Exercise 5: LP \& CO

Problems marked with * are homeworks. Solutions must be submitted by 11.04.2024 15:39 pm using postal owl.

1. Let P be the (primal) LP: $\max c^{\boldsymbol{\top}} x$ s.t. $A x \leqslant b, x \geqslant 0$, and let D be its dual LP. Prove that the dual of D is P.
2. Write the dual for each of the following forms of LP (For P_{2}, P_{3} derive them by first converting them to the standard form P_{1}):

| $\mathbf{P}_{1}:$ | \max | $\boldsymbol{c}^{\boldsymbol{\top}} \boldsymbol{x}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| s.t. | $A \boldsymbol{x} \leqslant b$ | |
| | $\boldsymbol{x} \geqslant 0$ | |\(\left|\begin{array}{lll}\mathbf{P}_{2}: \& \max \& \boldsymbol{c}^{\boldsymbol{\top}} \boldsymbol{x}

\& s.t. \& A \boldsymbol{x} \leqslant b\end{array}\right|\)| | | |
| :--- | :--- | :--- |
| | | |
| | | |
| | | |
| | s.t. \boldsymbol{x} | $A \boldsymbol{x}=b$ |
| | $\boldsymbol{x} \geqslant 0$ | |

3. Consider the following LP:

$$
\begin{array}{lll}
\text { P: } & \max & 2 x_{1}+3 x_{2} \\
& \text { s.t. } & 4 x_{1}+8 x_{2} \leqslant 12 \\
& 2 x_{1}+x_{2} & \leqslant 3 \\
& 3 x_{1}+2 x_{2} \leqslant 4 \\
& x_{1}, x_{2} & \geqslant 0
\end{array}
$$

a. Write the dual LP.
b. Solve P and the dual by the Simplex method.
4. Consider the following LP:

$$
\begin{array}{lrrrr}
\max & \boldsymbol{c}_{1}^{\top} \boldsymbol{x} & \boldsymbol{c}_{2}^{\top} \boldsymbol{y} & \boldsymbol{c}_{3}^{\top} \boldsymbol{z} & \\
\text { s.t. } & \boldsymbol{A}_{11} \boldsymbol{x} & +\boldsymbol{A}_{12} \boldsymbol{y} & +\boldsymbol{A}_{13} \boldsymbol{z} & =\boldsymbol{b}_{1} \\
& \boldsymbol{A}_{21} \boldsymbol{x} & +\boldsymbol{A}_{22} \boldsymbol{y} & +\boldsymbol{A}_{23} \boldsymbol{z} & \geqslant \boldsymbol{b}_{2} \\
& \boldsymbol{A}_{31} \boldsymbol{x} & +\boldsymbol{A}_{32} \boldsymbol{y} & +\boldsymbol{A}_{33} \boldsymbol{z} & \leqslant \boldsymbol{b}_{3} \\
& \boldsymbol{x} & & & \geqslant \mathbf{0} \\
& & \boldsymbol{y} & & \leqslant \mathbf{0} \\
& & & \boldsymbol{z} & \text { free }
\end{array}
$$

*(a) Write the dual LP.
(b) Let $\left(\boldsymbol{x}^{\boldsymbol{\top}}, \boldsymbol{y}^{\boldsymbol{\top}}, \boldsymbol{z}^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}}$ and $\left(\boldsymbol{u}^{\boldsymbol{\top}}, \boldsymbol{v}^{\boldsymbol{\top}}, \boldsymbol{w}^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}}$ be arbitrary primal and dual feasible solutions. Prove that

$$
b_{1}^{\top} \boldsymbol{u}+b_{2}^{\top} v+b_{3}^{\top} w \leqslant c_{1}^{\top} \boldsymbol{x}+\boldsymbol{c}_{2}^{\top} \boldsymbol{y}+\boldsymbol{c}_{3}^{\top} z
$$

5. (Complimentary slackness) Let P be the (primal) LP: $\max c^{\boldsymbol{\top}} x$ s.t. $A x \leqslant b, x \geqslant 0$, and let D be its dual LP. Let x, y be their respective optimal solution. Then prove that:
a. $x_{i}>0 \Longrightarrow$ the i-th constraint in D in satisfied with equality.
b. $y_{j}>0 \Longrightarrow$ the j-th constraint in P is satisfied with equality.
6. Let $P=\{x \mid A \boldsymbol{x} \leqslant b, \boldsymbol{x} \geqslant 0\}$ be a polyhedron and let $\alpha^{\boldsymbol{\top}} \boldsymbol{x} \leqslant \beta$ be a valid inequality for P. Consider the following two LPs:

$$
\begin{array}{ll|ll}
\mathbf{P}_{1}: & \max & \boldsymbol{c}^{\boldsymbol{\top}} \boldsymbol{x} & \mathbf{P}_{2}: \\
& \text { max } & \boldsymbol{c}^{\boldsymbol{\top}} \boldsymbol{x} \\
& \text { s.t. } & A \boldsymbol{x} \leqslant b & \\
& & \text { s.t. } & A \boldsymbol{x} \leqslant b \\
& \boldsymbol{x} \geqslant 0 & & \\
& \alpha^{\top} \boldsymbol{x} \leqslant \beta \\
& \boldsymbol{x} \geqslant 0
\end{array}
$$

a. Prove that P_{1} is equivalent to P_{2}. That is, \boldsymbol{x} is an optimal solution of P_{1} iff it is an optimal solution of P_{2}.
b. Write the dual LP for each of the two programs above.
c. Are the two dual LPs equivalent as well?

