Exercise 5: LP & CO

Problems marked with * are homeworks. Solutions must be submitted by 11.04.2024 15:39 pm using postal owl.

- 1. Let P be the (primal) LP: max $c^{\intercal}x$ s.t. $Ax \leq b, x \geq 0$, and let D be its dual LP. Prove that the dual of D is P.
- 2. Write the dual for each of the following forms of LP (For P_2, P_3 derive them by first converting them to the standard form P_1):

\mathbf{P}_1 :	\max	$c^\intercal x$	\mathbf{P}_2 :	\max	$c^\intercal x$	P ₃ :	\max	$c^\intercal x$
	s.t.	$A \boldsymbol{x} \leqslant b$		s.t.	$A \boldsymbol{x} \leqslant b$		s.t.	$A \boldsymbol{x} = b$
		$\boldsymbol{x} \geqslant 0$						$\boldsymbol{x} \geqslant 0$

P:

3. Consider the following LP:

\max	$2x_1 + 3x_2$	
s.t.	$4x_1 + 8x_2$	≤ 12
	$2x_1 + x_2$	$\leqslant 3$
	$3x_1 + 2x_2$	$\leqslant 4$
	x_1, x_2	$\geqslant 0$

- **a.** Write the dual LP.
- **b.** Solve P and the dual by the Simplex method.
- 4. Consider the following LP:

- *(a) Write the dual LP.
- (b) Let $(x^{\intercal}, y^{\intercal}, z^{\intercal})^{\intercal}$ and $(u^{\intercal}, v^{\intercal}, w^{\intercal})^{\intercal}$ be arbitrary primal and dual feasible solutions. Prove that

$$b_1^{\mathsf{T}}u + b_2^{\mathsf{T}}v + b_3^{\mathsf{T}}w \leqslant c_1^{\mathsf{T}}x + c_2^{\mathsf{T}}y + c_3^{\mathsf{T}}z.$$

5. (Complimentary slackness) Let P be the (primal) LP: $\max c^{\intercal} x \text{s.t.} Ax \leq b, x \geq 0$, and let D be its dual LP. Let x, y be their respective optimal solution. Then prove that:

a. $x_i > 0 \implies$ the *i*-th constraint in D in satisfied with equality.

b. $y_j > 0 \implies$ the *j*-th constraint in P is satisfied with equality.

6. Let $P = \{x | Ax \leq b, x \geq 0\}$ be a polyhedron and let $\alpha^{\intercal} x \leq \beta$ be a valid inequality for P. Consider the following two LPs:

- **a.** Prove that P_1 is equivalent to P_2 . That is, \boldsymbol{x} is an optimal solution of P_1 iff it is an optimal solution of P_2 .
- **b.** Write the dual LP for each of the two programs above.
- **c.** Are the two dual LPs equivalent as well?