ter Rojas/Tiwary/Tyomkyn		Date: 03.12.2025
	™.T	

Quiz 8, Points: 8, Time: 10min

Problem 1. Define the line graph L(G) of a graph and prove that the number of edges in L(G) equals $\sum_{v \in V(G)} \binom{d_G(v)}{2}$ where $d_G(v)$ is the degree of v in G.

Solution. For any vertex v all the edges incident to v are pairwise connected by an edge in L(G). This contributes $\binom{d_G(v)}{2}$ edges to the total number of edges in L(G). Furthermore, every edge $\{e,e'\}$ in L(G) is contributed this was from the unique vertex in $e \cap e'$. The total count follows by summing the contribution from each vertex. \square