Exercise 7: LP \& CO

1. Let $G=(V, E)$ be a graph and let M and M^{\prime} be two matchings in G. Prove that $\left(V, M \triangle M^{\prime}\right)$ is a disjoint union of paths and cycles, where $A \triangle B$ is the symmetric difference of the two sets A and B.
2. Let $G=(V, E)$ be a graph and let $U \subset V$ be a set of odd cardinality and let $E[U]=\{\{u, v\} \in$ $E \mid u, v \in U\}$. Prove that $\sum_{e \in E[U]} x_{e} \leqslant \frac{|U|-1}{2}$ is a valid inequality for the matching polytope of G.
3. Let $G=(V, E)$ be a graph and let M, M^{\prime} be two distinct matchings in G.
a. Give a vector $\mathbf{c} \in \mathbb{R}^{|E|}$ such that M is the unique optimum of the LP: $\max \mathbf{c}^{\top} \mathbf{x}$ s.t. $\mathbf{x} \in \operatorname{PM}(G)$.
b. Prove that if $M \triangle M^{\prime}$ contains at least two components (disregarding isolated vertices) then there exist two matchings $M^{\prime \prime}$ and $M^{\prime \prime \prime}$ different from M and M^{\prime} such that $\chi^{(M)}+\chi^{\left(M^{\prime}\right)}=$ $\chi^{\left(M^{\prime \prime}\right)}+\chi^{\left(M^{\prime \prime \prime}\right)}$.
c. Prove that if $M \triangle M^{\prime}$ is a single component (disregarding isolated vertices) then there exists a vector $\mathbf{c} \in \mathbb{R}^{|E|}$ such that $\operatorname{conv}\left(\left\{M, M^{\prime}\right\}\right)$ is the set of optimal solutions of the LP: $\max \mathbf{c}^{\top} \mathbf{x}$ s.t. $\mathbf{x} \in \operatorname{PM}(G)$.
4. Prove that a tree can have at most one perfect matching.
5. Let G be a graph and M_{1}, M_{2} two maximal matchings in G. Prove that $\left|M_{1}\right| \leqslant 2 \cdot\left|M_{2}\right|$.
*6 Count the number of perfect matchings in the following graph.

