias (by Jean-Pierre Merlet, COPRIN team),
A C++ library for system solving, with Maple interface,
http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html

• Quimper (by Gill Chabert and Luc Jaulin),
written in an interval C++ library IBEX,
a language for interval modelling and handling constraints,
http://www.ibex-lib.org/

• RealPaver (by L. Granvilliers and F. Benhamou),
a C++ package for modeling and solving nonlinear and nonconvex constraint satisfaction problems,
http://pagesperso.lina.univ-nantes.fr/~granvilliers-l/realpaver/

• RSolver (by Stefan Ratschan),
solver for quantified constraints over the real numbers,
implemented in the programming language OCaml,
http://rsolver.sourceforge.net/

Notes and further reading. For the sake of propagation, it might be useful to consider some generalized
concepts of intervals, e.g., interval unions or discontinuous intervals; cf. Section 7.1.4. The motivation is
clear – consider the constraint

y = x2, x ∈ x = [−5, 5], y ∈ y = [4, 9].

A simple propagation reduces the domain x to [−3, 3], but, in essence, one can reduce the domain
further to the union of two intervals [−3,−2] ∪ [2, 3]. Unbounded, open and half-open intervals could be
incorporated, too. For example, the constraint

y = log(x), x ∈ x = (−∞,∞), y ∈ y = (−∞,∞)

allows the domain x to contract to (0,∞).
Among the many applications of constraint solving, let us mention workspace analysis in robotics

(Oetomo et al., 2009). The typical problems are to determine the range of end-effector workspace, inverse
kinematics, detection of singularities, or design of kinematic machines (Viegas et al., 2017).

8.3 Global optimization

Global optimization aims to find a global optimum (w.l.o.g. a global minimum) of an objective function
f on a set described by constraints. Most of the traditional optimization methods converge to a local
minimum (Bazaraa et al., 2006; Nocedal and Wright, 2006), which need not be the global one in general.

http://www-sop.inria.fr/coprin/logiciels/ALIAS/ALIAS-C++/ALIAS-C++.html
http://www.ibex-lib.org/
http://pagesperso.lina.univ-nantes.fr/~granvilliers-l/realpaver/
http://rsolver.sourceforge.net/
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Algorithm 8.2 Branch & bound algorithm for global optimization

1: L := {x0}, G := ∅, c∗ := ∞,
2: while L 6= ∅ do
3: choose x ∈ L and remove x from L,
4: contract x,
5: find a feasible point x ∈ x and update c∗,
6: if maxi x

∆
i > ε then

7: split x into sub-boxes and put them into L,
8: else
9: put x in G,

10: end if
11: end while
12: return List of boxes G enclosing all global minimizers and c∗ bounding f∗ from above.

Stochastic methods try to overcome this drawback by incorporating various heuristics, among others.
However, there is no guarantee that they produce a global minimum. In contrast, deterministic global
optimization methods are designed to achieve the global minima. Notice that there are problems when
computing the global minima is essential; see Floudas (2000); Hiriart-Urruty (2013); Pintér (1996) among
others.

Global optimization by interval analysis approach finds verified enclosures for all global minimizers
and for the optimal value. On the other hand, due to the curse of dimensionality, the procedure might be
time consuming.

The problem. Consider an optimization problem in the form

min f(x)

subject to

hj(x) = 0, j = 1, . . . , j∗,

gℓ(x) ≤ 0, ℓ = 1, . . . , ℓ∗,

x ∈ x0,

where x0 ∈ IRn is an initial box. In principle, it is also possible that x0 is the whole space Rn. We will
denote by f∗ the optimal value. We call the optimization problem unconstrained if there are no constraints
except for an initial box; thus j∗ = ℓ∗ = 0.

The algorithm. The basic branch & bound framework is depicted in Algorithm 8.2. Therein, L is a list
of actual boxes possibly containing the minimizers, and ε > 0 is a threshold for a minimal size of boxes.
The resulting list of boxes G encloses all global minimuzers. The value c∗ is a dynamically improving upper
bound of the optimal value f∗; the lower bound of f∗ is obtained as the lower bound of the objective
function on G. We terminate the procedure when L = ∅, but basically we can stop it any time and c∗ will
still provide an upper bound on f∗ and L ∪ G an enclosure of the global minimizers.

In the following sections, we concentrate on particular steps of the algorithm.

Contractions

The idea of contractions in step 4 of Algorithm 8.2 is to shrinken the current box x such that no global
minimum is removed (but feasible solutions can and often are removed). In principle, it can remove the
whole box x, in which case step 4 closes the current iteration of the while loop.

Basically, we can perform consistency contractions on the equations and inequalities constraints as
described in Section 8.2.1. Even though this contraction does not utilizes the objective function, it removes
the infeasible parts of the initial domain.
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Next, we can add the constraint f(x) ≤ c∗ and handle it in the same manner as the other constraints.
Thus, for instance, if we evaluate an enclosure f(x) to the range f(x) and find out that

f(x) > c∗, (8.4)

then x is removed. Nevertheless, the objective function has often different properties than the constraint
functions, so using different techniques makes sense. For instance, Mart́ınez et al. (2004) employed the
centered form of f(x) to contract x according to the constraint f(x) ≤ c∗.

Unconstrained case. Suppose that x lies in the interior of the feasible set, which is the case when
j∗ = 0 and gℓ(x) ≤ 0 ∀ℓ. There are two optimality conditions for x to be a local minimum: f has zero
partial derivatives at x, and f is locally convex in a neighbourhood of x. Since the gradient of a global
minimizer must be zero, we apply the interval Newton method or consistency contractors to the additional
constraint ∇f(x) = 0. This is one of the most powerful tools in the unconstrained case.

Yet another technique, called the nonconvexity test, can be performed. If f is differentiable but convex
in no point in x, then there is no local minimum in x and the box is removed. The function f is nonconvex
in x if the interval Hessian ∇2f(x) contains no positive semidefinite matrix. Positive semidefiniteness of
interval matrices was dealt with in Section 5.2.

Constrained case. In the constrained case, we can employ Fritz–John or Karush–Kuhn–Tucker opti-
mality conditions (Hansen and Walster, 2004). The former, which needs no constraint qualification, say
that for x to be a local minimum, there must exist u0 ∈ R, u ∈ Rj∗ and v ∈ Rℓ∗ such that

u0∇f(x) + uT∇h(x) + vT∇g(x) = 0,

v ≥ 0, h(x) = 0, g(x) ≤ 0, vT g(x) = 0,

(u0, u, v) 6= 0.

In particular, the nonlinear system

u0∇f(x) + uT∇h(x) + vT∇g(x) = 0, h(x) = 0, vℓgℓ(x) = 0 ∀ℓ, ‖(u0, u, v)‖ = 1

has a solution. It represents a system of n+ j∗ + ℓ∗ + 1 equations with respect to n+ j∗ + ℓ∗ + 1 variables
x, u, v and u0. The interval Newton method is then used to shrink the box x.

Karush–Kuhn–Tucker optimality conditions are stronger, but require additional constraint qualifica-
tion. We will present the version assuming that j∗ = 0, function gℓ(x) is convex for each ℓ and the so-called
Slater condition

∃x0 ∈ Rn : g(x0) < 0

is satisfied. Then for x to be a local minimum, there must exist v ∈ Rℓ∗ such that

∇f(x) + vT∇g(x) = 0,

v ≥ 0, g(x) ≤ 0, vT g(x) = 0.

Again, as a consequence, the square nonlinear system of size n + ℓ∗

∇f(x) + vT∇g(x) = 0, vℓgℓ(x) = 0 ∀ℓ

must have a solution.

Feasibility test. The purpose of a feasibility test is to find a feasible solution x and update the upper
bound c∗ ≥ f∗ on the optimal value by putting c∗ := min{c∗, f(x)}. In the unconstrained case, we take
x := xc. In the case when there are no equations in the constraints, i.e., j∗ = 0, then we take x := xc

provided g(xc) ≤ 0. In the general case, finding a feasible point is a more challenging issue.
A rigorous method to verify feasibility is due to Hansen and Walster (2004); Kearfott (1998). Suppose

j∗ < n, which is a typical situation. We fix n − j∗ components xi := xci so that the equation system
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x
xc

h(x) = 0

∇h(xc)

Figure 8.9: Feasibility test with one equation.

consists of j∗ equations and j∗ variables. We call the interval Newton method which hopefully finds a
tiny box y ⊆ x that is guaranteed to contain a feasible point. We then put c∗ := min{c∗, f(y)}.

Which components should be fixed? In the case of one equation, j∗ = 1, Figure 8.9 indicates that
it is convenient to fix those components that correspond to the smallest entries of |∇h1(x

c)|. If j∗ > 1,
then the recommended heuristic is the following: Transform the Jacobian matrix ∇h(xc) to a row echelon
form by using complete pivoting and fix the components corresponding to the right most columns. Recall
that the complete pivoting takes the largest (by absolute value) element in the matrix as the pivot by
considering not only row but also column interchanges.

Handling the boxes

Box selection. There are various strategies for a box selection:

• the oldest one;

• the one with the largest edge, i.e., for which maxi x
∆
i is maximal;

• the one with the smallest upper bound on the objective function, i.e., for which f(x) is minimal.

List ordering. The box ordering in the list L and a suitable data structures influence the overall perfor-
mance of the branch & bound method. Ratz (1994, 2001) recommends to store the boxes in nondecreasing
order with respect to f(x), and secondary in decreasing order with respect to the age of the boxes. When-
ever the upper bound c∗ is updated, the tail of the list is removed by (8.4). When an appropriate data
structure is used, the tail removal is done very efficiently.

Division directions. In step 7 of Algorithm 8.2, the box x is split into two or more sub-boxes. The
selection of a number of sub-boxes, the splitting coordinate and the position of splits highly influence the
overall performance of the algorithm. Nevertheless, it is not obvious which way is the best one. A simple
and popular rule is the circular choice of coordinate directions (Moore, 1979) combined with the bisection,
which splits the box into two parts uniformly. However, this need not be always a good strategy.

Example 8.30. Let f : R2 → R be defined as f(x) = x41 + 1000x2 − 2 on x = [−1, 1]2. It is easy to see
that division along the first coordinate x1 has very small effect on the resulting image compared to the
division along x2.

A priori rules. A coordinate k ∈ {1, . . . , n} to split along can be chosen according the following rules
(Floudas and Pardalos, 2009, Csendes: Interval Analysis: Subdivision Directions in Interval Branch and
Bound Methods, 1717–1720), (Csendes and Ratz, 1997)

(a) Take the widest edge of x, that is,

k := arg max
i=1,...,n

x∆i .

(b) (Walster, 1992) Choose a coordinate in which f varies mostly. We approximate it by the value

k := arg max
i=1,...,n

rad(f ′
xi

(x))x∆i .



164 Chapter 8. Constraint programming and global optimization

(c) (Ratz, 1992) It is similar to the previous one, but uses

k := arg max
i=1,...,n

mag(f ′
xi

(x))x∆i .

instead.

The numerical tests carried out by Csendes and Ratz (1997) indicate that rule (c) is a good choice.
According to the experiments by (Floudas and Pardalos, 2009, Ratschek & Rokne: Interval Global Op-
timization, 1739–1757), there is no best strategy for splitting, and it is reasonable to combine several of
them. Anyway, box selection and splitting strategy influence the overall performance of the algorithm as
well as the theoretical convergence properties.

A posteriori rules. Besides the above a priori rules, there are also the so-called a posteriori rules.
Provided the dimension is low, one can think of checking all the splitting coordinates and choosing the
most promising one. Denote x = x1(i) ∪ x2(i) the splitting of x along the i-th coordinate. Out of the
diverse heuristics that come into head, Csendes et al. (2000) showed a good behavior of these rules:

• k := arg mini=1,...,n rad(f(x1(i)) ∩ f(x2(i))),

• k := arg mini=1,...,n max{f(x1(i)), f (x2(i))}.

On average, the rules work well, but there are some examples of a strange behavior.

Example 8.31. Let f : R2 → R be defined as f(x) = 10x21 + x2 − 5 on x = [−1, 1]2. Division along the
first coordinate has no effect on the resulting value at the first level, that is, f(x) = f(x1(1)) = f(x1(2)).
This would force us to divide still along the second coordinate, which is obviously not the best strategy.

Despite these examples, practical experiences show that the overall average performance is more
influenced by the box selection rule than by the division directions. The position and the number of splits
are the least important, so the simple bisection is frequently used.

Other approaches were discussed in Csendes (2001); Nataraj and Sheela (2002); Ratschan (2002);
Ratschek and Rokne (1992); Trombettoni et al. (2011).

Convergence

The early works on convergence are Ratschek (1985); Moore and Ratschek (1988). Later, it was studied
by Csendes and Ratz (1997); Kearfott (2011), among others.

To state some convergence results, consider the simple unconstrained case

min f(x) subject to x ∈ x0.

Suppose that f(x) is continuously differentiable on an open superset of x0. Suppose that we can evaluate
it on intervals by using an inclusion isotonic interval extension f(x) satisfying

rad(f(xi)) → 0 for any sequence xi ∈ IRn, i = 1, . . . , such that ‖ rad(xi)‖ → 0. (8.5)

This is, of course, satisfied for the natural interval extension, the mean value and the slope forms.
Using rule (a), we can state strong convergence properties. The upper bound c∗ as well as the lower

bound minx∈L f(x) converge to the optimal value. If a box x does not contain any global minimizer, then
it is eliminated in a finite number of steps provided the threshold ε > 0 is small enough. Otherwise, under
general assumptions, L converge to the optimal solution set.

To prove it, denote by G∗ the set of all global minima, denote by Lk the list of boxes in iteration k,
and denote by Zk the union of boxes in Lk. We will also utilize the assumption that in each iteration k,
the upper bound c∗k ≥ f∗ is updated as

c∗k+1 = min{c∗k, f(xk)}, (8.6)

where xk ∈ xk is arbitrary.
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Theorem 8.32 (Ratschek, 1985). If assumption (8.5) is valid and division rule (a) is used, then c∗k → f∗

and minx∈Lk
f(x) → f∗ as k → ∞.

