Problem 1. Use induction to prove the following statements:

- 1. (HW) $\forall n \in \mathbb{N}, 5^n 1$ is divisible by 4.
- 2. $\forall n \in \mathbb{N}, 2^n \leq (n+1)!$.

Solution.

- 1. The statement is clearly true for n = 1, so we can assume that for n, $5^n = 4m + 1$ for some value of m. Then $5^{n+1} 1 = 5(4m+1) 1 = 20m + 5 1 = 4(5m+1)$. Finishing the proof.
- 2. The statement is clearly true for n = 1, so we can assume that for $n, 2^n \leq (n+1)!$. We want to show that $2^{n+1} \leq (n+2)!$. But $2^{n+1} = 2 \cdot 2^n$ and $(n+2)! = (n+2) \cdot (n+1)!$. Clearly 2 < n+2 and by inductive hypothesis $2^n \leq (n+1)!$, so the result follows.

Problem 2. Let a relation \sqsubseteq on $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ be defined as $(a, b) \sqsubseteq (c, d)$ if $ad \leq cb$. Is $\sqsubseteq a$ partial order?

Solution. It is not a partial order, antysimmetry fails for (4, 2) and (6, 3).

Problem 3. Let $a_1, ..., a_n$ be n integers which are not necessarily distinct. Prove that there is always a set of consecutive numbers $a_k, a_{k+1}, ..., a_l$ whose sum is a multiple of n. Hint: Define a function sending $m \in \{1, ..., n\}$ to the remainder of $\sum_{i=1}^{m} a_i$ when divided by n. Then use pigeonhole principle.

Solution. Define a function f from $\{1, ..., n\}$ to $\{0, 1, ..., n-1\}$ by sending m to the remainder of $\sum_{i=1}^{m} a_i$ when divided by n. Then it's clear that there are k, l such that f(k) = f(l). Then $\sum_{i=k+1}^{l} a_i$ has remainder 0 when divided by n. \Box

Problem 4. Prove that $E[X^2] \ge (E[X])^2$ holds for any random variable X.

Solution. Calculate the expected value $E((X - E(X))^2) = E(X^2 - 2XE(X) + E(X)^2) = E(X^2) - E(X)^2$. Since $(X - E(X))^2$ is a positive random variable, it's expected value is positive. The result follows. \Box

Problem 5. Euler's formula (v - e + f = 2) holds for all connected planar graphs. What if a graph is not connected? Suppose a planar graph has two components. What is the value of v - e + f now? What if it has k components?

Solution. The formula is v - e + f = k + 1. For each component we have $v_i - e_i + f_i = 2 \implies v - e + f = 2k$. But, the external face has been counted k times, once for each component so we get the actual solution by substracting the k - 1 additional counts. \Box

Problem 6. Let R be a relation over a set X. The symmetric closure of R is the relation $R \cup R^{-1}$. The transitive closure of R is the smallest superset of R that is transitive.

- 1. Prove that the symmetric closure of R is the smallest superset of R that is symmetric.
- 2. Prove that the transitive closure of R is $\bigcup_{i=1}^{\infty} R^i$, where $R^1 = R$ and $R^{i+1} = R \circ R^i$.
- 3. Prove that the transitive closure of a symmetric relation is symmetric.
- 4. Prove that the symmetric closure of a transitive relation need not be transitive.

Problem 7. Prove that if you color the edges of K_6 in red and blue, you are guarteed to have a monochromatic triangle.

Solution. Assume we are coloring the edges of K_6 in blue and red. Let v be a vertex of K_6 . Then v has 5 edges adjacent to it. Thus at least three of these edges must be colored red. Then the picture below finishes the proof:

Figure 1: If any edge between two adjacent edges is red, we get a red triangle, otherwise we get a blue one.

Problem 8. Let \mathcal{R}_n be the set of all relations over the set [n]. A relation R is picked from \mathcal{R}_n uniformly at random.

- 1. What is the probability that R is reflexive?
- 2. What is the probability that R is symmetric?
- 3. (HW) Are the events "R is reflexive" and "R is symmetric" independent?
- 4. (HW) Define the set $E_R := \{\{i\} \cup \{j\} \mid (i, j) \in R\}$. What is the probability that $([n], E_R)$ is a (simple undirected) graph?

5. (HW) Define $X : \mathcal{R}_n \to \mathbb{N}$ as follows:

$$X(R) = \begin{cases} |R|, & \text{if } R \text{ is reflexive} \\ 0, & \text{otherwise} \end{cases}$$

What is the expected value of X?

Solution.

- 1. We first count the number of reflexive relations on [n]. A reflexive relation must contain all n elements of the form (a, a) and any of the other $n^2 - n$ elements. Thus there is 2^{n^2-n} reflexive relations. And as there is 2^{n^2} total relations, it follows that the wanted probability is 2^{-n} .
- 2. We count the number of symmetric relations and leave the rest for the reader. If a relation is symmetric then $(i, j) \in R \implies (j, i) \in R$. So we can have any of the *n* pairs (a, a) and for the rest we have $n^2/2 n$ total options that we can choose since whenever we add (i, j) we automatically add (j, i) as well. Thus the total number is $2^n \cdot 2^{\frac{n^2-n}{2}}$.