Discrete Math	Tutorial 10
Todor Antić/Hans Raj Tiwary	HW Due: 27.12.2023

Problem 1. Find the chromatic number of P_n , C_n and K_n for all value of n.

Solution. P_n is bipartite and hence has chromatic number 2 for each value of n. Similarly for cycles of even length. But what happens for C_n where n is odd? Well, we can definetly use 3 colors, since taking out 1 vertex leaves us with a path of even length which can be colored with two colors so assigning a third color to the vertex we took our doesn't cause problems. If we want to color it in two colors however, we run into a problem. Start by assigning first color to any vertex. The rest of the graph is a path of even length whose enpoints have the same color, but such a coloring of a path of even length is clearly impossible. \Box

Problem 2. Find the chromatic number of the graphs in pictures.

Solution. The graph on the left is 2-colorable since it's bipartite. Graph on the right is 3-colorable. \Box

Problem 3. We say that a graph G on n vertices is k-degenerate if each **induced** subgraph H of G contains a vertex of degree at most k. Show that a graph is k-degenerate iff each subgraph contains a vertex of degree at most k.

Solution. Let G be a k-degenerate graph and H a subgraph of G. Then, the subgraph induced by V(H) has a vertex u of degree at most k. Since $u \in V(H)$, degree of u in H is also at most k. Other direction is easier. If every subgraph has a vertex of degree at most k then so does every induced subgraph since an induced subgraph is a subgraph. \Box

Problem 4. Show that there is no graph G, such that G has 6 vertices and 13 edges and $\chi(G) \leq 3$.

Solution. Any graph G with 6 vertices and 13 edges is K_6 with two edges taken out. If the two edges share a vertex, then G contains a copy of K_5 so it needs at least 5 colors. If the edges do not share a vertex, then it contains a copy of K_4 . \Box

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that $\chi(G) \leq 5$.

Solution. We can assume that G contains at least one odd cycle C. Then we can color C in 3 colors. Further, since every two odd cycles in G contain at least one vertex in common, we know that G - V(C) contains no odd cycles and is 2-colorable. The result follows. \Box

Problem 6. Show that a graph G on n vertices is k-degenerate if and only if admits a linear ordering $v_1 < v_2 < ... < v_n$ on the vertices such that each v_i forms at most k edges with vertices coming before it in the ordering.

Solution. \Leftarrow : Let G be a graph with according ordering. Let H be an induced subgraph of G. Then consider the maximal vertex in H with respect to the ordering, call it u. Then u has at most k vertices adjacent to it in H since all of them are smaller in the ordering. \implies : Since every induced subgraph of G has a vertex of degree at most k, so does G. So we let this vertex be the last one in the ordering, i.e we label it v_n . Then for each i = n - 1, ..., 1, we say that v_i is the vertex of degree at most k in $G - \{v_n, ..., v_{i+1}\}$. It is easy to check that this gives the desired ordering. \Box

Problem 7. (*) We say that a graph G is outerplanar if it can be drawn in the plane without edge crossings and with all vertices on the outer face, A dual graph of a planar graph G is the graph G^* whose vertices correspond to faces of G and two faces are connected by an edge if they share at least one edge.

- 1. Show that every subgraph of an outerplanar graph is outerplanar.
- 2. Prove that the dual of an outerplanar graph is a forest.
- 3. Conclude that every outerplanar graph has a vertex of degree 2.
- 4. Prove that every outerplanar graph is 3-colorable

Solution. To see that a subgraph H of an outerplanar graph G is outerplanar, just consider the drawing of H inside the outerplanar drawing of G, it will clearly be outerplanar as well. To show that G^* is a tree, assume that it has a cycle. Cycle of length k in G^* corresponds to k faces F_1, \ldots, F_k such that each F_i shares an edge with F_{i-1}, F_{i+1} . Then it is not hard to see that this forces us to have vertices on a face different than the outer face, contradicting the outerplanarity of G. Now since G^* is a tree it has a vertex of degree 1, this corresponds to a face that shares an edge with only one other face, and such a face must have a vertex of degree 2. Lastly, since G every subgraph of G is outerplanar, it also has a vertex of degree 2, so G is 2-degenerate and thus 3-colorable. \Box

Problem 8. (*HW*) Let G be a planar, triangle-free graph. Use Euler theorem to prove that G contains a vertex of degree at most three. Then use this to prove that $\chi(G) \leq 4$. You might want to use induction.

Solution. First we know that by Euler's formula, v - e + f = 2. Then, since each face is bounded by at least 4 edges, it follows that $\frac{4f}{2} < 2e \implies 2f < e \implies v > \frac{e}{2} + 2$. Now, if we assume that each vertex has degree at least 4, we obtain by a similar simple calculation that $v < \frac{e}{2}$ giving us a contradiction. Now for the second part we proceed by induction on the number of vertices in G. The result obviously holds for graphs with a single vertex. Assume that it also holds for graphs with n vertices. In this case consider a planar, triangle-free graph with n + 1 vertices. It has a vertex v of degree at most 3. Then consider the graph G - v, obtained by removing v from G. By inductive assumption it can be 4-colored. Then when we add back v, we can color it in one of the colors as it's neighbours can have at most 3 distinct colors.

Problem 9. (*HW*) Let G be a graph on n vertices. We call an induced subgraph H of G a clique, if it is isomorphic to K_l for some value of l and we call an it an independent set if it is isomorphic to an empty graph. We denote the sizes of the largest clique and independent set of G by $\omega(G)$ and $\alpha(G)$ respectively. With this, show the following:

1.
$$\chi(G) \ge \omega(G)$$

2.
$$\chi(G) \ge \frac{n}{\alpha(G)}$$

Solution.

If $\omega(G) = k$, then G contains a copy of K_k and thus needs at least k colors to be colored. The result follows.

If $\chi(G) = k$, then we can partition V(G) into k independent sets $V_1, ..., V_k$. Then $|V(G)| = \sum_{i=1}^k |V_i| \le k\alpha(G)$ and the result follows. \Box