Proof. Let minx∈Lk
f(x) be attained for a box xk, and let xk ∈ xk be the value of this box used to update

the upper bound c∗k. Then c∗k ≤ f(xk). By rule (a), limk→∞ xk = limk→∞ xk, from which by using (8.5)
we derive

f∗ ≤ lim
k→∞

c∗k ≤ lim
k→∞

f(xk) = lim
k→∞

f(xk) ≤ f∗.

Therefore, the above inequalities hold as equations.

Theorem 8.33 (Moore and Ratschek, 1988). If assumptions (8.5) and (8.6) are valid and division rule
(a) is used, then dist(Zk,G∗) → 0 as k → ∞.

Proof. Denote Z := ∩∞
k=1Zk. We will show that G∗ = Z. The inclusion G∗ ⊆ Z follows from the fact that

Z∗ ⊆ Zk for every k = 1, . . . due to the inclusion property. To prove the converse inclusion, let x ∈ Zk

for every k = 1, . . . , and we want to show that x ∈ G∗. By the assumption, there are the corresponding

boxes xk, k = 1, . . . , such that x ∈ xk ∈ Lk. Since (xk)
∆ →k→∞ 0, we have f(xk) →k→∞ f(x).

We want to show that x ∈ G∗, that is, f(x) = f∗. Suppose to the contrary that f(x) > f∗. From
the proof of Theorem 8.32 we know that there is a sequence of upper bounds c∗k ≥ f∗, k = 1, . . . , such
that c∗k →k→∞ f∗. That is, there must be k such that f(xk) > c∗k. This means that xk must have been
removed at iteration k; a contradiction.

For rules (b)–(c), we can state the same convergence properties as long as the derivative f ′(x) satisfies
(8.5), and f(x) is as tight as the mean value form.

Example 8.34 (Csendes and Ratz, 1997). This example shows that the algorithm need not converge in
general when the division direction is not chosen appropriately. Let

f(x) = x1 + x22, x ∈ x = [0, 1]2.

The function has a unique minimizer in x, which is the point (0, 0)T . Using rule (b) for the division
direction, we see that always k = 2 is chosen since rad(f ′

x1
(x)) = 0 < rad(f ′

x2
(x)). Thus, all boxes are

divided along the second coordinate. As a consequence, the algorithm yields a list of boxes in the form
[0, 1] × xk

2 , and therefore it does not converge to the unique minimizer.

8.3.1 Lower bounds on the optimum

We have already noticed that in the contraction part of the branch & bound scheme it is important to
effectively calculate a tight enclosure f(x) to the range of f over a box x. In particular, the lower bound
f(x) is of interest. Thus, besides the techniques studied in Chapter 6, we concentrate more on the lower
bound now.

Lipschitz continuity approach. A lower bound can be easily obtained by utilizing Lipschitz continuity
of f . The function f is Lipschitz continuous on x if there is L > 0 such that |f(x)− f(y)| ≤ L‖x− y‖ for
every x, y ∈ x. Putting y := xc we get

f(x) ≥ f(xc) − L‖x− xc‖ ≥ f(xc) − L‖x∆‖.

Thus, we have

f(x) ≥ f(xc) − L‖x∆‖.
Nevertheless, it need not be easy to determine or approximate the Lipschitz constant L from above.

Lower bounds on the objective function can also be found by a linearization (Tawarmalani and Sahinidis,
2005), or by a convex underestimation, which is described in the sequel.
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Convex underestimators

Instead of computing a lower bound of f(x) on a box x, we can also estimate f(x) from below by a more
simple function g(x). To this end, we usually seek for a linear or, more generally, a convex function.

A convex underestimator of f(x) on x is a function g(x) that is convex and g(x) ≤ f(x) for every
x ∈ x. Determining the minimum of g(x) on x is then an easy task, and the minimum serves as a lower
bound to f(x).

Convex underestimator for bilinear terms. A convex underestimator can be computed along the
following lines. If f is a sum of simpler functions, then we process the individual terms separately. Linear
terms can be left out. Bilinear terms are approximated from below by the following linearization.

Proposition 8.35 (McCormick, 1976; Al-Khayyal and Falk, 1983). For every y ∈ y ∈ IR and z ∈ z ∈ IR
we have

yz ≥ max{yz + zy − yz, yz + zy − yz}. (8.7)

Moreover, it is the tightest convex underestimator of yz.

Proof. Write

yz ≥ yz − (y − y)(z − z) = yz + zy − yz,

yz ≥ yz − (y − y)(z − z) = yz + zy − yz.

It is easy to see that the first linear function yz + zy− yz touches the bilinear function yz at the left and
the bottom boundary of the rectangle y × z, that is, at the segments (y, z) − (y, z) and (y, z) − (y, z).
Similarly, the second linear function yz + zy − yz touches the bilinear function yz at the right and the
top boundary of the rectangle y × z. The tightest convex underestimator of yz can be expressed as a
pointwise maximum of all linear underestimators of yz. However, each linear underestimator of yz must
underestimate it on both triangles (y, z)−(y, z)−(y, z) and (y, z)−(y, z)−(y, z). The first linear function
in (8.7) touches the vertices of the first triangle and similarly for the second one. Therefore, each linear
underestimator has to lie below their maximum.

Thus, the bilinear term yz can be linearized by any of the two linear functions. By taking their
maximum, we have the tightest approximation.

Convex underestimator for general terms. To underestimate the general terms, suppose that f is
twice continuously differentiable and put g(x) := f(x) +

∑n
i=1 αi(xi − xi)(xi − xi), where αi, i = 1, . . . , n

are nonnegative parameters to determine. Then g(x) ≤ f(x) on x. Compactly, we write

g(x) = f(x) + (x− x)T diag(α)(x − x).

It is known that g(x) is convex as long as its Hessian ∇2g(x) = ∇2f(x)+2 diag(α) is positive semidefinite
for every x ∈ x. Thus, we have to determine the vector of parameters α such that the interval matrix
∇2f(x) + 2 diag(α) is positive semidefinite. To simplify it, all parameters are supposed to be equal,
β := α1 = · · · = αn. The interval matrix ∇2f(x) + 2βIn is positive semidefinite if and only if the smallest
eigenvalue is non-negative, or equivalently, if and only if the smallest eigenvalue of ∇2f(x) is greater than
or equal to −2β. So we can put

β := −1

2
λn(∇2f(x)).

Eigenvalues of (symmetric) interval matrices were discussed in Section 5.1, so we can utilize some of the
methods to compute either the eigenvalue exactly or its lower bound.

Example 8.36. Consider the function from Hlad́ık (2016a); Skjäl et al. (2012)

f(x1, x2) = (2x1 + x2 − 3)2 + (x1x2 − 1)2

on the box x = [0, 4]2. Figure 8.10 from Hlad́ık (2016a) illustrates the function and its convex underesti-
mator computed by the described method with α = (21, 24)T .
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Figure 8.10: (Example 8.36) The function f(x) and its convex underestimator.

The above described method for computing a convex underestimator of a general function was used in
the αBB algorithm (Akrotirianakis and Floudas, 2004; Androulakis et al., 1995; Floudas and Pardalos,
2009), which is a deterministic global optimization algorithm based on a branch & bound framework.

There are also other techniques to construct convex enclosures. One of them, a relaxation to interval
linear functions, will be discussed in Section 9.4.2.

Notes and further reading (Section 8.3).

The first approaches to deterministic global optimization include Moore (1966); Skelboe (1974), but a more
systematic study of global optimization using interval analysis dates about to Hansen (1980). The books
devoted to the interval approach to global optimization are, e.g., Floudas (2000); Floudas and Pardalos
(2009); Hansen and Walster (2004); Hendrix and Gazdag-Tóth (2010); Kearfott (1996a); Neumaier (2004);
Ratschek and Rokne (2007), and recent survey papers include Kearfott (2011). Eight global optimization
solvers were numerically compared in Neumaier et al. (2005). Due to the nature of the interval approach
to global optimization, a parallel computation is very appropriate. One of the early parallelization imple-
mentations is due to Henriksen and Madsen (1992); Madsen (1991).

Test data. A large set of constrained global optimization problems is collected in books Floudas and Pardalos
(1990); Floudas et al. (1999). Concerning journal papers, Ratz (2001) includes some smooth and also non-
smooth unconstrained examples. Internet databases of examples and benchmarks include

• Floudas et al. (1999) is supplemented by the web pages of test problems in GAMS modeling language
http://titan.princeton.edu/TestProblems/

• COCONUT benchmarks
more than 1000 benchmarks for global optimization and constraint satisfaction problems in AMPL,
GAMS and DAG format
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html

• Neumaier’s web page
many global optimization links
http://www.mat.univie.ac.at/~neum/glopt/test.html

• COPRIN examples
benchmark data for constraint satisfaction, optimization and robot-related problems
http://www-sop.inria.fr/teams/coprin/logiciels/ALIAS/Benches/benches.html

http://titan.princeton.edu/TestProblems/
http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/Benchmark.html
http://www.mat.univie.ac.at/~neum/glopt/test.html
http://www-sop.inria.fr/teams/coprin/logiciels/ALIAS/Benches/benches.html
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Software. Rigorous global optimization software include

• GlobSol (by R.B. Kearfott)
written in Fortran 95, open-source, there exist conversions from AMPL and GAMS representations,
https://interval.louisiana.edu/kearfott.html#software

• COCONUT Environment
open-source C++ classes
http://www.mat.univie.ac.at/~coconut/coconut-environment/

• GLOBAL (by T. Csendes)
for Matlab / Intlab, free for academic purposes
http://www.inf.u-szeged.hu/~csendes/linkek_en.html

• IBEX (by G. Chabert, B. Neveu, J. Ninin and others),
an open-source interval C++ library,
mainly for system solving and global optimization,
http://www.ibex-lib.org/

• PROFIL /BIAS (by O. Knüppel et al.)
free C++ class
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html

For other global optimization software links, see also

• C.A. Floudas (http://titan.princeton.edu/tools/)

• A. Neumaier (http://www.mat.univie.ac.at/~neum/glopt.html)

Global optimization solvers using interval computation, but not in a numerically rigorous way (do not
handle round-off errors)

• BARON (Branch-And-Reduce Optimization Navigator, by N.V. Sahinidis et al.)
commercial system, available under GAMS and AIMMS
http://archimedes.cheme.cmu.edu/?q=baron

• ANTIGONE (by R. Misener and C.A. Floudas)
deterministic global optimization of mixed-integer nonlinear programs,
available through GAMS and Princeton University
http://ares.tamu.edu/ANTIGONE/

• Couenne (Convex Over and Under ENvelopes for Nonlinear Estimatio, by P. Belotti)
open source branch & bound algorithm for solving mixed-integer nonlinear programming problems,
http://www.coin-or.org/Couenne/

Notice that the approaches described by Tawarmalani and Sahinidis (2005) and implemented in the
global optimization package BARON received the 2006 Beale-Orchard-Hays Prize awarded by Math-
ematical Programming Society. As written in the laudatio, “. . . BARON also incorporates techniques
from automatic differentiation, interval arithmetic, and other areas to yield an automatic, modular, and
relatively efficient solver for the very difficult area of global optimization.”

https://interval.louisiana.edu/kearfott.html#software
http://www.mat.univie.ac.at/~coconut/coconut-environment/
http://www.inf.u-szeged.hu/~csendes/linkek_en.html
http://www.ibex-lib.org/
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
http://titan.princeton.edu/tools/
http://www.mat.univie.ac.at/~neum/glopt.html
http://archimedes.cheme.cmu.edu/?q=baron
http://ares.tamu.edu/ANTIGONE/
http://www.coin-or.org/Couenne/
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Interval linear programming

This chapter is devoted to optimization problems with interval coefficients. We consider only linear ob-
jective function and linear constraints, which is called linear programming; the nonlinear models are out
of the main focus of this book.

The history of interval linear programming goes back to 1970’s; see Beeck (1978); Krawczyk (1975);
Machost (1970). Since then, it has been a steady increase in research and development of the discipline;
see survey papers Hlad́ık (2012a); Rohn (2006b).

Linear programming. Consider a linear programming (LP) problem

min cTx subject to Ax = b, x ≥ 0, (9.1)

where c ∈ Rn is the objective vector, A ∈ Rm×n is the constraint matrix and b ∈ Rm the corresponding
right-hand side. An LP problem can also be expressed in the form

min cTx subject to Ax ≤ b (9.2)

or in the form

min cTx subject to Ax ≤ b, x ≥ 0. (9.3)

All these forms are equivalent, so usually only one of them is considered as a canonical form. As we will
see later, this is not the case when the coefficients are interval-valued. The particular forms are no mnore
equivalent and we have to study them individually. However, for the sake of simplicity of exposition, we
consider (9.1) the basic form, and the distinctions are pointed out.

Interval linear programming. Let A ∈ IRm×n, b ∈ IRm and c ∈ IRn. An interval LP problem is the
family of LP problems (9.1) with A ∈ A, b ∈ b and c ∈ c. Analogously for (9.2) and (9.3). In short, we
write it as

min cTx subject to Ax = b, x ≥ 0. (9.4)

By a realization, we mean a particular selection of the interval values, that is, an arbitrary LP problem
with input data A ∈ A, b ∈ b and c ∈ c.

In contrast to the real LP, there is no natural definition of an optimal value or an optimal solution.
Indeed, we do not define what is an optimal value and an optimal solution.

We do not solve interval LP problems at all!

The purpose of interval linear programming is to study effects of variations of the coefficients in their
interval domains, and we are interested how the variations influence the optimal value and optimal
solutions. And not only that; we also want to know if there are some characteristic stable under the data
variations. We ask questions such as: Is there a basis optimal for each realization of intervals? Does there
exists an optimum for each realization? Is the LP problem bounded for each realization? etc.

