Contents

1 Introduction and basic concepts 1
1.1 An assortment of problems 2
1.2 Numbers and sets: notation 7
1.3 Mathematical induction and other proofs 16
1.4 Functions 25
1.5 Relations 32
1.6 Equivalences and other special types of relations 36
2 Orderings 43
2.1 Orderings and how they can be depicted 43
2.2 Orderings and linear orderings 48
2.3 Ordering by inclusion 52
2.4 Large implies tall or wide 55
3 Combinatorial counting 59
3.1 Functions and subsets 59
3.2 Permutations and factorials 64
3.3 Binomial coefficients 67
3.4 Estimates: an introduction 78
3.5 Estimates: the factorial function 85
3.6 Estimates: binomial coefficients 93
3.7 Inclusion-exclusion principle 98
3.8 The hatcheck lady \& co. 103
4 Graphs: an introduction 109
4.1 The notion of a graph; isomorphism 109
4.2 Subgraphs, components, adjacency matrix 118
4.3 Graph score 125
4.4 Eulerian graphs 130
4.5 Eulerian directed graphs 138
4.6 2-connectivity 143
4.7 Triangle-free graphs: an extremal problem 148
5 Trees 153
5.1 Definition and characterizations of trees 153
5.2 Isomorphism of trees 159
5.3 Spanning trees of a graph 166
5.4 The minimum spanning tree problem 170
5.5 Jarník's algorithm and Borůvka's algorithm 176
6 Drawing graphs in the plane 182
6.1 Drawing in the plane and on other surfaces 182
6.2 Cycles in planar graphs 190
6.3 Euler's formula 196
6.4 Coloring maps: the four-color problem 206
7 Double-counting 217
7.1 Parity arguments 217
7.2 Sperner's theorem on independent systems 226
7.3 An extremal problem: forbidden four-cycles 233
8 The number of spanning trees 239
8.1 The result 239
8.2 A proof via score 240
8.3 A proof with vertebrates 242
8.4 A proof using the Prüfer code 245
8.5 Proofs working with determinants 247
8.6 The simplest proof? 258
9 Finite projective planes 261
9.1 Definition and basic properties 261
9.2 Existence of finite projective planes 271
9.3 Orthogonal Latin squares 277
9.4 Combinatorial applications 281
10 Probability and probabilistic proofs 284
10.1 Proofs by counting 284
10.2 Finite probability spaces 291
10.3 Random variables and their expectation 301
10.4 Several applications 307
11 Order from disorder: Ramsey's theorem 317
11.1 A party of six 318
11.2 Ramsey's theorem for graphs 319
11.3 A lower bound for the Ramsey numbers 321
12 Generating functions 325
12.1 Combinatorial applications of polynomials 325
12.2 Calculation with power series 329
12.3 Fibonacci numbers and the golden section 340
12.4 Binary trees 348
12.5 On rolling the dice 353
12.6 Random walk 354
12.7 Integer partitions 357
13 Applications of linear algebra 364
13.1 Block designs 364
13.2 Fisher's inequality 369
13.3 Covering by complete bipartite graphs 373
13.4 Cycle space of a graph 376
13.5 Circulations and cuts: cycle space revisited 380
13.6 Probabilistic checking 384
Appendix: Prerequisites from algebra 395
Bibliography 402
Hints to selected exercises 407
Index 433

