
Homeworks for Discrete and Continuous Optimization

(Milan Hladík, May 22, 2020)

1 Introduction. [deadline 15.4.] 52

Ex. 1.1 Which cuboid has maximal volume given a fixed surface area S? 6

Ex. 1.2 The hill has the shape of a cone, where the base is a circle with radius r and the
side edge has length s. We are situated at the bottom. Find the shortest roundtrip
around the hill such that we terminate at the same position we are situated. (We
do not ask to compute its length, but rather a trajectory.) 8

Ex. 1.3 Solve the optimization problem using the Euclidean norm

max cTx subject to ‖x‖2 ≤ 1, x ∈ R
n. 10

(Hint: You can guess the optimal solution and then prove its optimality.)

Ex. 1.4 (Generalization of the above exercise.)
Solve the optimization problem with A ∈ R

n×n positive definite

max cTx subject to xTAx ≤ 1, x ∈ R
n. 10

Ex. 1.5 Let two sets of points x1, . . . , xp ∈ R
n and y1, . . . , yq ∈ R

n be given.

(a) Formulate the problem of finding a (strictly) separating hyperplane as a feasi-
bility problem. 5

(b) Formulate the problem of finding a widest separating band as an optimization
problem. 5

Ex. 1.6 Let A = e and let b ∈ R
m be arbitrary (here, e = (1, . . . , 1)T is the vector of

ones). Solve the linear regression problem using ℓp-norm successively for p = 1, 2,∞.
Interpret your results. 8

2 Unconstrained optimization, convex sets. [deadline 15.4.] 52

Ex. 2.1 Let x1, . . . , xm ∈ R. Find the optimal solution (not the optimal value) of the opti-
mization problems

(a) mina∈R

∑m

i=1
(xi − a)2, 6

(b) mina∈R

∑m

i=1
|xi − a|. 6

Ex. 2.2 Let C ∈ R
n×n symmetric and nonsingular. Consider the optimization problem

min
x∈Rn

xTCx+ dTx.

(a) Analyse when the problem has the unique optimal solution, more optimal so-
lutions, and no optimal solution. In the first case, find the optimal solution.
In the second case, describe all optimal solutions. In the third case, find an
unbounded direction (i.e., a direction in which the objective function tends to
−∞). 10



(b) Let x∗ be an optimal solution. Compute the optimal value in time O(n). 6

(Hint: Elaborate with the optimality condition.)

Ex. 2.3 Let A,B ⊆ R
n be convex sets. Is the Minkowski sum A+B also convex? 6

What about the converse direction? 2

Ex. 2.4 Let P ∈ R
n×n be positive definite and x0 ∈ R

n. Prove that the ellipsoid {x ∈
R

n; (x− x0)TP (x− x0) ≤ 1} centered at x0 is a convex set. 6

Ex. 2.5 A point x ∈ M is an extreme point of set M ⊆ R
n if it is a convex combination of

no y, z ∈ M \ {x}.
(a) Find all extreme points of a square, a disc, a circular sector and an unbounded

icecream cone. 6

(b) Let M be a convex set. Prove that x is an extreme point if and only if M \ {x}
is convex. 4

3 Convex functions. [deadline 21.4. at 10:30] 52

Ex. 3.1 Show that a function that is both convex and concave is affine then. 6

Ex. 3.2 Prove the first order characterization of a strictly convex function. 8

Ex. 3.3 Let f : R 7→ R be convex and increasing. What you can say about f−1? 8

Ex. 3.4 Let f1, . . . , fk be convex functions on a convex set M ⊆ R
n. Prove that maxi=1,...,k fi(x)

is a convex function on M . 4

Ex. 3.5 Show convexity of the following functions:

(a)
x2
1

x2

on the set {x ∈ R
2; x2 > 0}, 8

(b) dM(x) := infy∈M ‖x−y‖, that is, the distance of a point to a convex set M ⊆ R
n,

8

(c) log(
∑n

i=1
exi) on the set x ∈ R

n. 10

4 Convex optimization. [deadline 28.4. at 10:30] 18

Ex. 4.1 Let ∅ 6= M ⊆ R
n be convex and suppose that function f : M → R is convex and

attains its maximum in an interior point of M . Prove that f(x) is constant on M

then. 6

Ex. 4.2 Suppose that the system Ax = b has infinitely many solutions and consider the
optimization problem

min ‖x‖p subject to Ax = b.