In the next sections, we will address some of these questions. We will heavily make use of the theory
and methods of interval linear systems (Chapters 3–4).
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9.1 Optimal value range

The optimal value function belongs to the most studied problems in interval LP. Denote by f(A, b, c)
the optimal value of (9.1). By convention, we define f(A, b, c) = −∞ if the problem is unbounded and
f(A, b, c) = ∞ if the problem is infeasible.

In accordance with the definition (2.4), the range of optimal values is defined as

f(A, b, c) = {f(A, b, c); (A, b, c) ∈ (A, b, c)}.

The best case and the worst case optimal values are the, respectively, the minimum and maximum of the
range,

f := min f(A, b, c) subject to (A, b, c) ∈ (A, b, c),

f := max f(A, b, c) subject to (A, b, c) ∈ (A, b, c).

The optimal value f(A, b, c) of any realization then satisfies f(A, b, c) ∈ [f , f ].1)

The best case optimal value f is efficiently computable by solving one suitable linear program. Its
formulation was stated in the early papers Beeck (1978); Machost (1970); Rohn (1976).

Theorem 9.1. We have

f = min cTx subject to Ax ≤ b, −Ax ≤ −b, x ≥ 0. (9.5)

Proof. Using Corollary 3.7, we can write

f = min cTx subject to Ax = b, x ≥ 0, (A, b, c) ∈ (A, b, c)

= min cTx subject to Ax = b, x ≥ 0, (A, b) ∈ (A, b)

= min cTx subject to Ax ≤ b, −Ax ≤ −b, x ≥ 0.

In contrast to f , computation the worst case optimal value f is more difficult. Below, we present a
reduction to 2m LP realizations, so the complexity grows exponentially w.r.t. the number of equations.

Theorem 9.2 (Rohn, 1984). We have

f = max
s∈{±1}m

f(As,e, bs, c). (9.6)

Proof. “≥” This inequality is obvious since the right-hand side takes the maximum of optimal values of
2m instances of the ILP problem.

“≤” Let A ∈ A, b ∈ b and c ∈ c be arbitrary. It is sufficient to show that f(A, b, c) ≤ α, where

α := max
s∈{±1}m

f(As,e, bs, c).

If f(A, b, c) = −∞, then the inequality obviously holds. If f(A, b, c) = ∞, then the corresponding LP
problem is infeasible. Thus, the interval system Ax = b, x ≥ 0 is not strongly solvable. By Theorem 4.18,
there is s ∈ {±1}m such that the system

As,ex = bs, x ≥ 0 (9.7)

is unsolvable, whence α = ∞.

It remains to analyse the case with f(A, b, c) finite. Let y∗ be an optimal solution of the dual problem

max bT y subject to AT y ≤ c. (9.8)

1)Herein, we allow unbounded intervals such as [2,∞] or [−∞, 5], but we believe no confusion emerge.
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By the duality theorem (Theorem 1.32), we have f(A, b, c) = bT y∗. Denote s∗ := sgn(y∗). Since by
Proposition 2.11

bT y∗ ≤ (bc)T y∗ + (b∆)T |y∗| = (bc + diag(s∗)b∆)T y∗ = bTs∗y
∗,

(As∗,e)
T y∗ = (Ac − diag(s∗)A∆)T y∗ = (Ac)T y∗ − (A∆)T |y∗| ≤ AT y∗ ≤ c ≤ c,

the optimal value of (9.8) is less then or equal to the optimal value of the LP problem

max bTs∗y subject to (As∗,e)
T y ≤ c.

This is because y∗ remains feasible and has not less objective value. Moreover, by the duality theorem,
the optimal value of this LP problem is f(As∗,e, bs∗ , c). Therefore

f(A, b, c) = bT y∗ ≤ f(As∗,e, bs∗ , c) ≤ α.

The exponential number of instances in the above reduction is justified by intractability of computa-
tion f . NP-hardness was proved in Rohn (1995, 1997, 2006b) and strong NP-hardness in (Gabrel et al.,
2008, 2010).

Theorem 9.3. It is co-NP-hard to check if f < ∞. This is true even for problems with A and c real.

Proof. We first observe that condition f < ∞ is equivalent to strong feasibility of the constraints; the
realizations addressed in Theorem 9.2 are the same as the realizations from Theorem 4.18. Now, by
Theorem 4.26, checking strong solvability of the interval linear system Ax = b, x ≥ 0 is co-NP-hard.
Therefore, deciding whether the interval LP problem

min 0Tx subject to Ax = b, x ≥ 0

has all optimal values finite (and zero) is co-NP-hard, too.

The value f need not be attained for a particular realization provided f = −∞; see Example 9.4
below. However, if f > −∞, then it is always attained. In this case, it is easy to construct a realization
(A, b, c) ∈ (A, b, c) such that f(A, b, c) = f . Basically, one can proceed as in the proof of Proposition 3.3.

In contrast, the worst case optimal value f is always attained. By Theorem 9.2, it is attained for the
realization (A, b, c) = (As,e, bs, c), where s ∈ {±1}m.

Example 9.4 (Rohn, 2006b). Consider the interval LP problem

f(a) = min −x subject to ax = 1, x ≥ 0,

where a ∈ a = [0, 1]. For a > 0, the optimum is x = 1/a and the optimal value f(a) = −1/a. For a = 0,
the problem is infeasible. Thus, f = −∞, f = ∞ and the set of optimal values is f(a) = (−∞,−1]∪{∞}.

While f is attained for a = 0, the value f is attained for no a ∈ a.

Example 9.5 (modification of the Bereanu example, see Beeck, 1978). Consider the interval LP problem

f(a) = min − x subject to x ≤ 1, ax ≤ 0, x ≥ 0.

where a ∈ a = [−1, 1]. For a > 0, the optimum is x = 0 and the optimal value f(a) = 0. For a ≤ 0, the
optimum is x = 1 and the optimal value f(a) = −1. Thus, f = −1, f = 0 and the set of optimal values is
f(a) = {−1} ∪ {0}. Therefore, there can be gaps in the set f(a) and not all values in f(a) are attained
for particular realizations, even when both the best and worst case optimal values are finite.

The above example also illustrates that the optimal value function f(a) need not be continuous.
Continuity can be achieved under certain assumptions, e.g., in the basis stable case; see Section 9.3.
Another, quite general, condition was stated in Mostafaee et al. (2016).
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Inequality constrained LP form. Consider an interval LP problem in the form (9.2),

min cTx subject to Ax ≤ b.

Now, the situation is the opposite. The best case optimal value f is hard to compute, but the worst case

optimal value f is calculated by solving a certain LP problem.

Theorem 9.6. We have

f = min (cc)Tx− (c∆)T |x| subject to Acx−A∆|x| ≤ b (9.9)

= min
s∈{±1}n

f
(

Ae,s, b, c−s

)

, (9.10)

f = min cTx1 − cTx2 subject to Ax1 −Ax2 ≤ b, x1, x2 ≥ 0. (9.11)

Proof. “Case f .” Using Gerlach’s Theorem 4.1, we can write

f = min cTx subject to Ax ≤ b, (A, b, c) ∈ (A, b, c)

= min
(

min
c∈c

cTx
)

subject to Ax ≤ b, (A, b) ∈ (A, b)

= min (cc)Tx− (c∆)T |x| subject to Acx−A∆|x| ≤ b.

The formula (9.10) is derived by using the orthant-by-orthant decomposition approach. For s ∈ {±1}n,
each vector lying in the corresponding orthant diag(s)x ≥ 0 satisfies |x| = diag(s)x. Thus, we can write

f = min (cc)Tx− (c∆)T |x| subject to Acx−A∆|x| ≤ b

= min
s∈{±1}n

min (cc)Tx− (c∆)T |x| subject to Acx−A∆|x| ≤ b, diag(s)x ≥ 0

= min
s∈{±1}n

min (cc)Tx− (c∆)T diag(s)x subject to Acx−A∆ diag(s)x ≤ b, diag(s)x ≥ 0

= min
s∈{±1}n

min cT−sx subject to Ae,sx ≤ b, diag(s)x ≥ 0

= min
s∈{±1}n

f
(

Ae,s, b, c−s

)

.

Notice that we can leave out the constraint diag(s)x ≥ 0 in the above derivation for the same reason as
mentioned Remark 3.10.

“Case f .” If the interval system Ax ≤ b is not strongly feasible, then (9.11) is valid simply because
both sides are equal to +∞; the constraints in (9.11) are those that appear in Theorem 4.28.

Hence we can assume now that the interval system Ax ≤ b is strongly feasible. By the duality theory
in linear programming, we can replace the LP problem by its dual. Proceeding then similarly as in
Theorem 9.1,

f = max f(A, b, c) subject to (A, b, c) ∈ (A, b, c)

= max bT y subject to AT y = c, y ≤ 0, (A, b, c) ∈ (A, b, c)

= max bT y subject to AT y = c, y ≤ 0, (A, c) ∈ (A, c)

= max bT y subject to A
T
y ≤ c, −AT y ≤ −c, y ≤ 0

= min cTx1 − cTx2 subject to Ax1 −Ax2 ≤ b, x1, x2 ≥ 0.

The value f can be computed by solving the nonconvex and nonsmooth optimization problem (9.9).
The alternative formula (9.10) reduces the problem to 2n LP realizations, so it is exponential w.r.t. the
number of variables. Since the constraints in (9.9) characterize the set of weak solutions of Ax ≤ b, we
immediately get from Theorem 4.4 the NP-hardness of computing f . The result is true even for problems
with A and c real (Gabrel et al., 2008, 2010; Rohn, 1995, 1997).

Theorem 9.7. It is NP-hard to check if f < ∞.
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Inequality constrained LP form with nonnegativity. Eventually, we consider an interval LP prob-
lem in the form (9.3),

min cTx subject to Ax ≤ b, x ≥ 0.

From the point of view of computing the range of optimal values, this is the most easy case. By direct
inspection, both the best and worst case optimal values are attained for obvious realizations.

Theorem 9.8 (Vajda, 1961). We have f = f(A, b, c) and f = f(A, b, c).

Notes and further reading. One can think of a general interval LP problem involving equations and
inequalities, and involving both free and nonnegative variables. That is, an LP problem constrained by
a system (4.3). The formulae for the optimal value range of such a general model were derived in Král
(2020). The general case was also presented by Chinneck and Ramadan (2000) in a different fashion.

Since f and f are hard to compute in general, it makes sense to approximate these values. Various
lower and upper bounds were proposed in Hlad́ık (2014c); Mohammadi and Gentili (2019).

If we are focused on feasible instances of an interval LP problem (typically in transportation problems),
then we wish to find the worst case finite optimal value instead of the worst case optimal value (which
might be +∞ due to infeasibility). This issue was addressed in Hlad́ık (2018b) and for the interval
transportation problem in Garajová et al. (2020); Garajová and Rada (2021).

Duality in interval linear programming was investigated by Novotná et al. (2020), among others.

9.2 The optimal solution set

Denote by S(A, b, c) the set of optimal solutions of an LP realization (A, b, c) ∈ (A, b, c). Then the optimal
solution set is defined

S :=
⋃

A∈A, b∈b, c∈c
S(A, b, c).

That is, the optimal solution set comprises all optima of all realizations. Many questions related to S are
hard, and handling this set is one of the most challenging issues in interval linear programming.

In general, S can be nonconvex and even disconnected.

Example 9.9 (Example 9.5 continued). Consider again the interval LP problem

f(a) = min − x subject to x ≤ 1, ax ≤ 0, x ≥ 0.

where a ∈ a = [−1, 1]. For a > 0, the optimum is x = 0. For a ≤ 0, the optimum is x = 1. Therefore, the
optimal solutions set consists of two isolated points, S = {0} ∪ {1}.

The optimal solution set S has the form of a convex polyhedron and is easy to describe only in special
situations. One of such situations is basis stability, discussed in Section 9.3.

In the following two paragraphs, we present two approaches to characterize S. Both of them also
provide a method to find an enclosure. Computing the interval hull �S exactly, however, is a strongly
NP-hard problem, even of intervals are situated in the vector b only (Garajová and Hlad́ık, 2019). It is
also NP-hard to check if a given point x ∈ Rn belongs to S (Rada et al., 2019).

Characterization by duality. In order to characterize the optimal solution set, we make use of the
optimality conditions in linear programming. Throughout this section, we consider the interval LP problem
in the form (9.4).

Theorem 9.10. The optimal solution set S is characterized as the solution set of parametric interval
system (more precisely, its projection to x-variables)

Ax = b, x ≥ 0, AT y ≤ c, cTx = bT y, (A, b, c) ∈ (A, b, c).
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Proof. Let (A, b, c) ∈ (A, b, c). Then x ∈ Rn is optimal for the corresponding realization if and only if
there is y ∈ Rm such that

Ax = b, x ≥ 0, AT y ≤ c, cTx = bT y.

This is a well known optimality condition, claiming that x is a feasible primal solution, y is a feasible
dual solution, and the primal and dual objectives are equal.

Parametric interval systems were addressed in Section 3.9, and they are hard to deal with. A basic
way to tackle them is to relax dependencies and reduce the system to an ordinary interval linear system

Ax = b, x ≥ 0, AT y ≤ c, cTx = bT y.

This is still computationally intractable problem, but the theory from Section 4.3 enables to characterize
the solution set and provides tools to handle it if the dimension is small. In particular, Theorem 4.13
implies that S lies in the set described by the system

Ax ≤ b, −Ax ≤ −b, x ≥ 0,

(Ac)T y − (A∆)T |y| ≤ c,

|(cc)Tx− (bc)T y| ≤ (c∆)Tx + (b∆)T |y|.

