Problem 1. Use induction to prove the following statements:

1. $(H W) \forall n \in \mathbb{N}, 5^{n}-1$ is divisible by 4 .
2. $\forall n \in \mathbb{N}, 2^{n} \leq(n+1)$!.

Solution.

1. The statement is clearly true for $n=1$, so we can assume that for $n, 5^{n}=4 m+1$ for some value of m. Then $5^{n+1}-1=5(4 m+1)-1=20 m+5-1=4(5 m+1)$. Finishing the proof.
2. The statment is clearly true for $n=1$, so we can assume that for $n, 2^{n} \leq(n+1)!$. We want to show that $2^{n+1} \leq(n+2)!$. But $2^{n+1}=2 \cdot 2^{n}$ and $(n+2)!=(n+2) \cdot(n+1)$!. Clearly $2<n+2$ and by inductive hypothesis $2^{n} \leq(n+1)$!, so the result follows.

Problem 2. Let a relation \sqsubseteq on $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ be defined as $(a, b) \sqsubseteq(c, d)$ if $a d \leq c b$. Is $\sqsubseteq a$ partial order?

Solution. It is not a partial order, antysimmetry fails for $(4,2)$ and $(6,3)$.
Problem 3. Let a_{1}, \ldots, a_{n} be n integers which are not necessarily distinct. Prove that there is always a set of consecutive numbers $a_{k}, a_{k+1}, \ldots, a_{l}$ whose sum is a multiple of n. Hint: Define a function sending $m \in\{1, \ldots, n\}$ to the remainder of $\sum_{i=1}^{m} a_{i}$ when divided by n. Then use pigeonhole principle.

Solution. Define a function f from $\{1, \ldots, n\}$ to $\{0,1, \ldots, n-1\}$ by sending m to the remainder of $\sum_{i=1}^{m} a_{i}$ when divided by n. Then it's clear that there are k, l such that $f(k)=$ $f(l)$. Then $\sum_{i=k+1}^{l} a_{i}$ has remainder 0 when divided by n.

Problem 4. Prove that $E\left[X^{2}\right] \geq(E[X])^{2}$ holds for any random variable X.
Solution. Calculate the expected value $E\left((X-E(X))^{2}\right)=E\left(X^{2}-2 X E(X)+E(X)^{2}\right)=$ $E\left(X^{2}\right)-E(X)^{2}$. Since $(X-E(X))^{2}$ is a positive random variable, it's expected value is positive. The result follows.

Problem 5. Euler's formula $(v-e+f=2)$ holds for all connected planar graphs. What if a graph is not connected? Suppose a planar graph has two components. What is the value of $v-e+f$ now? What if it has k components?

Solution. The formula is $v-e+f=k+1$. For each component we have $v_{i}-e_{i}+f_{i}=$ $2 \Longrightarrow v-e+f=2 k$. But, the external face has been counted k times, once for each component so we get the actual solution by substracting the $k-1$ additional counts.

Problem 6. Let R be a relation over a set X. The symmetric closure of R is the relation $R \cup R^{-1}$. The transitive closure of R is the smallest superset of R that is transitive.

1. Prove that the symmetric closure of R is the smallest superset of R that is symmetric.
2. Prove that the transitive closure of R is $\bigcup_{i=1}^{\infty} R^{i}$, where $R^{1}=R$ and $R^{i+1}=R \circ R^{i}$.
3. Prove that the transitive closure of a symmetric relation is symmetric.
4. Prove that the symmetric closure of a transitive relation need not be transitive.

Problem 7. Prove that if you color the edges of K_{6} in red and blue, you are guarteed to have a monochromatic triangle.

Solution. Assume we are coloring the edges of K_{6} in blue and red. Let v be a vertex of K_{6}. Then v has 5 edges adjacent to it. Thus at least three of these edges must be colored red. Then the picture below finishes the proof:

Figure 1: If any edge between two adjacent edges is red, we get a red triangle, otherwise we get a blue one.

Problem 8. Let \mathcal{R}_{n} be the set of all relations over the set $[n]$. A relation R is picked from \mathcal{R}_{n} uniformly at random.

1. What is the probability that R is reflexive?
2. What is the probability that R is symmetric?
3. (HW) Are the events " R is reflexive" and " R is symmetric" independent?
4. (HW) Define the set $E_{R}:=\{\{i\} \cup\{j\} \mid(i, j) \in R\}$. What is the probability that $\left([n], E_{R}\right)$ is a (simple undirected) graph?
5. (HW) Define $X: \mathcal{R}_{n} \rightarrow \mathbb{N}$ as follows:

$$
X(R)= \begin{cases}|R|, & \text { if } R \text { is reflexive } \\ 0, & \text { otherwise }\end{cases}
$$

What is the expected value of X ?

Solution.

1. We first count the number of reflexive relations on $[n]$. A reflexive relation must contain all n elements of the form (a, a) and any of the other $n^{2}-n$ elements. Thus there is $2^{n^{2}-n}$ reflexive relations. And as there is $2^{n^{2}}$ total relations, it follows that the wanted probability is 2^{-n}.
2. We count the number of symmetric relations and leave the rest for the reader. If a relation is symmetric then $(i, j) \in R \Longrightarrow(j, i) \in R$. So we can have any of the n pairs (a, a) and for the rest we have $n^{2} / 2-n$ total options that we can choose since whenever we add (i, j) we automatically add (j, i) as well. Thus the total number is $2^{n} \cdot 2^{\frac{n^{2}-n}{2}}$.
