
Discrete Math Tutorial 10
Todor Antić/Hans Raj Tiwary HW Due: 27.12.2023

Problem 1. Find the chromatic number of Pn, Cn and Kn for all value of n.

Solution. Pn is bipartite and hence has chromatic number 2 for each value of n. Similarly
for cycles of even length. But what happens for Cn where n is odd? Well, we can definetly use
3 colors, since taking out 1 vertex leaves us with a path of even length which can be colored
with two colors so assigning a third color to the vertex we took our doesn’t cause problems.
If we want to color it in two colors however, we run into a problem. Start by assigning first
color to any vertex. The rest of the graph is a path of even length whose enpoints have the
same color, but such a coloring of a path of even length is clearly impossible. □

Problem 2. Find the chromatic number of the graphs in pictures.

Solution. The graph on the left is 2-colorable since it’s bipartite. Graph on the right is
3-colorable. □

Problem 3. We say that a graph G on n vertices is k-degenerate if each induced subgraph
H of G contains a vertex of degree at most k. Show that a graph is k-degenerate iff each
subgraph contains a vertex of degree at most k.

Solution. Let G be a k-degenerate graph and H a subgraph of G. Then, the subgraph
induced by V (H) has a vertex u of degree at most k. Since u ∈ V (H), degree of u in H is
also at most k. Other direction is easier. If every subgraph has a vertex of degree at most k
then so does every induced subgraph since an induced subgraph is a subgraph. □

Problem 4. Show that there is no graph G, such that G has 6 vertices and 13 edges and
χ(G) ≤ 3.

Solution. Any graph G with 6 vertices and 13 edges is K6 with two edges taken out. If
the two edges share a vertex, then G contains a copy of K5 so it needs at least 5 colors. If
the edges do not share a vertex, then it contains a copy of K4. □

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that χ(G) ≤ 5.

Solution. We can assume that G contains at least one odd cycle C. Then we can color C
in 3 colors. Further, since every two odd cycles in G contain at least one vertex in common,
we know that G− V (C) contains no odd cycles and is 2-colorable. The result follows. □
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Problem 6. Show that a graph G on n vertices is k-degenerate if and only if admits a linear
ordering v1 < v2 < ... < vn on the vertices such that each vi forms at most k edges with
vertices coming before it in the ordering.

Solution. ⇐= : Let G be a graph with according ordering. Let H be an induced
subgraph of G. Then consider the maximal vertex in H with respect to the ordering, call
it u. Then u has at most k vertices adjacent to it in H since all of them are smaller in the
ordering. =⇒ : Since every induced subgraph of G has a vertex of degree at most k, so
does G. So we let this vertex be the last one in the ordering, i.e we label it vn. Then for
each i = n− 1, ..., 1, we say that vi is the vertex of degree at most k in G− {vn, .., vi+1}. It
is easy to check that this gives the desired ordering. □

Problem 7. (*) We say that a graph G is outerplanar if it can be drawn in the plane without
edge crossings and with all vertices on the outer face, A dual graph of a planar graph G is
the graph G∗ whose vertices correspond to faces of G and two faces are connected by an edge
if they share at least one edge.

1. Show that every subgraph of an outerplanar graph is outerplanar.

2. Prove that the dual of an outerplanar graph is a forest.

3. Conclude that every outerplanar graph has a vertex of degree 2.

4. Prove that every outerplanar graph is 3-colorable

Solution. To see that a subgraph H of an outerplanar graph G is outerplanar, just
consider the drawing of H inside the outerplanar drawing of G, it will clearly be outerplanar
as well. To show that G∗ is a tree, assume that it has a cycle. Cycle of length k in G∗

corresponds to k faces F1, ..., Fk such that each Fi shares an edge with Fi−1, Fi+1. Then it
is not hard to see that this forces us to have vertices on a face different than the outer face,
contradicting the outerplanarity of G. Now since G∗ is a tree it has a vertex of degree 1, this
corresponds to a face that shares an edge with only one other face, and such a face must
have a vertex of degree 2. Lastly, since G every subgraph of G is outerplanar, it also has a
vertex of degree 2, so G is 2-degenerate and thus 3-colorable. □

Problem 8. (HW) Let G be a planar, triangle-free graph. Use Euler theorem to prove that
G contains a vertex of degree at most three. Then use this to prove that χ(G) ≤ 4. You
might want to use induction.

Solution. First we know that by Euler’s formula, v− e+ f = 2. Then, since each face is
bounded by at least 4 edges, it follows that 4f

2
< 2e =⇒ 2f < e =⇒ v > e

2
+2. Now, if we

assume that each vertex has degree at least 4, we obtain by a similar simple calculation that
v < e

2
giving us a contradiction. Now for the second part we proceed by induction on the

number of vertices in G. The result obviously holds for graphs with a single vertex. Assume
that it also holds for graphs with n vertices. In this case consider a planar, triangle-free
graph with n + 1 vertices. It has a vertex v of degree at most 3. Then consider the graph
G− v, obtained by removing v from G. By inductive assumption it can be 4-colored. Then
when we add back v, we can color it in one of the colors as it’s neigbours can have at most
3 distinct colors.

□
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Problem 9. (HW) Let G be a graph on n vertices. We call an induced subgraph H of G a
clique, if it is isomorphic to Kl for some value of l and we call an it an independent set if it
is isomorphic to an empty graph. We denote the sizes of the largest clique and independent
set of G by ω(G) and α(G) respectively. With this, show the following:

1. χ(G) ≥ ω(G)

2. χ(G) ≥ n
α(G)

Solution.

If ω(G) = k, then G contains a copy of Kk and thus needs at least k colors to be colored.
The result follows.

If χ(G) = k, then we can partition V (G) into k independent sets V1, .., Vk. Then |V (G)| =∑k
i=1 |Vi| ≤ kα(G) and the result follows. □

3