Characterization by complementarity. Another method to characterize S and to compute its ap-
proximation is based on optimality conditions involving complementarity (Garajová and Hlad́ık, 2019).
A vector x ∈ Rn is optimal if there exists y ∈ Rm such that

Ax = b, x ≥ 0, AT y ≤ c, xT (c−AT y) = 0,

This gives rise to the following charactrization of S by means of a parametric interval system.

Theorem 9.11. The optimal solution set S is characterized as the solution set of parametric interval
system (more precisely, its projection to x-variables)

Ax = b, x ≥ 0, AT y ≤ c, xT (c−AT y) = 0, (A, b, c) ∈ (A, b, c). (9.12)

The complementary condition xT (c−AT y) = 0 means that for every i ∈ {1, . . . , n} we have xi = 0 or
(c−AT y)i = 0. Let i ⊆ {1, . . . , n} be the set of indices for which the former is true and let J :− {1, . . . , n}\I
be its complement. Then (9.12) reduced to the parametric interval system

AIxI = b, xI ≥ 0, (AJ)T y ≤ cJ , (AI)T y = cI , (A, b, c) ∈ (A, b, c). (9.13)

The obvious drawback of this approach is that it is explicitly exponential as there are 2n possibilities
for I. On the other hand, system (9.13) is less affected by dependencies. Indeed, only matrix AI occurs
twice there. Thus, the relaxation

AIxI = b, xI ≥ 0, (AJ )T y ≤ cJ , (AI)T y = cI .

is supposed to produce minor overestimation. Moreover, this interval system can be spit to two indepen-
dent sub-systems

AIxI = b, xI ≥ 0

and

(AJ)T y ≤ cJ , (AI)T y = cI .

If A is real (its radius is zero), then there are no dependencies in (9.13) and the relaxation produces no
overestimation.
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Notes and further reading. Garajová and Hlad́ık (2019) analysed topological and geometric prop-
erties of the optimal solution set S, including closedness, polyhedrality, convexity, connectedness and
boundedness. Hlad́ık (2012c) proposed a contractor for S, that is, an iterative method to make an en-
closure of S tighter. Hlad́ık (2020b); Jansson and Rump (1991) studied an inner approximation of the
optimal solution set S.

9.3 Basis stability

Basis stability refers to the situation, where there is a basis that is optimal for each realization. If this
situation happens, many problems become much easier to solve. Throughout this section, we consider the
interval LP problem (9.4).

Basis feasibility and optimality. Consider a fixed LP realization (A, b, c) ∈ (A, b, c). Recall that a
basis is an index set B ⊆ {1, . . . , n} such that AB is nonsingular, where AB stands for the restriction of
A to the columns indexed by B. Analogously, N := {1, . . . , n} \B denotes the nonbasic variables.

A basis B is optimal if and only if three conditions hold at once

(regularity) AB is nonsingular, (9.14a)

(feasibility) A−1
B b ≥ 0, (9.14b)

(optimality) AT
N (AT

B)−1cB ≤ cN . (9.14c)

The solution associated to a feasible basis B then has the form xB = A−1
B b and xN = 0.

Basis stability. We say that a basis B is stable if it is optimal for each realization (A, b, c) ∈ (A, b, c).
In order to verify stability of B, we need to check if conditions (9.14) are satisfied for each realization.

Checking for stability of a given basis is known to be a co-NP-hard problem (Hlad́ık, 2014a). Below,
we present a characterization of basis stability via the three condition, and we also show some simple
sufficient tests.

Regularity. Condition (9.14a) is satisfied for each realization if and only if the interval matrix AB is
regular. Regularity was discussed in Section 3.6. Hoewever, the methods checking for conditions (9.14b)–
(9.14c) usually verify regularity of AB implicitly, so there is no need to do it explicitly.

Feasibility. Condition (9.14b) is satisfied for each realization if and only if the interval system

ABx = b, x ≥ 0

is strongly solvable. This can be verified by means of Theorem 4.18.
An alternative way is to compute the solution set of the interval system of linear equations ABx = b

and check it lies in the nonnegative orthant. This approach has the benefit of a simple sufficient condition:
Compute x ∈ IRn, an enclosure to the solution set of ABx = b, for which we know many methods from
Sections 3.3–3.5, and then check if x ≥ 0.

Optimality. To check condition (9.14c), it is convenient to substitute y := (AT
B)−1cB . Now, (9.14c) is

satisfied for each realization if and only if the interval system

AT
Ny ≤ cN , AT

By = cB

is strongly solvable. Herein, we can again employ techniques of strong solvability developed in Section 4.4.
A computationally cheaper sufficient condition works as follows. Compute y ∈ IRn, an enclosure to

the solution set of AT
By = cB and then check if

sup(AT
Ny) ≤ cN ,

where the left-hand side is evaluated by interval arithmetic.
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Consequences of basis stability. Under basis stability, we can easily determine the optimal solution
set and the optimal value range. Moreover, the optimal value function reads f(A, b, c) = cTBA

−1
B b, so it is

continuous on (A, b, c) ∈ (A, b, c). As a consequence, [f, f ] = f(A, b, c), that is, each value in the interval

[f , f ] is an optimal value f(A, b, c) of some realization, and there are no gaps in the optimal value range.

Theorem 9.12 (Beeck, 1978). If basis B is stable, then each solution of

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, xN = 0. (9.15)

belongs to S. Conversely, each LP realization has at least one optimal solution satisfying (9.15).

Proof. Since B is stable, the vector with components xB = A−1
B b and xN = 0 is optimal for each realization

(A, b, c) ∈ (A, b, c). Thus, the set in question is defined as the solution set of the interval system

ABxB = b, xB ≥ 0, xN = 0.

According to Corollary 3.7, the solution set is described by (9.15).

The reason that (9.15) does not describe the whole optimal solution set S is that some instances might
be degenerate and there can be more optimal bases and optimal solutions even for one degenerate LP
problem. To enforce that (9.15) characterizes S exactly, strict inequalities must be fulfilled in conditions
(9.14b)–(9.14c).

Theorem 9.13 (Beeck, 1978). If basis B is stable, then

f = min cTBxB subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0, (9.16a)

f = max cTBxB subject to ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0. (9.16b)

Proof. In view of Theorem 9.12, it is sufficient to find the minimal and maximal values of the objective
function on the set described by (9.15). Due to nonnegativity of variables, we take the objective vector c
for minimization and c for maximization.

Notes and further reading. The conditions for checking basis stability (and nondegenerate basis
stability) were proposed in Końıčková (2001); Krawczyk (1975). Characterization of basis stability by a
reduction to certain (exponentially many) instances was developed in Rohn (1993d).

Král (2020) extended basis stability to the generally constrained interval LP problems. Based on
stability of complementarity in the Karush–Kuhn–Tucker conditions, Oelschlägel and Süße (1980); Lange
(2020) extended basis stability to interval convex programming problems.

9.4 Applications

Interval linear programming has been utilized in many real-world applications such as in economics (e.g.,
the portfolio selection problem), project management, product and process scheduling, environmental
management and planning, solid waste management planning, structural optimization, chemical and
metallurgical process design, statistics and data analysis, . . . There are simply too many to mention them
all. The aim of this section how interval linear programming influences other disciplines and how it was
utilized there.

We begin, however, with an illustration of interval linear programming on a diet problem.

Example 9.14 (Stigler’s nutrition model). The nutrition problem is the classical problem, in which we
seek for a combination of n different types of food such that m nutritional demands are satisfied and the
overall cost in minimized. It is formulated as an LP problem

min cTx subject to Ax ≥ b, x ≥ 0.

where xj is the number of units of food j to be consumed, bi is the required minimal amount of nutrient i,
cj is the price per unit of food j, and aij is the amount of nutrient i contained in one unit of food j.
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calories protein calcium iron vitamin-a vitamin-b1 vitamin-b2 niacin vitamin-c
(1000) (g) (g) (mg) (1000iu) (mg) (mg) (mg) (mg)

wheat 44.7 1411 2.0 365 55.4 33.3 441
cornmeal 36 897 1.7 99 30.9 17.4 7.9 106

canned milk 8.4 422 15.1 9 26 3 23.5 11 60
margarine 20.6 17 .6 6 55.8 .2
cheese 7.4 448 16.4 19 28.1 .8 10.3 4

peanut-b 15.7 661 1 48 9.6 8.1 471
lard 41.7 .2 .5 5
liver 2.2 333 .2 139 169.2 6.4 50.8 316 525

pork roast 4.4 249 .3 37 18.2 3.6 79
salmon 5.8 705 6.8 45 3.5 1 4.9 209

green beans 2.4 138 3.7 80 69 4.3 5.8 37 862
cabbage 2.6 125 4 36 7.2 9 4.5 26 5369
onions 5.8 166 3.8 59 16.6 4.7 5.9 21 1184
potatoes 14.3 336 1.8 118 6.7 29.4 7.1 198 2522
spinach 1.1 106 138 918.4 5.7 13.8 33 2755
sweet-pot 9.6 138 2.7 54 290.7 8.4 5.4 83 1912
peaches 8.5 87 1.7 173 86.8 1.2 4.3 55 57
prunes 12.8 99 2.5 154 85.7 3.9 4.3 65 257

lima beans 17.4 1055 3.7 459 5.1 26.9 38.2 93
navy beans 26.9 1691 11.4 792 38.4 24.6 217

demand 3 70 .8 12 5 1.8 2.7 18 75

Table 9.1: (Example 9.14) Nutritive value of foods (per dollar spent) and the nutritional demand b.

For concreteness, consider Stigler’s nutrition model (Dantzig, 1963). The problem involves m = 9
nutrients and n = 20 types of food. Nutritive values of foods (i.e., the components of matrix A) are
displayed in Table 9.1. The entries in A are normalized such that they give nutritive values of foods per
dollar spent. This means that the objective vector is c = eT = (1, . . . , 1)T .

Since the amount of nutrients in foods is not fixed and hardly known exactly, it is reasonable to
assume that the quantities are obtained with a certain accuracy. Suppose first that the entries aij are
known with 10% accuracy. That is, A has interval entries aij = [aij − 0.1|aij |, aij + 0.1|aij |]. Due to the
structure of the LP problem, the optimal value range is computed efficiently by means of Theorem 4.2
and we get [f , f ] = [0.09878, 0.12074].

Checking the conditions for basis stability, we observe that the problem is not basis stable. In spite
of this, we can compute an interval enclosure of the optimal solution set S by means of the interval
system based on the duality characterization. Using the contractor method from Hlad́ık (2012c) to make
it tighter, we obtain the enclosure

(

[0, 0.0734], [0, 0.0438], [0, 0.0576], [0, 0.0283], [0, 0.0535],

[0, 0.0315], [0, 0.0339], [0, 0.0300], [0, 0.0246], [0, 0.0337],

[0, 0.0358], [0, 0.0387], [0, 0.0396], [0, 0.0429], [0, 0.0370],

[0, 0.0443], [0, 0.0290], [0, 0.0330], [0, 0.0472], [0, 0.1057]
)T

,

which is still somewhat overestimated, but we computed it in polynomial time.

Second, suppose that the entries aij are known with 1% accuracy. The optimal value ranges in the
interval [f , f ] = [0.10758, 0.10976]. Since the intervals in A are narrow enough, the problem becomes
basis stable and the stable optimal basis is B = (1, 8, 12, 15, 20). Therefore the solution set has a simple
description and we easily determine its interval hull,

x1 = [0.0282, 0.0309], x8 = [0.0007, 0.0031], x12 = [0.0110, 0.0114],

x15 = [0.0047, 0.0053], x20 = [0.0600, 0.0621];

the other components are zero.
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In Section 9.4.1–9.4.3, we will describe several areas of applications of interval linear programming.
Beside those, we also briefly mention some other important problems, where interval LP techniques were
utilized:

• Based on the theory of interval linear programming, Rohn (1989b, 2012b) introduced a novel kind
of a condition number of real-valued linear programs.

• Rounding errors may (and do) influence the results of calculations on computers. Thus, when solving
real-valued LP problems on computer, the results are not completely reliable. Interval techniques
are suitable to make the calculations numerically rigorous. The goal of verification is to produce
numerically guaranteed bounds for the true results. We discuss this topic more in detail in Sec-
tion 10.1.

• Mohammadi and Gentili (2021) introduced the so-called outcome range problem. For an interval
LP problem, an outcome function is an additional objective function of interest. Even though this
model might seem to be similar to mutliobjective or bilevel programming, it is not the same. The
authors applied the model in healthcare access measurement, analysing the primary care service for
children in the state of Mississippi.

9.4.1 Game theory

Zero-sum matrix games. Game theory studies interactions and strategies of competing players (von Neumann and
2007). The most simple model of non-cooperative game theory is the two-person zero-sum matrix game.
It is represented by a matrix A ∈ Rm×n. If player I chooses (pure) strategy i and player II chooses j, then
the value of aij gives the payoff of player I and −aij gives the payoff of player II. We can without loss of
generality, assume that A ≥ 0 since otherwise we can shift aij → aij + α by a sufficiently large constant
α.

It turned out that, besides pure strategies, it is essential for the players to play mixed strategies, which
are probability distributions on pure strategies. A mixed strategy for player I is thus defined as any vector
x ∈ Rm such that x ≥ 0 and eTx = 1, and similarly for player II. If player I chooses mixed strategy x
and player II mixed strategy y, then the expected payoffs of players I and II are xTAy and −xTAy,
respectively.

What is a solution of a game? A common concept is a Nash equilibrium, which is a pair of mixed
strategies (x̂, ŷ) such that

x̂TAŷ ≥ xTAŷ, ∀x ≥ 0, eTx = 1,

x̂TAŷ ≤ x̂TAy, ∀y ≥ 0, eT y = 1.

In other words, Nash equilibrium is such a situation, in which no player can gain more by changing his
strategy.

It is an important fact that (at least one) Nash equilibrium always exists. Nash equilibria can be
computed by means linear programming. Consider an LP problem

max u subject to ATx ≥ eu, eTx = 1, x ≥ 0,

and its dual

min v subject to Ay ≤ ev, eT y = 1, y ≥ 0.