Depending on p ∈ {1, 2,∞} discuss the existence and uniqueness of an optimal
solution. In case of multiple optima, discuss what is the shape of the optimal solution
set and if it is bounded. (We do not ask to determine the optimal solution.) 6

Ex. 4.3 Denote by B(c, r) the Euclidean ball with center c ∈ R
n and radius r > 0. Formulate

as an optimization problem the problem of finding the smallest ball covering m given
balls B(ci, ri), i = 1, . . . , m. Is it a convex optimization problem? 6



5 Quadratic programming. [deadline 5.5. at 10:30] 32

Ex. 5.1 Consider the problem of computing the (minimum) distance between two polyhedra
described by Ax ≤ b and Cx ≤ d, respectively. Formulate it as an optimization
problem and classify it. 6

Ex. 5.2 Reformulate the convex quadratic programming problem

min (cTx)2 subject to Ax ≤ b

as a linear program. 6

Ex. 5.3 For given a ∈ R
n, b ∈ R solve the optimization problem

min
∑n

i=1
x2
i subject to aTx ≥ b, x ≥ 0. 10

Ex. 5.4 Let C ∈ R
n×n be positive definite. Show that the problem

min
x∈M

xTCx+ dTx

is equivalent to
min
x∈M

(x+ 1

2
C−1d)TC(x+ 1

2
C−1d). 10

6 Convex cone programming. [deadline 12.5. at 10:30] 52

Ex. 6.1 6In space R
n, find the dual cones to R

n, {0}, axis x1, and the positive half-axis of x1.

Ex. 6.2 Prove:

(a) (Rn
+)

∗ = R
n
+, 4

(b) L∗ = L (the Lorentz cone). 8

Ex. 6.3 Decide whether the generalized Lorentz cone L = {x ∈ R
n; xn ≥ ‖(x1, . . . , xn−1)‖}

is self-dual for the ℓ1-norm ‖ · ‖1 and maximum norm ‖ · ‖∞ defined as

‖v‖1 =
∑

i |vi|, ‖v‖∞ = maxi |vi|. 10

Ex. 6.4 6Construct the dual problem to the dual problem and compare to the primal problem.

Ex. 6.5 Express as second order cone constraints:

(a) xTQx ≤ t2, t ≥ 0, where Q is a positive semidefinite matrix, 6

(b)
√
xy ≥ t ≥ 0, x, y ≥ 0, 6

(c) x4 ≤ t. 6



7 KKT conditions. [deadline 19.5. at 10:30] 28

Ex. 7.1 Apply KKT conditions to a linear program min cTx subject to Ax ≤ b, and discuss
the assumptions. 6

Ex. 7.2 Write and discuss KKT conditions for a quadratic program

min xTCx subject to Ax ≤ b. 6

Ex. 7.3 Solve Ex. 1.1. by using KKT conditions. 6

Ex. 7.4 By using KKT conditions solve the following problem with given a ∈ R
n and b ∈ R

max
∑n

i=1
log(xi) subject to aTx ≤ b, x ≥ 0. 10

8 Methods. [deadline 26.5. at 10:30] 36

Ex. 8.1 Approximate function f(x) by a quadratic function q(x) such that they have the
same:

(a) function values and derivatives at point xk and the second derivatives at point
xk−1, 6

(b) function values at point xk and derivatives at points xk, xk−1. 6

Ex. 8.2 Consider the problem

min x2 + xy + y2 − 2y subject to x+ y = 2.

(a) Solve the problem directly. 2

(b) Solve the problem analytically by the penalty method and the square function
as the penalty function. What is the central path?
(That is, find the otimal solution depending on the penalty parameter and com-
pute its limit.) 6

Ex. 8.3 By the penalty method solve the problem

min x2

1 + 2x2

2 + 3x2

3 − 4x1 + 5x2 − 6x3 subject to x2

1 + x2

2 + x2

3 = 100.

Take the initial point x = (0, 0, 0)T and the square function as the penalty function.
Draw the central path approximation in the subspace of coordinates (x1, x2). For
solving the auxiliary (unconstrained) sub-problems, you can use a suitable software
(Matlab, Octave, Maple, . . . ) 8

Ex. 8.4 By the barrier method solve the problem

min x2

1 + 2x2

2 + 3x2

3 − 14x1 + 15x2 − 16x3 subject to x2

1 + x2

2 + x2

3 ≤ 100.

Take the initial point x = (0, 0, 0)T and the logarithmic barrier function. Draw the
central path approximation in the subspace of coordinates (x1, x2). For solving the
auxiliary (unconstrained) sub-problems, you can use a suitable software (Matlab,
Octave, Maple, . . . ) 8


