
Discrete Math Tutorial 12
Todor Antić/Hans Raj Tiwary HW Due: 13.01.2024

Problem 1. Use induction to prove the following statements:

1. (HW) ∀n ∈ N, 5n − 1 is divisible by 4.

2. ∀n ∈ N, 2n ≤ (n+ 1)!.

Solution.

1. The statement is clearly true for n = 1, so we can assume that for n, 5n = 4m+ 1 for
some value of m. Then 5n+1−1 = 5(4m+1)−1 = 20m+5−1 = 4(5m+1). Finishing
the proof.

2. The statment is clearly true for n = 1, so we can assume that for n, 2n ≤ (n+1)!. We
want to show that 2n+1 ≤ (n+ 2)!. But 2n+1 = 2 · 2n and (n+ 2)! = (n+ 2) · (n+ 1)!.
Clearly 2 < n+ 2 and by inductive hypothesis 2n ≤ (n+ 1)!, so the result follows.

□

Problem 2. Let a relation ⊑ on R≥0 × R≥0 be defined as (a, b) ⊑ (c, d) if ad ≤ cb. Is ⊑ a
partial order?

Solution. It is not a partial order, antysimmetry fails for (4, 2) and (6, 3). □

Problem 3. Let a1, ..., an be n integers which are not necessarily distinct. Prove that there
is always a set of consecutive numbers ak, ak+1, ..., al whose sum is a multiple of n. Hint:
Define a function sending m ∈ {1, ..., n} to the remainder of

∑m
i=1 ai when divided by n.

Then use pigeonhole principle.

Solution. Define a function f from {1, ..., n} to {0, 1, ..., n − 1} by sending m to the
remainder of

∑m
i=1 ai when divided by n. Then it’s clear that there are k, l such that f(k) =

f(l). Then
∑l

i=k+1 ai has remainder 0 when divided by n. □

Problem 4. Prove that E[X2] ≥ (E[X])2 holds for any random variable X.

Solution. Calculate the expected value E((X−E(X))2) = E(X2−2XE(X)+E(X)2) =
E(X2) − E(X)2. Since (X − E(X))2 is a positive random variable, it’s expected value is
positive. The result follows. □

Problem 5. Euler’s formula (v − e + f = 2) holds for all connected planar graphs. What
if a graph is not connected? Suppose a planar graph has two components. What is the value
of v − e+ f now? What if it has k components?

Solution. The formula is v − e+ f = k + 1. For each component we have vi − ei + fi =
2 =⇒ v − e + f = 2k. But, the external face has been counted k times, once for each
component so we get the actual solution by substracting the k − 1 additional counts. □
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Problem 6. Let R be a relation over a set X. The symmetric closure of R is the relation
R ∪R−1. The transitive closure of R is the smallest superset of R that is transitive.

1. Prove that the symmetric closure of R is the smallest superset of R that is symmetric.

2. Prove that the transitive closure of R is
⋃∞

i=1 R
i, where R1 = R and Ri+1 = R ◦Ri.

3. Prove that the transitive closure of a symmetric relation is symmetric.

4. Prove that the symmetric closure of a transitive relation need not be transitive.

Problem 7. Prove that if you color the edges of K6 in red and blue, you are guarteed to
have a monochromatic triangle.

Solution. Assume we are coloring the edges of K6 in blue and red. Let v be a vertex of
K6. Then v has 5 edges adjacent to it. Thus at least three of these edges must be colored
red. Then the picture below finishes the proof:

Figure 1: If any edge between two adjacent edges is red, we get a red triangle, otherwise we
get a blue one.

□

Problem 8. Let Rn be the set of all relations over the set [n]. A relation R is picked from
Rn uniformly at random.

1. What is the probability that R is reflexive?

2. What is the probability that R is symmetric?

3. (HW) Are the events ”R is reflexive” and ”R is symmetric” independent?

4. (HW) Define the set ER := {{i} ∪ {j} | (i, j) ∈ R}. What is the probability that
([n], ER) is a (simple undirected) graph?
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5. (HW) Define X : Rn → N as follows:

X(R) =

{
|R|, if R is reflexive

0, otherwise

What is the expected value of X?

Solution.

1. We first count the number of reflexive relations on [n]. A reflexive relation must contain
all n elements of the form (a, a) and any of the other n2 − n elements. Thus there is
2n

2−n reflexive relations. And as there is 2n
2
total relations, it follows that the wanted

probability is 2−n.

2. We count the number of symmetric relations and leave the rest for the reader. If a
relation is symmetric then (i, j) ∈ R =⇒ (j, i) ∈ R. So we can have any of the n
pairs (a, a) and for the rest we have n2/2 − n total options that we can choose since
whenever we add (i, j) we automatically add (j, i) as well. Thus the total number is

2n · 2n2−n
2 .

□
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