Let (x̂, û) and (ŷ, v̂) be their optimal solutions, respectively. Then (x̂, ŷ) with a Nash equilibrium. Con-
versely, every Nash equilibrium can be expressed in this way for some optimal solutions (x̂, û) and (ŷ, v̂).
The value of the game is the quantity w(A) := û = v̂, which represents the expected payoff of player I.

Interval zero-sum matrix games. Consider now an interval payoff matrix A ∈ IRm×n and the cor-
responding family of matrix games. The interval payoffs usually represent certain uncertainty in the
knowledge of the payoffs.
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Since real matrix games are solved by linear programming, interval matrix games can be handled by
the techniques of interval linear programming. In particular, consider the interval LP problem

max u subject to ATx ≥ eu, eTx = 1, x ≥ 0. (9.17)

In this context, the optimal value range represents the range of the values of the games w(A) :=
{w(A); A ∈ A}, and it is easily computed by solving two linear programs (Liu and Kao, 2009).

The optimal solution set represents the set of all Nash equilibria over all realizations of the payoff
matrix. Therefore the results from Section 9.2 apply directly to characterize and approximate the set of
Nash equilibria.

Some of the components of a Nash equilibrium (x̂, ŷ) are positive and the others are zero. The former
are in some sense more important (we take the corresponding strategies into account for the mixed
strategy), while the latter are less important. Basis stability then depicts the situation, in which the Nash
equilibrium consists of the same subset of pure strategies for any realization A ∈ A.

Notes and further reading. While zer-sum matrix game are related to linear programming, bimatrix
games are closely related to integer linear programming, and therefore more difficult to solve. Hlad́ık
(2010b) investigated different issues in interval bimatrix games, including the set of all equilibria or several
types of stabilities of supports of the strategies (i.e., which strategies are involved in the equilibrium).

Cooperative interval games were analysed in Bok and Hlad́ık (2015), among others.

9.4.2 Linearization in the constraint satisfaction problem

Interval linear programming also provides tool to handle nonconvex function in the constraint satisfaction
problem and global optimization (Chapter 8); in the sequel, we consider just the former since the objective
function can easily be involved.

Let x ∈ IRn be an initial box, in which we seek for the solutions of the system of nonlinear equations
and inequalities

fj(x) = 0, j = 1, . . . , j∗, (9.18a)

gℓ(x) ≤ 0, ℓ = 1, . . . , ℓ∗, (9.18b)

or, in compact form,

f(x) = 0, (9.19a)

g(x) ≤ 0, (9.19b)

where fj, gℓ : Rn 7→ R are real-valued functions and f(x) = (f1(x), . . . , fj∗(x)), g(x) = (g1(x), . . . , gℓ∗(x)).

Our aim is to linearize the noncovnex functions in such a way that we enclose them by interval linear
functions. Let h : Rn 7→ R be a function and x0 ∈ x an arbitrary point. Under general assumptions, the
function is enclosed as

h(x) ⊆ Sh(x, x0)(x− x0) + h(x0), ∀x ∈ x, (9.20)

where Sh : IRn × Rn 7→ IRn is a suitable interval-valued function. For this purpose, we can utilize mean
value form enclosure (6.2), slopes or some other centered form.

Using this type of enclosure for every constraint function, we transform the system (9.19) into an
interval system of linear equations and inequalities

A(x− x0) + f(x0) = 0, (9.21a)

B(x− x0) + g(x0) ≤ 0, (9.21b)

where A ∈ IRj∗×n and B ∈ IRℓ∗×n.
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The choice of x0. Now, it is a question what choice of the center x0 ∈ x is the best one? A vertex
selection was introduced in Araya et al. (2012); Jansson (2000); Trombettoni et al. (2011). If x0 is a vertex
of the box x, then the solution set of (9.21) is a convex polyhedron described by linear constraints. For
example, if we put x0 := x, then x − x is nonnegative. By the Oettli–Prager Theorem 3.2, the interval
system (9.21a) is described by linear inequalities

A(x− x) + f(x) ≤ 0,

A(x− x) + f(x) ≥ 0.

By the Gerlach Theorem 4.1, the solution set to (9.21b) is described by

B(x− x) + g(x) ≤ 0.

If we take x0 := x, then x−x ≤ 0 and the solution set to (9.21) is characterized by the systel of linear
inequalities

Ax ≤ Ax− f(x),

Ax ≥ Ax− f(x),

Bx ≤ Bx− g(x).

Similarly for any other vertex of x. Basically, we can choose several centers and jin all the resulting
inequalities together, hoping for tighter approximation. Araya et al. (2012) recommend to use two opposite
corners of x; the other vertices do not significantly increase efficiency.

Hlad́ık and Horáček (2014) initiated a non-vertex selection of the center x0. When x0 is not a vertex
of x, then the solution set does not admit a linear description in general. By Theorem 4.13, the solution
set to (9.21) is described by

|Ac(x− x0) + f(x0)| ≤ A∆|x− x0|,
Bc(x− x0) ≤ B∆|x− x0| − g(x0).

Thi system is not linear due to the absolute values. To get rid of them, one can estimate them from above
by a linear function, leading to a relaxation by means of a system of linear inequalities.

Figure 9.1 symbolically illustrates different choices of the center x0. In the pictures, S denotes the set
described by (9.18), the initial box x is colored in light gray, and the linear relaxation in dark gray.

9.4.3 Robust optimization

In robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2011), we deal with uncertainty in such
a way that we want to be safe against the worst case situations. In particular, we focus only on those
solutions that satisfy the given constraints for all possible realizations of the data.

Inequality constrained LP form with nonnegativity. Consider an LP problem in the form

min cTx subject to Ax ≤ b, x ≥ 0,

and suppose that (A, b) comes from a certain uncertainty set U . We consider uncertainties in the con-
straints only since the objective function can be transferred into the constraints.

The robust optimization approaches the problem by constructing a deterministic optimization prob-
lem, called the robust counterpart,

min cTx subject to Ax ≤ b, x ≥ 0, ∀(A, b) ∈ U .

The uncertainty set U has often the form of a Cartesian product of intervals or ellipsoids. In which such
cases, the robust counterpart problem is efficiently solvable. In this section, we consider uncertainties have
the form of intervals.
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(a) Typical situation when choosing x0 to be a vertex.
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(b) Typical situation when choosing x0 to be the op-
posite vertex.
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(c) Typical situation when choosing x0 = xc.

x

S

(d) Typical situation when choosing all of them.

Figure 9.1: A symbolic illustration of linearization for different choices of the center x0.

Let A ∈ IRm×n and b ∈ IRm and suppose that U = A × b. Then the robust counterpart problem
reads

min cTx subject to Ax ≤ b, x ≥ 0, ∀A ∈ A,∀b ∈ b.

By Theorem 4.35 or easily by direct inspection we see that it is equivalent to the LP problem

min cTx subject to Ax ≤ b, x ≥ 0.

Inequality constrained LP form. Now, consider an LP problem in the form

min cTx subject to Ax ≤ b

and the uncertainty set U = A× b. Analogously to the previous case, the robust counterpart problem is
defined

min cTx subject to Ax ≤ b, ∀A ∈ A,∀b ∈ b.

This means that the robust feasible solutions are the strong feasible solutions discussed in Section 4.4.
By Corollary 4.36, the problem is equivalent to an LP problem

min cTx1 − cTx2 subject to Ax1 −Ax2 ≤ b, x1, x2 ≥ 0.

Example 9.15 (Robust classification). Consider the classification problem with two classes of data –
the first one consists of points x1, . . . , xm ∈ Rn and the second one consists of points y1, . . . , yk ∈ Rn.
The goal is to construct a classifier that predicts to which class a new point belongs to. A basic linear
classifier separates the two classes of points by a widest separating band. That is, we seek for a hyperplane
aTx+ b = 1 such that one class of points belongs to the positive half-space, the second one belongs to the
negative half-space, and the separating band is maximal; see an illustration in Figure 9.2a. This leads to
a convex quadratic program in variables a ∈ Rn and b ∈ R

min ‖a‖2 subject to aTxi + b ≥ 1 ∀i, aT yj + b ≤ −1 ∀j,

which is efficiently solvable.
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aTx + b = 1
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(a) The widest separating band for real data. (b) The widest separating band for interval data.

Figure 9.2: (Example 9.15) A linear classifier for real data and the robust linear classifier for interval data.

Data are often not measured exactly and we observe them with a certain accuracy only. This means
that the input data have the form of interval vectors xi ∈ IRn, i = 1, . . . ,m, and yj ∈ IRn, j =
1, . . . , k, enclosing the true, albeit unobservable, data. Utilizing the robust approach as described above,
we formulate the robust counterpart model

min ‖a1 − a2‖2 subject to xTi a
1 − xTi a

2 + b ≥ 1 ∀i,
yTj a

1 − yTj a
2 + b ≤ −1 ∀j,
a1, a2 ≥ 0.

It is again a convex quadratic program (in variables a1, a2 ∈ Rn and b ∈ R). The program calculates the
widest band that separates all possible instances of the interval data simultaneously; see Figure 9.2b.
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Other applications

10.1 Verification

A computer solving a given problem performs a series of floating-point operations. Due to rounding errors,
we can hardly expect to obtain the exact solution in the output. Verification is a technique that, given
an approximate solution, a posteriori calculates rigorous bounds for the true solution. Here, the term
“rigorous” means that the bounds are provably correct taking into account possible numerical aspects
and rounding errors.

The introductory Example 2.1 convinced us that even a simple expression evaluation may result in
a completely wrong value, so verification is necessary when we want to make the results of unreliable
calculations to be numerically rigorous. The basic paradigm of verification is that every computation on
a computer should be done in a verified way.

More-or-less efficient methods for verification are known for most of the standard numerical problems,
including solving linear and nonlinear equations, computing eigenvalues or solving certain classes of opti-
mization problems, among others. Naturally, we would like the verification procedure to be less expensive
than solving the original problem. This is not the case for all problems, but we are approaching this goal.

Using a floating point based architecture, verification is in principle possible only for those problems
that are stable in some sense. On the one hand, we can in essence verify nonsingularity of a matrix since
the set of nonsingular matrices is open, so there are no singular matrices in a small neighbourhood. On
the other hand, we cannot verify singularity since it is not preserved for arbitrarily small perturbations.

The following subsections discuss verification for basic linear algebraic problems, such as solving a
system of linear and nonlinear equations or computing eigenvalues of a matrix.

10.1.1 Verification for linear systems

Let A ∈ Rn×n and b ∈ Rn. Given an approximate solution x∗ ≈ A−1b of the linear system Ax = b, we
want to find as small as possible y ∈ IRn such that the true solution A−1b ∈ x∗+y. This gives us rigorous
lower and upper bounds on the true solution. Figure 10.1 symbolically illustrates the idea verification.

To this end, we can apply any of the methods for solving interval linear equations from Section 3.2.
We just call them for intervals A := A and b := b, and they yield guaranteed enclosures of the solution
A−1b. However, as the following example shows, they can give very wide interval enclosures. The gen-
eral recommendation here is to postpone interval arithmetic to the very end or when really necessary;
otherwise, the outer rounding accumulates the overestimation throughout the computation.

Example 10.1 (Amplification factor for the interval Gaussian elimination, Rump (2010)). An enclosure
of the true solution A−1b can be found by the interval Gaussian elimination. During the iterations and
transformations of the matrix (A | b), however, the initial tiny intervals are becoming wider and wider.
The following table shows a lower bound on the amplification factor of the radii:

n 20 50 100 170

amplification 102 105 1010 1016
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x1

x2

x∗

Figure 10.1: Illustration of the verification of an approximate solution x∗ to Ax = b.

This confirms that the interval Gaussian elimination is not suitable for verification of even medium sized
systems.

On the other hand, the ε-inflation method from Section 3.4.3 can be efficiently applied to do this job.
Calling it for degenerate intervals A := A and b := b, and if it succeeds, then it yields y satisfying the
condition

C(b−Ax∗) + (I − CA)y ⊆ inty.

This proves nonsingularity of A and guarantees that A−1b ∈ x∗ + y.

Example 10.2. Let A be the Hilbert matrix of size 10, that is, aij = 1
i+j−1 , and b := Ae. Then the linear

system Ax = b has the solution x = e = (1, . . . , 1)T . Below, there is displayed the approximate solution
computed by MATLAB, and the enclosure calculated in two iterations of the ε-inflation method:

Approximate solution by MATLAB Enclosing interval by ε-inflation method

0.999999999235452 [0.99999973843401, 1.00000026238575]
1.000000065575364 [0.99999843048508, 1.00000149895660]
0.999998607887449 [0.99997745481481, 1.00002404324710]
1.000012638750021 [0.99978166603900, 1.00020478046370]
0.999939734980300 [0.99902374408278, 1.00104070076742]
1.000165704992114 [0.99714060702796, 1.00268292103727]
0.999727989024899 [0.99559932282378, 1.00468935360003]
1.000263042205847 [0.99546972629357, 1.00425202249136]
0.999861803020249 [0.99776781605377, 1.00237789028988]
1.000030414871015 [0.99947719419921, 1.00049082925529]

We can see that the resulting intervals overestimate the true distance of the approximate solution to the
true solution by the factor of about 20. This is not a bad result, taking into account that the condition
number of A is ≈ 1.6 · 1013.

Rump (2010) claims that this method of verification theoretically takes 9 to 12 times the computing
time of the Gaussian elimination itself for finding x∗. When tested for random instances of dimension 100
to 2000, the ratio turned out to be slightly better, so that the verification is about 7 times slower than
solving the original problem.

Notes and further reading. For other methods, see Rump (2013a,b, 2010).

10.1.2 Verification for nonlinear systems

Let f : Rn → Rn be differentiable in each component, and consider the square system of nonlinear
equations f(x) = 0. Given an approximate solution x∗, we want to find y ∈ IRn such that there is a
solution in x∗ + y.



