Quiz	2,	Points:	8,	Ti	ime:	10m	$_{ m in}$
		I	Dat	te:	15.1	0.20	25

Problem 1. Prove by mathematical induction that for all natural numbers n, $6n^2 + 2n$ is divisible by 4.

Solution. Base case: For $n=0, 6n^2+2n=0$ which is divisible by 4. Inductive step: Suppose $6n^2+2n$ is divisible by 4. That is $\exists r \in \mathbb{Z} : 6n^2+2n=4r$. Now $6(n+1)^2+2(n+1)=6(n^2+2n+1)+2n+2=6n^2+2n+12n+8=4r+4(3n+2=4(r+3n+2)$ which is divisible by 4. \square