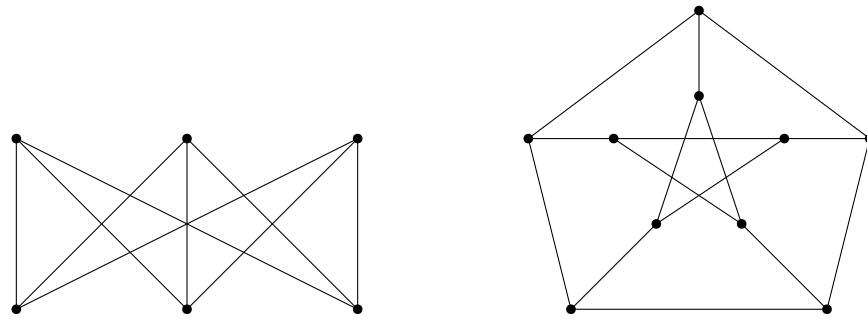


Problem 1. Find the chromatic number of P_n , C_n and K_n for all value of n .

Solution. P_n is bipartite and hence has chromatic number 2 for each value of n . Similarly for cycles of even length. But what happens for C_n where n is odd? Well, we can definitely use 3 colors, since taking out 1 vertex leaves us with a path of even length which can be colored with two colors so assigning a third color to the vertex we took out doesn't cause problems. If we want to color it in two colors however, we run into a problem. Start by assigning first color to any vertex. The rest of the graph is a path of even length whose endpoints have the same color, but such a coloring of a path of even length is clearly impossible. \square

Problem 2. Find the chromatic number of the graphs in pictures.



Solution. The graph on the left is 2-colorable since it's bipartite. Graph on the right is 3-colorable. Also three colors are needed because the graph contains an odd cycle. \square

Problem 3. We say that a graph G on n vertices is k -degenerate if each **induced** subgraph H of G contains a vertex of degree at most k . Show that a graph is k -degenerate iff each subgraph contains a vertex of degree at most k .

Solution. Let G be a k -degenerate graph and H a subgraph of G . Then, the subgraph induced by $V(H)$ has a vertex u of degree at most k . Since $u \in V(H)$, degree of u in H is also at most k . Other direction is easier. If every subgraph has a vertex of degree at most k then so does every induced subgraph since an induced subgraph is a subgraph. \square

Problem 4. Show that there is no graph G , such that G has 6 vertices and 13 edges and $\chi(G) \leq 3$.

Solution. Any graph G with 6 vertices and 13 edges is K_6 with two edges taken out. If the two edges share a vertex, then G contains a copy of K_5 so it needs at least 5 colors. If the edges do not share a vertex, then it contains a copy of K_4 . \square

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that $\chi(G) \leq 5$.

Solution. We can assume that G contains at least one odd cycle C . Then we can color C in 3 colors. Further, since every two odd cycles in G contain at least one vertex in common, we know that $G - V(C)$ contains no odd cycles and is 2-colorable. The result follows. \square

Problem 6. Show that a graph G on n vertices is k -degenerate if and only if admits a linear ordering $v_1 < v_2 < \dots < v_n$ on the vertices such that each v_i forms at most k edges with vertices coming before it in the ordering.

Solution. \Leftarrow : Let G be a graph with according ordering. Let H be an induced subgraph of G . Then consider the maximal vertex in H with respect to the ordering, call it u . Then u has at most k vertices adjacent to it in H since all of them are smaller in the ordering. \Rightarrow : Since every induced subgraph of G has a vertex of degree at most k , so does G . So we let this vertex be the last one in the ordering, i.e we label it v_n . Then for each $i = n-1, \dots, 1$, we say that v_i is the vertex of degree at most k in $G - \{v_n, \dots, v_{i+1}\}$. It is easy to check that this gives the desired ordering. \square

Problem 7. Let G be a planar, triangle-free graph. Use Euler theorem to prove that G contains a vertex of degree at most three. Then use this to prove that $\chi(G) \leq 4$.

Solution. First we know that by Euler's formula, $v - e + f = 2$. Then, since each face is bounded by at least 4 edges, it follows that $\frac{4f}{2} < 2e \implies 2f < e \implies v > \frac{e}{2} + 2$. Now, if we assume that each vertex has degree at least 4, we obtain by a similar simple calculation that $v < \frac{e}{2}$ giving us a contradiction. Now for the second part we proceed by induction on the number of vertices in G . The result obviously holds for graphs with a single vertex. Assume that it also holds for graphs with n vertices. In this case consider a planar, triangle-free graph with $n+1$ vertices. It has a vertex v of degree at most 3. Then consider the graph $G - v$, obtained by removing v from G . By inductive assumption it can be 4-colored. Then when we add back v , we can color it in one of the colors as its neighbours can have at most 3 distinct colors.

\square