10.1. Verification 185

1 2 3 4 5

1

2

3

x1

x2

f1(x) = 0 f2(x) = 0

x∗x∗

Figure 10.2: (Example 10.3) Illustration of the verification of x∗ to f(x) = 0.

Similarly as for the linear case, we adapt Theorem 8.15 to the uniqueness of a root and come across the
ε-inflation method. First, we put y := −Cf(x0). Then we repeat inflating z := [0.9, 1.1]y + 10−20[−1, 1]
and updating

y := −Cf(x0) + (In − C∇f(x))z (10.1)

until y ⊆ intz, or we exceed the maximum number of iterations. If y ⊆ intz, then there is a unique
solution in x∗ + y.

Example 10.3. Consider the nonlinear system

π2(x2 − π/2) + 4x2 sin(x1) = 0,

x1 − π − cos(x2) = 0

and let us have an approximate solution x∗ = (3.1415, 1.5708)T of the true solution (π, π/2)T .
For z := ([−10−5, 10−5], [−10−5, 10−5])T , the verification fails, but for z := ([−10−4, 10−4], [−10−4, 10−4])T

the condition (10.1) succeeds. Thus, each entry of x∗ is precise with accuracy 10−4. Figure 10.2 symboli-
cally illustrates the idea verification.

Multiple roots. A double root x∗ of a function f : R → R can be verified by a reduction to verification
of the simple root (x∗, 0) of the function

g(x, ε) =
(

f(x) − ε, f ′(x)
)T

.

We proceed similarly for a higher order multiple roots.

Other approaches. The tests for the existence of a solution we presented here (and in Section 8.1) were
based on an interval operator mapping a box into itself and calling the Brouwer’s fixed-point theorem.
Besides Brouwer’s theorem, there exist also another techniques that can be used. They include Miranda’s
theorem or the Newton–Kantorovich theorem; see Mayer (2017).

Verification of eigenvalues. Verification of eigenvalues and eigenvectors of a matrix A ∈ Rn×n is a
specific problem dealt with in more detail in Mayer (2017); Rump (2010). In essence, the verification can
be performed by the above approach applied to the nonlinear system f(x, λ) = 0, where

f(x, λ) = (Ax− λx, ‖x‖2 − 1)T ,

and for the normalization, we can use the Euclidean norm or the maximum norm, for instance.

Verification of singular values. Verification of the singular values of a matrix A ∈ Rm×n can be
reduced to the verification of the eigenvalues of a symmetric matrix via relation from Theorem 1.14(2).
Another way uses the reduction to the verification of the roots of a nonlinear system f(x, y, σ, ε) = 0,
where

f(x, y, σ, ε) = (Ax− σy, AT y − (σ + ε)x, ‖x‖2 − 1, ‖y‖2 − 1)T .
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Notes. Adaptation of ε-inflation method to nonlinear systems is due to Rump (1983). Variants of this
method and are discussed, e.g., in Kreinovich et al. (1997); Rump (1998).

10.2 Tolerance analysis and inverse problems

Notes. Rohn (1989b, 2012b) proposed a condition number for linear programming problems based on a
relative change of the optimal value subject to infinitesimal perturbations of the data.

10.3 Solving quantified systems

The interval computation approach to constraint satisfaction and global optimization solving (chapter 8)
can be generalized to handle more complex constraints involving also quantifiers and logical operations.
Pareto optimal solutions of multiobjective optimization problems or Nash equilibria in game problems
are particular examples of such systems. Using the interval methods, we are able to determine a kind
of ε-approximation of all solutions (Kreinovich and Kubica, 2010), even though the problem itself is
potentially undecidable.

10.4 Statistics

Kreinovich and Xiang (2008)

Berleant (1996) discusses how to rigorously represent and operate on a probability distribution function
when it is discretized. Discretization leads to intervalization of the domain, so a verified lower and upper
bound on the distribution function are obtained by interval computation.

10.5 Real world applications

Links to diverse applications of interval computation are collected at

http://www.cs.utep.edu/interval-comp/appl.html

10.5.1 Robotics

Application of interval computation in robotics is one of the main research topics of the COPRIN team,
established at 2001 under the French institute INRIA. Problems that are studied:

• Forward kinematics problem (Merlet, 1995, 2004)

The task is to determine all possible positions of the end-effectors of a robot for given joint coor-
dinates. The related problem of workspace calculation aims at computing all reachable locations of
the center of a robot, possibly with constraints such as mechanical restrictions on the motion of
joints.

• Robot calibration (Daney, 2002, 2003; Hlad́ık et al., 2011a)

Determination or estimation of the actual values of parameters of a robot, such as position and
orientation of links and joints.

• Robot designing (Hao and Merlet, 2005; Merlet, 2005)

Naturally, robot parameters influence its performance. That is why one looks for a robot with
parameters guaranteeing small positioning errors or reachability of some states, for example.

• Robot singularities (Merlet, 1998, 2007; Merlet and Donelan, 2006; Oetomo et al., 2009)

Here, one wants to determine all values of robot parameters that may cause a deadlock or breakdown.
Usually, it reduces to checking singularity of the so-called Jacobian matrix of the robot.

http://www.cs.utep.edu/interval-comp/appl.html
http://www-sop.inria.fr/coprin/index_english.html
http://www.inria.fr/en/


10.5. Real world applications 187

10.5.2 Computer graphics

The books Ratschek and Rokne (2003); Snyder (1992) show how important is interval computation to
avoid errors in computer graphics. Some of the areas, where interval computation comes into play, are:

• Precise geometric computation (Kettner et al., 2008; Schirra, 2000)

Precision in geometric computation is an important issue. There are recorded examples, where
floating-point arithmetic led to wrong results in computing convex hulls in the plane and Delaunay
triangulations in space, among others. Interval arithmetic, if used, can guarantee the correctness of
calculations.

• Processing geometric objects (Mudur and Koparkar, 1984; Suffern and Fackerell, 1991)

Curves, surfaces and other geometric objects can be rigorously processed in a similar manner as
in constraint programming (Chapter 8). In curve tracing, we must in addition to generate the
sequence of subsequent pixels the curve is passing, which makes the problem more interesting.
Interval computation helps not only in plotting curves, but also in intersection detection, silhouette
detection, linearity and planarity testing and rendering shaded, tessellated and contour pictures,
besides others.

Besides the aforementioned problems, interval computation was also used in ray tracing (Sanjuan-Estrada et al.
2003) (Hickey et al., 2000)

For a positioning of geometrical objects, see also Section 5.4.3.
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Chapter 11

Open problems and conjectures

Conjectures

• Garloff’s conjecture I. (Garloff, 1982)

see Garloff (2009)

• Garloff’s conjecture II.

For a symmetric positive definite interval matrix A the minimum value of p(A) := det(A)
det(A′) = 1

A−1
nn

over AS is attained at a matrix Azz for some z ∈ {±1}n, where A′ is obtained from A by removing
the last row and column.

This problem relates the interval Cholesky decomposition (Garloff, 2012). Denote A = LLT the
Cholesky decomposition of A. We have lnn =

√

p(A), and similarly for the other diagonal entries
of L.

• Rohn’s conjecture

The sign accord algorithm (Algorithm 3.1) finishes in a finite number of steps even when the signs
are switched for all violated coordinates.

This was empirically observed by Rohn’s master students, moreover the number of steps seemed to
be linear, but no theoretical result is known. See also (Neumaier, 1990, pg. 220).

• Rump’s conjecture (Rump, 1997b)

Every regular A ∈ IRn×n satisfies ρ(|(Ac)−1|A∆) < n.

Open problems

• Exactness of the natural interval extension w.r.t. accuracy (Kreinovich et al., 2003)

It is open whether the following problem is NP-hard: For a given function f : Rn → R and an
interval vector x ∈ IRn, gives the natural interval extension the exact range f(x) with respect to a
given accuracy?

• If A ∈ IRn×n is strongly regular, then the implication B ⊆ A ⇒ |(Bc)−1|B∆ ≤ |(Ac)−1|A∆ holds?
(Neumaier, 1990, pg. 124)

• For an interval linear system of equations with an inverse nonnegative matrix, is there a suitable
row and column permutation such that the interval Gaussian elimination does not fail? (Neumaier,
1990, pg. 160)
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Appendix A

Properties of interval arithmetic

This appendix displays tables with various properties of interval arithmetic and other interval opera-
tions. The formulae were adopted from another literature, including Mayer (2017); Moore et al. (2009);
Neumaier (1984, 1990); Ratschek and Rokne (1995); Ris (1975).

If we write that some property does not hold (¬ property or inequation 6=), then it means that
the property is not true in general, but may be true for some particular cases. In case of division, we
implicitly assume that the denominator does not contain zero. If not stated otherwise, we consider real
(non-complex) intervals, interval vectors and interval matrices; some properties of complex matrices are
presented in Alefeld and Herzberger (1983).
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Table A.1: Set operations on intervals (x,y,z, . . . ∈ IR). We use the operator x ⊔ y := �(x ∪ y).

x ⊆ y ⇔ |xc − yc| ≤ y∆ − x∆

x ⊆ y ⇔ mag(x− yc) ≤ y∆

x ⊆ y ⇒ x∆ ≤ y∆ ∧ mag(x) ≤ mag(y)
x ∩ y 6= ∅ ⇔ |xc − yc| ≤ x∆ + y∆

x ∩ y 6= ∅ ⇔ 0 ∈ x− y

x ∩ y 6= ∅ ⇔ x ≥ y ∧ x ≤ y

x ∩ y 6= ∅ ⇔ x ∩ y = [max(x, y),min(x, y)]

x1 ⊆ y1 ∧ x2 ⊆ y2 ⇒ (x1 ∩ x2) ⊆ (y1 ∩ y2)

x + (y ⊔ z) = (x + y) ⊔ (x + z)
x(y ⊔ z) = (xy) ⊔ (xz)

Table A.2: Endpoint analysis of interval multiplication (x,y ∈ IR).

inf(xy) sup(xy)

x ≥ 0 ∧ y ≥ 0 xy xy

x ≤ 0 ∧ y ≥ 0 xy xy

0 ∈ x ∧ y ≥ 0 xy xy
x ≥ 0 ∧ y ≤ 0 xy xy

x ≤ 0 ∧ y ≤ 0 xy xy

0 ∈ x ∧ y ≤ 0 xy xy

x ≥ 0 ∧ 0 ∈ y xy xy

x ≤ 0 ∧ 0 ∈ y xy xy

0 ∈ x ∧ 0 ∈ y min(xy, xy) max(xy, xy)

x ≥ 0 and real xy xy
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Table A.3: Interval midpoints and radii (x,y ∈ IR, n ∈ N).

mid(x± y) = xc ± yc

rad(x± y) = x∆ + y∆

x real ∨ y real ⇒ mid(xy) = xcyc

xc = 0 ∨ yc = 0 ⇒ mid(xy) = xcyc

y real ⇒ mid(x/y) = xc/yc

sgn(mid(xy)) = sgn(xcyc)
mid(1/x) = xc/(mag(x) mig(x))
mid(x/y) = mid(xy)/(mag(y) mig(y))

x∆ = mag(x− xc)
= 1

2 max{x− y; x, y ∈ x}
x∆ ≤ mag(x) − mig(x) ≤ 2x∆

x ∈ x ⇒ x∆ ≤ mag(x− x) ≤ 2x∆

0 ∈ x ⇒ x∆ ≥ 1
2 mag(x)

rad(xy) = max
{

x∆ mag(y), mag(x)y∆, x∆|yc| + |xc|y∆
}

rad(1/x) = x∆/(mag(x) mig(x))
rad(x/y) = rad(xy)/(mag(y) mig(y))

x∆ mag(y) ≤ rad(xy) ≤ x∆ mag(y) + |xc|y∆
mag(x)y∆ ≤ rad(xy) ≤ mag(x)y∆ + x∆|yc|

x∆/mig(y) ≤ rad(x/y) ≤
(

x∆ + y∆|xc|/mag(y)
)

/mig(y)

rad(xn) ≤ n · x∆ mag(x)n−1

x real ⇒ rad(xy) = |x|y∆
yc = 0 ⇒ rad(xy) = mag(x)y∆

0 ∈ x ∩ y ⇒ rad(xy) ≤ 2x∆y∆

0 ∈ x ⇒ rad(xy) ≤ x∆ mag(y)

+ |xc|max(0, y∆ − |yc|)
xc = 0 ⇒ rad(xy) = x∆ mag(y)
y∆ = 0 ⇒ rad(xy) = x∆ mag(y)

0 ∈ x ∧ 0 6∈ inty ⇒ rad(xy) = x∆ mag(y)
0 6∈ intx ⇒ rad(xy) = x∆ mig(y) + mag(x)y∆

0 ∈ x ⇒ rad(x/y) = x∆/mig(y)
0 ∈ x ⇒ rad(xn) ≤ x∆ mag(x)n−1
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Table A.4: Arithmetic on intervals: basic algebraic properties (x,y,z, . . . ∈ IR).

commutativity x + y = y + x

associativity x + (y + z) = (x + y) + z

identity element x + 0 = 0 + x = x

cancellation x + y = x + z ⇔ y = z

x + y ⊆ x + z ⇔ y ⊆ z

subcancellation x− y ⊆ (x + z) − (y + z)

commutativity xy = yx

associativity x(yz) = (xy)z
identity element 1 · x = x · 1 = x

cancellation (xy = xz ∧ 0 6∈ x) ⇒ y = z

(xy ⊆ xz ∧ 0 6∈ x) ⇒ y ⊆ z

subcancellation x/y ⊆ (xz)/(yz)

