Quiz 4, Points: 8, Time: 10min
Date: 29.10.2025

Name:		

Problem 1. Define "maximum element" and "maximal element" of a poset.

Solution. Let $P = (X, \preceq)$ be a poset. An element $a \in X$ is called a maximum element if $\forall x \in X : x \preceq a$. An element $a \in X$ is called a maximal element if $\nexists x \in X : x \neq a \land a \preceq x$. \square

Problem 2. Prove that a maximum element of a poset – if it exists – is also a maximal element.

Solution. Let $P=(X, \preceq)$ be a poset and let $a \in X$ be a maximum element. Suppose a is not a maximal element. This means that $\exists x \in X : x \neq a \land a \preceq x$. Since a is maximum we have $x \preceq a$. But then by antisymmetry x=a, a contradiction. \square