Exercise 7: LP & CO

- 1. Let G = (V, E) be a graph and let M and M' be two matchings in G. Prove that $(V, M \triangle M')$ is a disjoint union of paths and cycles, where $A \triangle B$ is the symmetric difference of the two sets A and B.
- 2. Let G = (V, E) be a graph and let $U \subset V$ be a set of odd cardinality and let $E[U] = \{\{u, v\} \in E | u, v \in U\}$. Prove that $\sum_{e \in E[U]} x_e \leq \frac{|U|-1}{2}$ is a valid inequality for the matching polytope of G.
- 3. Let G = (V, E) be a graph and let M, M' be two distinct matchings in G.
 - **a.** Give a vector $\mathbf{c} \in \mathbb{R}^{|E|}$ such that M is the unique optimum of the LP: max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ s.t. $\mathbf{x} \in \mathrm{PM}(G)$.
 - **b.** Prove that if $M \triangle M'$ contains at least two components (disregarding isolated vertices) then there exist two matchings M'' and M''' different from M and M' such that $\chi^{(M)} + \chi^{(M')} = \chi^{(M'')} + \chi^{(M''')}$.
 - **c.** Prove that if $M \triangle M'$ is a single component (disregarding isolated vertices) then there exists a vector $\mathbf{c} \in \mathbb{R}^{|E|}$ such that $\operatorname{conv}(\{M, M'\})$ is the set of optimal solutions of the LP: $\max \mathbf{c}^{\intercal} \mathbf{x}$ s.t. $\mathbf{x} \in \operatorname{PM}(G)$.
- 4. Prove that a tree can have at most one perfect matching.
- 5. Let G be a graph and M_1, M_2 two maximal matchings in G. Prove that $|M_1| \leq 2 \cdot |M_2|$.
- *6 Count the number of perfect matchings in the following graph.