(sub)distributivity x(y + z) ⊆ xy + xz

x real ⇒ x(y + z) = xy + xz
inf(yz) ≥ 0 ⇒ x(y + z) = xy + xz

no zero divisors 0 = xy ⇔ (x = 0 ∨ y = 0)
0 ∈ xy ⇔ (0 ∈ x ∨ 0 ∈ y)

inclusion isotonicity
for ◦ ∈ {+,−, ·, /} : (x1 ⊆ x2 ∧ y1 ⊆ y2) ⇒ (x1 ◦ y1) ⊆ (x2 ◦ y2)

Table A.5: Further properties of intervals (x,y ∈ IR, n ∈ N).

x = xc + x∆[−1, 1]

x− x = 2x∆[−1, 1]
x + x = 2x

(−x)(−y) = xy

x/y = x(1/y)

x− x = 0 ⇔ x∆ = 0

x · x = x2 ⇔ 0 6∈ intx

x > 0 ∨ n odd ⇒ xn = [xn, xn]
x < 0 ∧ n even ⇒ xn = [xn, xn]
0 ∈ x ∧ n even ⇒ xn = [0,mag(x)n]
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Table A.6: Symmetric intervals (x,y,z ∈ IR).

x is symmetric (def.) ⇔ xc = 0
⇔ x = −x

x,y are symmetric ⇒ x± y are symmetric
x,y are symmetric ⇒ xy is symmetric

xc = yc = 0 ⇒ mid(x± y) = 0
xc = yc = 0 ⇒ mid(xy) = 0

(xc = yc = 0 ∧ 0 6∈ y) ⇒ mid(x/y) = 0

xc = 0 ⇒ x∆ = mag(x)
xc = 0 ⇒ x = x∆[−1, 1]

xc = yc = 0 ⇒ x± y = (x∆ + y∆)[−1, 1]
xc = yc = 0 ⇒ xy = (x∆y∆)[−1, 1]

yc = 0 ⇒ xy = mag(x)y

= (mag(x)y∆)[−1, 1]

xc = yc = zc = 0 ⇒ x(y ± z) = xy ± xz

= x∆(y∆ + z∆)[−1, 1]

Table A.7: The mid-rad representation and arithmetic on intervals (x,y ∈ IR and A,B interval matrices
of suitable sizes). The mid-rad interval form is defined 〈xc, x∆〉 := [xc − x∆, xc + x∆]

〈xc, x∆)(yc, y∆〉 ⊆ 〈xcyc, x∆|yc| + (|xc| + x∆)y∆〉
x,y ≥ 0 ⇒ 〈xc, x∆〉 · 〈yc, y∆〉 = 〈xcyc + x∆y∆, x∆yc + xcy∆〉

x,y ≥ 0 ⇒ 〈xc, x∆〉
〈yc, y∆〉 =

〈

xcyc + x∆y∆

(yc)2 − (y∆)2
,
x∆yc + xcy∆

(yc)2 − (y∆)2

〉

x,y ≥ 0 ⇒ 〈xc, x∆〉
〈yc, y∆〉 ⊆

〈

xc

yc
,
x∆ + xc

yc y
∆

yc − y∆

〉

〈Ac, A∆〉〈Bc, B∆〉 ⊆ 〈AcBc, A∆(|Bc| + B∆) + |Ac|B∆〉
B real ⇒ 〈Ac, A∆〉B = 〈AcB,A∆|B|〉
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Table A.8: Magnitude and mignitude (x,y ∈ IR).

mag(x) = |xc| + x∆

= max{|x|, |x|}
= max{|x|; x ∈ x}

[−1, 1]x = [−1, 1] mag(x)

2x∆ = mag(x− x)

x = 0 ⇔ mag(x) = 0

0 6∈ intx ⇔ mig(x) = |xc| − x∆

x ⊆ y ⇒ mag(x) ≤ mag(y)
x ⊆ y ⇒ mig(x) ≥ mig(y)

mag(x± y) ≤ mag(x) + mag(y)
mag(x± y) ≥ mag(x) − mig(y)

yc = 0 ⇒ mag(x± y) = mag(x) + mag(y)

mag(xy) = mag(x) mag(y)
mag(x/y) = mag(x)/mig(y)
mag(1/x) = 1/mig(x)

x real ⇒ mag(xy) = |x|mag(y)

xc = 0 ⇒ mag(xy) = x∆ mag(y)
xc = 0 ⇒ xy = xmag(y)

mig(x) ≥ |xc| − x∆

mig(x± y) ≤ mig(x) + mag(y)
mig(x± y) ≥ mig(x) − mag(y)

mig(xy) = mig(x) mig(y)
mig(x/y) = mig(x)/mag(y)
mig(1/x) = 1/mag(x)



199

Table A.9: (Hausdorff) distance on intervals (x,x′,xk,y,y
′,z ∈ IR and n ∈ N).

distance definition dist(x,y) = max{|x− y|, |x− y|}
= |xc − yc| + |x∆ − y∆|
= min{q ≥ 0; x ⊆ y + [−q, q], y ⊆ x + [−q, q]}

metric axioms dist(x,y) ≥ 0
dist(x,y) = 0 ⇔ x = y

dist(x,y) = dist(y,x)
dist(x,y) ≤ dist(x,z) + dist(z,y)

basic properties mag(x) = dist(x, 0)
= dist(x + y,y)

dist(x,y) = dist(x + z,y + z)
dist(x + x′,y + y′) ≤ dist(x,y) + dist(x′,y′)
dist(zx,zy) ≤ mag(z) dist(x,y)
dist(x/z,y/z) ≤ dist(x,y)/mig(z), 0 6∈ z

dist(z/x,z/y) ≤ mag(z)
mig(x)mig(y) dist(x,y)

dist(x,y) ≥ |x∆ − y∆|
dist(x,y) ≥ |mag(x) − mag(y)|
dist(x,y) ≥ mag(x− y) − 2x∆

x ⊆ y + dist(x,y)[−1, 1]

further properties y real ⇒ dist(x, y) = mag(x− y)
z real ⇒ dist(zx, zy) = |z|dist(x,y)

x ⊆ y ⇒ dist(x,y) = mag(y − xc) − x∆

x ⊆ y ⇒ dist(x,y) ≤ 2(y∆ − x∆)

x ⊆ y ⇒ dist(x,y) ≥ y∆ − x∆

x ⊆ y ⊆ z ⇒ dist(x,y) ≤ dist(x,z)
x ⊆ y ⊆ z ⇒ dist(y,z) ≤ dist(x,z)
x ⊆ y ∋ y ⇒ dist(y,x) ≤ dist(y,y)

(x ⊆ y ⊆ z ∧ x ⊆ y′ ⊆ z) ⇒ dist(y,y′) ≤ max{dist(x,y),dist(y,z)}
x,y ⊆ z ⇒ dist(yn,zn) ≤ n · mag(z)n−1 dist(x,y)

convergence lim
k→∞

xk = y ⇔
(

limk→∞ xk = y ∧ limk→∞ xk = y
)

⇔
(

limk→∞ xck = yc ∧ limk→∞ x∆k = y∆
)

x1 ⊇ x2 ⊇ . . . ⇒ limk→∞ xk = ∩∞
k=1xk

mid(limk→∞ xk) = limk→∞ xck
rad(limk→∞ xk) = limk→∞ x∆k
the metric space (IR,dist) is complete
arithmetic operations +,−, · and / are continuous
functions mid, rad, inf, sup,mag and mig are continuous
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Table A.10: Arithmetic on complex intervals in rectangular form (x̃, ỹ, z̃ ∈ IC).

commutativity x̃ + ỹ = ỹ + x̃

associativity x̃ + (ỹ + z̃) = (x̃ + ỹ) + z̃

identity element x̃ + 0 = 0 + x̃ = x̃

commutativity x̃ỹ = ỹx̃

¬ associativity x̃(ỹz̃) 6= (x̃ỹ)z̃
identity element 1 · x̃ = x̃ · 1 = x̃

subdistributivity x̃(ỹ + z̃) ⊆ x̃ỹ + x̃z̃

x(ỹ + z̃) = xỹ + xz̃

no zero divisors x̃ỹ = 0 ⇔ (x̃ = 0 ∨ ỹ = 0)
inclusion isotonicity
for ◦ ∈ {+,−, ·, /} : (x̃1 ⊆ x̃2 ∧ ỹ1 ⊆ ỹ2) ⇒ (x̃1 ◦ ỹ1) ⊆ (x̃2 ◦ ỹ2)

Table A.11: Arithmetic on complex intervals in circular form (x̃, ỹ, z̃ ∈ IC).

commutativity x̃ + ỹ = ỹ + x̃

associativity x̃ + (ỹ + z̃) = (x̃ + ỹ) + z̃

identity element x̃ + 0 = 0 + x̃ = x̃

commutativity x̃ỹ = ỹx̃

associativity x̃(ỹz̃) = (x̃ỹ)z̃
identity element 1 · x̃ = x̃ · 1 = x̃

subdistributivity x̃(ỹ + z̃) ⊆ x̃ỹ + x̃z̃

x(ỹ + z̃) = xỹ + xz̃

no zero divisors x̃ỹ = 0 ⇔ (x̃ = 0 ∨ ỹ = 0)
inclusion isotonicity
for ◦ ∈ {+,−, ·, /} : (x̃1 ⊆ x̃2 ∧ ỹ1 ⊆ ỹ2) ⇒ (x̃1 ◦ ỹ1) ⊆ (x̃2 ◦ ỹ2)
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Properties of interval matrices

Herein, we extend properties of interval arithmetic (Appendix A) to arithmetic of interval matrices. We
include also properties of certain types of interval matrices.
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Table B.1: Set operations on interval matricess (A,B, . . . ∈ IRm×n).

A ⊆ B ⇔ |Ac −Bc| ≤ B∆ −A∆

A ⊆ B ⇔ mag(A−Bc) ≤ B∆

A ⊆ B ⇒ A∆ ≤ B∆ ∧ mag(A) ≤ mag(B)
A ∩B 6= ∅ ⇔ |Ac −Bc| ≤ A∆ + B∆

A ∩B 6= ∅ ⇔ 0 ∈ A−B

A ∩B 6= ∅ ⇔ A ≥ B ∧ A ≤ B

A ∩B 6= ∅ ⇔ A ∩B = [max(A,B),min(A,B)]
A1 ⊆ B1 ∧ A2 ⊆ B2 ⇒ (A1 ∩A2) ⊆ (B1 ∩B2)

Table B.2: Arithmetic on interval matrices: basic algebraic properties (A,B,C, . . . are interval matrices
of suitable sizes and a ∈ IR).

commutativity A + B = B + A

associativity A + (B + C) = (A + B) + C

a real ⇒ A(aB) = a(AB)
subdistributivity a(B + C) ⊆ aB + aC

identity element A + 0 = 0 + A = A

cancellation A + B = A + C ⇔ B = C

A + B ⊆ A + C ⇔ B ⊆ C

associativity (AB)C 6= A(BC)
A real ⇒ (AB)C ⊆ A(BC)
C real ⇒ (AB)C ⊇ A(BC)

A,C real ⇒ (AB)C = A(BC)
A,B real ⇒ (AB)C ⊆ A(BC)
B,C ≥ 0 ⇒ (AB)C ⊆ A(BC)
A,B ≥ 0 ⇒ (AB)C ⊇ A(BC)

Ac = 0, C real ⇒ (AB)C ⊇ A(BC)
A,B,C ≥ 0 ⇒ (AB)C = A(BC)
A = 0, B = 0 ⇒ (AB)C = A(BC)

Ac = 0, Bc = 0 ⇒ (AB)C = A(BC)

(sub)distributivity A(B + C) ⊆ AB + AC

(A + B)C ⊆ AC + BC

A real ⇒ A(B + C) = AB + AC
C real ⇒ (A + B)C = AC + BC

B,C ≥ 0 ⇒ A(B + C) = AB + AC

B,C ≤ 0 ⇒ A(B + C) = AB + AC

inclusion isotonicity
for ◦ ∈ {+,−, ·} : (A1 ⊆ A2 ∧ B1 ⊆ B2) ⇒ (A1 ◦B1) ⊆ (A2 ◦B2)
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Table B.3: Interval matrix midpoints and radii (A,B are interval matrices of suitable sizes).

mid(A±B) = Ac ±Bc

rad(A±B) = A∆ + B∆

A real ∨ B real ⇒ mid(AB) = AcBc

Ac = 0 ∨ Bc = 0 ⇒ mid(AB) = AcBc

a ∈ R ⇒ rad(aA) = |a|A∆

A∆ mag(B) ≤ rad(AB) ≤ A∆ mag(B) + |Ac|B∆

mag(A)B∆ ≤ rad(AB) ≤ mag(A)B∆ + A∆|Bc|
A real ⇒ rad(AB) = |A|B∆

B real ⇒ rad(AB) = A∆|B|
Bc = 0 ⇒ rad(AB) = mag(A)B∆

0 ∈ A ∩B ⇒ rad(AB) ≤ 2A∆B∆

0 ∈ A ⇒ 1
2 mag(A) ≤ A∆ ≤ mag(A)

Table B.4: Interval matrix magnitude and mignitude (a ∈ R and A,B are interval matrices of suitable
sizes).

mag(A) = |Ac| + A∆

= max{|A|, |A|}
= max{|A|; A ∈ A}

[−1, 1]A = [−mag(A),mag(A)]

2A∆ = mag(A−A)
mag(aA) = |a|mag(A)

A = 0 ⇔ mag(A) = 0
A ⊆ B ⇒ mag(A) ≤ mag(B)
A ⊆ B ⇒ mig(A) ≥ mig(B)

mag(A±B) ≤ mag(A) + mag(B)
mag(A±B) ≥ mag(A) − mig(B)

mag(AB) ≤ mag(A) mag(B)
mag(AB) ≥ 〈A〉mag(B)

Bc = 0 ⇒ mag(A±B) = mag(A) + mag(B)
Bc = 0 ⇒ mag(AB) = mag(A) mag(B)
Bc = 0 ⇒ AB = mag(A)B

mig(A) ≥ |Ac| −A∆

mig(A±B) ≤ mig(A) + mag(B)
mig(A±B) ≥ mig(A) − mag(B)

Table B.5: Further properties of interval matrices (A ∈ IRm×n).

