Exercise 10: LP & CO

- 1. Let G = (V, E) be a graph and let $\mathcal{I} = \{F \subseteq E \mid F \text{ is a matching in } G\}$. Give an example where (E, \mathcal{I}) is not a matroid.
- 2. Let $M = (E, \mathcal{I})$ be a matroid, and let $E' \subseteq E$. Define $\mathcal{I}' = \{I \cap E' \mid I \in \mathcal{I}\}$. Prove that (E', \mathcal{I}') is a matroid.
- 3. Let $M = (E, \mathcal{I})$ be a matroid, and $X \in \mathcal{I}$. Let $X' \supseteq X$ be an inclusion-wise maximal independent set. Prove that $|X'| = r_M(E)$, where $r_M(\cdot)$ is the rank function of M.
- 4. Using the description of matroid polytopes, prove that the spanning tree polytope of a graph has the following description

$$\left\{ x \mid x \ge 0, \sum_{e \in S} x_e \leqslant |S| - 1 \quad \forall S \subseteq V \right\}.$$

- 5. Prove that the following two definitions of a Matroid are equivalent.
 - **D1.** A matroid M is a pair (E, \mathcal{I}) consisting of a finite set E and $\mathcal{I} \subseteq 2^E$ satisfying:
 - (a) $\emptyset \in \mathcal{I}$.
 - (b) Let $X \in \mathcal{I}$. Then, for all $Y \subset X, Y \in \mathcal{I}$.
 - (c) Let $X, Y \in \mathcal{I}$ and |Y| > |X|. Then, there exists $e \in Y \setminus X$ such that $X \cup \{e\} \in \mathcal{I}$.
 - **D2.** A matroid M is a pair (E, \mathcal{I}) consisting of a finite set E and $\mathcal{I} \subseteq 2^E$ satisfying:
 - (a) $\emptyset \in \mathcal{I}$.
 - (b) Let $X \in \mathcal{I}$. Then, for all $Y \subset X, Y \in \mathcal{I}$.
 - (c) Let \mathcal{B} be the set of inclusion-wise maximal elements of \mathcal{I} . Let $X, Y \in \mathcal{B}$ be distinct and let $x \in X$. Then, there exists $y \in Y$ such that $X \setminus \{x\} \cup \{y\} \in \mathcal{B}$.