Quiz 3,	Points:	8,	Ti	me:	10min
	Ι	Oat	e:	22.1	0.2025

Problem 1. Consider the relation R defined on \mathbb{Z} as follows: $(x,y) \in R \iff x+y$ is even.

- 1. Prove that R is an equivalence relation.
- 2. What are the equivalence classes of R?

Solution.

1. Reflexivity: For all $x \in \mathbb{Z}$, x + x = 2x which is even. So, for all $x \in \mathbb{Z}$, $(x, x) \in R$.

Symmetry: Let $(x, y) \in R$. Then x + y is even. So y + x is even. So $(y, x) \in R$.

Transitivity: Let $(x, y), (y, z) \in R$.

If x is odd, then since x + y is even, y is odd. Then, since y + z is even z is odd. Since x, z are both odd, x + z is even.

If x is even, then since x + y is even, y is also even. Then, since y + z is even, z is also even. Since both x, z is even, x + z is even.

So whether x is odd or even, if $(x, y), (y, z) \in R, x + z$ is even, that is, $(x, z) \in R$.