A = Ac + A∆[−1, 1]
A−A = 2A∆[−1, 1]
A−A = 0 ⇔ A∆ = 0
A + A = 2A
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Table B.6: Interval matrix product (A,B are interval matrices of suitable sizes).

AB % {AB; A ∈ A, B ∈ B}
AB = �{AB; A ∈ A, B ∈ B}

A,B ≥ 0 ⇒ AB = [AB,AB]

A ≥ 0, 0 ∈ B ⇒ AB = [AB,AB]

A ≥ 0, B ≤ 0 ⇒ AB = [AB,AB]

A ≥ 0 and real ⇒ AB = [AB,AB]

A = 0 ⇒ AB = [Amin{B, 0}, Amax{B, 0}]
Bc = 0 ⇒ AB = mag(A)B

= [−mag(A) mag(B),mag(A) mag(B)]

Table B.7: Interval matrix-vector and scalar multiplication (a ∈ R, x ∈ Rn, A ∈ Rm×n, a ∈ IR, x ∈ IRn

and A ∈ IRm×n).

Ax = {Ax; A ∈ A}
aA = {aA; A ∈ A}
aA ⊇ {aA; a ∈ a}
Ax ⊇ {Ax; x ∈ x}

a(Ax) $ (aA)x = A(ax)

Table B.8: Comparison matrix (A,B are interval matrices of suitable sizes).

〈A〉 ≥ 〈Ac〉−A∆

〈A〉 = 〈Ac〉−A∆ ⇔ 0 6∈ aii ∀i
〈A〉 ≥ 〈B〉− dist(A,B)
〈A〉 ≤ 〈B〉+ dist(A,B)
〈A〉 ≤ 〈B〉−mag(A±B)

〈A±B〉 ≤ 〈A〉+ mag(B)
〈A±B〉 ≥ 〈A〉−mag(B)

A ⊆ B ⇒ 〈A〉 ≥ 〈B〉

Table B.9: inverse nonnegative matrix, M-matrix, H-matrix (A,B are interval matrices of suitable sizes).

A is inverse nonnegative ⇔ A and A are inverse nonnegative

A is inverse nonnegative ⇒ A is regular ∧ 0 ≤ A
−1 ≤ A−1 ≤ A−1 ∀A ∈ A

A is an M-matrix ⇔ A and A are M-matrices

A is an M-matrix ⇒ A is regular ∧ 0 ≤ A
−1 ≤ A−1 ≤ A−1 ∀A ∈ A

A is an M-matrix ⇒ |A−1| ≤ |A−1| = 〈A〉−1 = 〈A〉−1 = A−1 ∀A ∈ A

A is an M-matrix ∧ B ⊆ A ⇒ B is an M-matrix

A is an H-matrix ⇔ 〈A〉 is an M-matrix

A is an H-matrix ⇔ Ac is an H-matrix ∧ ρ(〈Ac〉−1A∆) < 1

A is an H-matrix ⇒ A is regular ∧ |A−1| ≤ 〈A〉−1 ∀A ∈ A

A is an H-matrix ∧ B ⊆ A ⇒ B is an H-matrix
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Table B.10: Interval matrix distance (a ∈ R and A,A′,B,B′,C, . . . are interval matrices of suitable
sizes).

definition dist(A,B) = max{|A−B|, |A −B|}
= |Ac −Bc| + |A∆ −B∆|
= min{Q ≥ 0; A ⊆ B + [−Q,Q], B ⊆ A + [−Q,Q]}

metric-like axioms dist(A,B) ≥ 0
dist(A,B) = 0 ⇔ A = B

dist(A,B) = dist(B,A)
dist(A,B) ≤ dist(A,C) + dist(C,B)
‖dist(A,B)‖ is a metric for any matrix norm

basic properties mag(A) = dist(A, 0)
= dist(A + B,B)

dist(A,B) = dist(A + C,B + C)
dist(A + A′,B + B′) ≤ dist(A,B) + dist(A′,B′)
dist(CA,CB) ≤ mag(C) dist(A,B)
dist(AC,BC) ≤ dist(A,B) mag(C)
dist(A,B) ≥ |A∆ −B∆|
dist(A,B) ≥ |mag(A) − mag(B)|
dist(A,B) ≥ mag(A−B) − 2A∆

B ⊆ A + dist(A,B)[−I, I]

further properties B real ⇒ dist(A, B) = mag(A−B)
a real ⇒ dist(aA, aB) = |a|dist(A,B)

A ⊆ B ⇒ dist(A,B) = mag(B −Ac) −A∆

A ⊆ B ⇒ dist(A,B) ≤ 2(B∆ −A∆)

A ⊆ B ⇒ dist(A,B) ≥ B∆ −A∆

A ⊆ B ⊆ C ⇒ dist(A,B) ≤ dist(A,C)
A ⊆ B ⊆ C ⇒ dist(B,C) ≤ dist(A,C)

convergence lim
k→∞

A(k) = B ⇔
(

limk→∞A(k) = B ∧ limk→∞A
(k)

= B
)

⇔ limk→∞A
(k)
ij = Bij ∀i, j

A(1) ⊇ A(2) ⊇ . . . ⇒ limk→∞A(k) = ∩∞
k=1A

(k)

mid
(

limk→∞A(k)
)

= limk→∞ mid(A(k))

rad
(

limk→∞A(k)
)

= limk→∞ rad(A(k))
arithmetic operations +,−, · are continuous
operations mid, rad, inf, sup and mag are continuous
the interval scalar product is continuous
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Appl., 12:87–95, 1992. URL https://api.semanticscholar.org/CorpusID:17180427. 129

N. P. Seif, M. A. Hassanein, and A. S. Deif. Inverse problem of the interval linear system of equations.
Comput., 63(2):185–200, 1999.

P. Serafini. Linear programming with variable matrix entries. Oper. Res. Lett., 33(2):165–170, 2005.

I. A. Sharaya. Quantifier-free descriptions for quantifier solutions to interval linear systems of relations.
Trudy Instituta Matematiki i Mekhaniki UrO RAN, 20(2):311–323, 2014a. English version at https://
arxiv.org/abs/1802.09199. 100

I. A. Sharaya. IntLinInc2D and IntLinInc3D, 2014b. URL http://interval.ict.nsc.ru/Programing/.
Release 01.09.2014. 43

S. P. Shary. On controlled solution set of interval algebraic systems. Interval Comput., 4(6):66–75, 1992.
83

S. P. Shary. Solving the linear interval tolerance problem. Math. Comput. Simul., 39(1-2):53–85, 1995a.
84

S. P. Shary. Linear static systems under interval uncertainty: Efficient algorithms to solve control and
stabilization problems. Computational Technologies, 13:64–80, 1995b. in Russian. 82

S. P. Shary. Linear static systems under interval uncertainty: Algorithms to solve control and stabilization
problems. Reliab. Comput., 1(Suppl.):181–184, 1995c. Extended Abstracts of APIC’95: International
Workshop on Applications of Interval Computations, El Paso, Febr. 23–25. 134

http://www.ti3.tu-harburg.de/rump/
http://www.ti3.tu-harburg.de/rump/
https://api.semanticscholar.org/CorpusID:17180427
https://arxiv.org/abs/1802.09199
https://arxiv.org/abs/1802.09199
http://interval.ict.nsc.ru/Programing/


228 Bibliography

S. P. Shary. A new technique in systems analysis under interval uncertainty and ambiguity. Reliab.
Comput., 8(5):321–418, 2002. 82, 83, 84, 133, 134

S. P. Shary. On full-rank interval matrices. Numer. Anal. Appl., 7(3):241–254, 2014. 112

S. P. Shary and B. Moradi. Solving interval linear least squares problems by PPS-methods. Numer.
Algorithms, 87(1):41–75, 2021. 72

I. Skalna. A method for outer interval solution of systems of linear equations depending linearly on
interval parameters. Reliab. Comput., 12(2):107–120, 2006. 77, 78, 79

I. Skalna. On checking the monotonicity of parametric interval solution of linear structural systems.
LNCS, 4967:1400–1409, 2008. 79

I. Skalna. Enclosure for the solution set of parametric linear systems with non-affine dependencies. In
R. Wyrzykowski et al., editor, Parallel Processing and Applied Mathematics, volume 7204 of LNCS,
pages 513–522. Springer, 2012. 73

I. Skalna. Parametric Interval Algebraic Systems, volume 766 of Studies in Computational Intelligence.
Springer, Cham, 2018. 77, 79

I. Skalna and M. Hlad́ık. A new method for computing a p-solution to parametric interval linear sys-
tems with affine-linear and nonlinear dependencies. BIT Numer. Math., 57(4):1109–1136, 2017. ISSN
1572-9125. doi: 10.1007/s10543-017-0679-4. URL https://link.springer.com/article/10.1007/

s10543-017-0679-4. 79

I. Skalna and M. Hlad́ık. Direct and iterative methods for interval parametric algebraic systems producing
parametric solutions. Numer. Linear Algebra Appl., 26(3):e2229:1–e2229:24, 2019. ISSN 1099-1506. doi:
10.1002/nla.2229. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2229. 79, 115

S. Skelboe. Computation of rational interval functions. BIT Numer. Math., 14(1):87–95, 1974. 32, 118,
167

A. Skjäl, T. Westerlund, R. Misener, and C. A. Floudas. A generalization of the classical αBB convex
underestimation via diagonal and nondiagonal quadratic terms. J. Optim. Theory Appl., 154(2):462–
490, 2012. 166

S. Smale. Mathematical problems for the next century. Math. Intell., 20(2):7–15, 1998. 34

A. P. Smith. Fast construction of constant bound functions for sparse polynomials. J. Glob. Optim., 43
(2-3):445–458, 2009. 131

A. P. Smith, J. Garloff, and H. Werkle. Verified solution for a statically determinate truss structure with
uncertain node locations. J. Civ. Eng. Architect., 4(11):1–10, 2010. 79

L. B. Smith. Interval arithmetic determinant evaluation and its use in testing for a chebyshev system.
Commun. ACM, 12(2):89–93, 1969. 113

J. M. Snyder. Generative Modeling for Computer Graphics and CAD: Symbolic Shape Design Using
Interval Analysis. Academic Press, San Diego, CA, USA, 1992. 187

O. Spaniol. Die Distributivität in der Intervallarithmetik. Comput., 5(1):6–16, 1970. in German. 28

V. Stahl. Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear
Equations. Dissertation, Johannes Kepler University Linz, Austria, 1995. 127, 128, 129

N. F. Stewart. Guaranteed error bounds for the initial value problem using polytope arithmetic. BIT,
11:328–337, 1971.

J. Stoer and R. Bulirsch. Introduction to Numerical Analysis, volume 12 of Texts in Applied Mathematics.
Springer, New York, 3rd edition, 2002. 13

N. Stolte and A. Kaufman. Parallel spatial enumeration of implicit surfaces using interval arithmetic
for octree generation and its direct visualisation. In Implicit Surfaces’98. The Third International
Workshop on Implicit Surfaces, pages 81–87, Seattle, 1998. 24

K. G. Suffern and E. D. Fackerell. Interval methods in computer graphics. Comput. Graph., 15(3):
331–340, 1991. 187

https://link.springer.com/article/10.1007/s10543-017-0679-4
https://link.springer.com/article/10.1007/s10543-017-0679-4
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2229


Bibliography 229

T. Sunaga. Theory of an interval algebra and its application to numerical analysis. RAAG Memoirs, 2:
29–46, 1958. 33, 151

A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press,
Berkeley, 2nd edition, 1951. 143

M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global optimization.
Math. Program., 103(2B):225–249, 2005. 165, 168

G. Trombettoni, Y. Papegay, G. Chabert, and O. Pourtallier. A box-consistency contractor based on
extremal functions. In D. Cohen, editor, Principles and Practice of Constraint Programming – CP
2010, volume 6308 of LNCS, pages 491–498. Springer, 2010. 157

G. Trombettoni, I. Araya, B. Neveu, and G. Chabert. Inner regions and interval linearizations for global
optimization. In W. Burgard and D. Roth, editors, Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2011, San Francisco, California, USA. AAAI Press, 2011. 164, 180

S. Vajda. Mathematical Programming. Addison-Wesley, Reading Mass., USA, 1961. 85, 96, 173

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–95, 1996. 105

A. A. Vatolin. On the problems of linear programming with integral coefficients. USSR Comput. Math.
Math. Phys., 4(11-12):18–23, 1984. 100

S. A. Vavasis. Nonlinear Optimization: Complexity Issues. Oxford University Press, New York, 1991. 111

C. Viegas, D. Daney, M. Tavakoli, and A. T. de Almeida. Performance analysis and design of parallel
kinematic machines using interval analysis. Mech. Mach. Theory, 115:218–236, 2017. 160

W. V. Walter. FORTRAN-XSC: A portable Fortran 90 module library for accurate and reliable scientific
computing. In R. Albrecht et al., editor, Validation Numerics: Theory and Applications, volume 9 of
Computing Suppl. 9, pages 265–285. Springer, Vienna, 1993. 37

K. Wang, A. N. Michel, and D. Liu. Necessary and sufficient conditions for the hurwitz and schur stability
of interval matrices. IEEE Trans. Autom. Control, 39(6):1251 –1255, 1994. 109

S. Wang, K. Wang, L. Wu, and C. Wang. Polar affine arithmetic: Optimal affine approximation and
operation development for computation in polar form under uncertainty. ACM Trans. Math. Softw.,
45(1):6:1–6:29, 2019. 138

M. Warmus. Calculus of approximations. Bull. Acad. Pol. Sci., Cl. III, 4:253–259, 1956. 33

M. E. Wieser, N. Holden, T. B. Coplen, J. K. Böhlke, M. Berglund, W. A. Brand, P. De Bièvre,
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