- **1.** A set S is called convex if for every $x, y \in S$ it holds that $t \in [0, 1] \implies tx + (1 t)y \in S$.
 - (a) Prove that the set of feasible solutions of any Linear Program is convex.
 - (b) Prove that if an LP has two distinct optimal solutions then it has infinitely many optimal solutions.
- **2.** Let $x_1, x_2, x_3 \in \{0, 1\}$. Write a linear constraint enforcing the condition that not all of them are zero.
- **3.** Let G = (V, E) be a graph. Write an Integer Linear Program that computes the size of the largest independent set of G.
- **4.** Let Φ be a 3-CNF formula with *n* variables and *m* clauses.
 - **a.** Write an Integer Program for deciding whether or not Φ is satisfiable.
 - **b.** What is the size of your IP? Try to make it as small as you can.
 - c. Can you make a plausibility argument as to why you can't make your IP using $o(n/\log n)$ variables? (Hint: Look up Exponential Time Hypothesis (ETH) and LLL algorithm for IP)
- (HW) 5. Let x^* be an optimal solution of the LP relaxation of an IP. Prove that if x^* is integral then it is also an optimal solution of the IP.
 - 6. Consider three classes of problems LP_1, LP_2 , and LP_3 defined by (general) instances as below: LP_1 : max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ LP_2 : $\max \mathbf{c}^{\mathsf{T}}\mathbf{x}$ LP_3 : max $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ $A_1 \mathbf{x} \leq b_1$ $A_2 \mathbf{x} \leqslant b_2$ s.t. s.t. s.t. $A_3\mathbf{x} = b_3$ $\mathbf{x} \ge 0$ $\mathbf{x} \geqslant 0$
 - **a.** Prove that if there exists an algorithm to solve an arbitrary instance of LP₃ in time polynomial in the size of the input matrix A_3 , then there exists an algorithm to solve an abitrary instance of LP₁ in time polynomial in the size of the input matrix A_1 as well.
 - **b.** Prove that if there exists an algorithm to solve an arbitrary instance of LP_3 is time polynomial in the size of the input matrix A_3 , then there exists an algorithm to solve an abitrary instance of LP_2 in time polynomial in the size of the input matrix A_2 as well.
 - **c.** Is it okay to ignore the length of the vectors b_i and the number of variables in the above questions?
 - 7. Prove that the following integer programs can be equivalently reformulated as 0/1 integer programs. Try to use as few extra variables as you can.
 - a.

$$\max c^{\mathsf{T}} x$$

s.t. $Ax \leq b$
 $x_i \in S$

Where S is an arbitrary set of real numbers and |S| = k.

b.

$$\max c^{\mathsf{T}} x$$

s.t. $Ax \leq b$
 $0 \leq x_i \leq M$
 $x_i \in \mathbb{Z}$

8. Let $LP(c_1, c_2)$ denote the following LP:

$$\max c_1 x_1 + c_2 x_2$$

s.t.
$$\begin{pmatrix} -1 & 0\\ 0 & -1\\ -1 & 1\\ 1 & 6\\ 4 & -1 \end{pmatrix} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \leqslant \begin{pmatrix} 0\\ 0\\ 1\\ 15\\ 10 \end{pmatrix}$$

- (a) Prove that if (x_1, x_2) is a feasible solution for LP(1, 1) then $x_2 \leq \frac{16}{7}$ and $x_1 \leq \frac{11}{3}$. (Hint: What can we deduce about a feasible solution using the third and fourth constraints?)
- (b) Prove that any optimal solution for LP(1,1) has an objective value of at most 5.
- (c) Prove that any optimal solution for $LP(\frac{1}{6}, 1)$ has an objective value of at most $\frac{5}{2}$.
- (d) Describe the set of all optimal solutions of $LP(\frac{1}{6}, 1)$. Derive your result only using algebra and logic (i.e. avoid drawing pictures). (Hint: Consider the set of all feasible points that satisfy the fourth constraint with equality. If this set is non-empty then the set of optimal solutions is exactly this set. Why?)
- **9.** Let LP(c, A, b) be the LP:

$$\max c^{\mathsf{T}}x \text{ s.t. } Ax \leq b,$$

where A is an $m \times n$ matrix and the other vectors have appropriate sizes. Suppose $\lambda \in \mathbb{R}^m$ be any vector such that $A^{\mathsf{T}}\lambda = c; \lambda \ge 0$. Prove that any feasible solution of LP(c, A, b) (and hence any optimal solution) has the objective value at most $b^{\mathsf{T}}\lambda$. (Hint: Use your reasoning from 8. (a)-(c).)