Problem 1. Find the chromatic number of P_{n}, C_{n} and K_{n} for all value of n.
Solution. $\quad P_{n}$ is bipartite and hence has chromatic number 2 for each value of n. Similarly for cycles of even length. But what happens for C_{n} where n is odd? Well, we can definetly use 3 colors, since taking out 1 vertex leaves us with a path of even length which can be colored with two colors so assigning a third color to the vertex we took our doesn't cause problems. If we want to color it in two colors however, we run into a problem. Start by assigning first color to any vertex. The rest of the graph is a path of even length whose enpoints have the same color, but such a coloring of a path of even length is clearly impossible.

Problem 2. Find the chromatic number of the graphs in pictures.

Solution. The graph on the left is 2-colorable since it's bipartite. Graph on the right is 3-colorable.

Problem 3. We say that a graph G on n vertices is k-degenerate if each induced subgraph H of G contains a vertex of degree at most k. Show that a graph is k-degenerate iff each subgraph contains a vertex of degree at most k.

Solution. Let G be a k-degenerate graph and H a subgraph of G. Then, the subgraph induced by $V(H)$ has a vertex u of degree at most k. Since $u \in V(H)$, degree of u in H is also at most k. Other direction is easier. If every subgraph has a vertex of degree at most k then so does every induced subgraph since an induced subgraph is a subgraph.

Problem 4. Show that there is no graph G, such that G has 6 vertices and 13 edges and $\chi(G) \leq 3$.

Solution. Any graph G with 6 vertices and 13 edges is K_{6} with two edges taken out. If the two edges share a vertex, then G contains a copy of K_{5} so it needs at least 5 colors. If the edges do not share a vertex, then it contains a copy of K_{4}.

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that $\chi(G) \leq 5$.
Solution. We can assume that G contains at least one odd cycle C. Then we can color C in 3 colors. Further, since every two odd cycles in G contain at least one vertex in common, we know that $G-V(C)$ contains no odd cycles and is 2-colorable. The result follows.

Problem 6. Show that a graph G on n vertices is k-degenerate if and only if admits a linear ordering $v_{1}<v_{2}<\ldots<v_{n}$ on the vertices such that each v_{i} forms at most k edges with vertices coming before it in the ordering.

Solution. $\Longleftarrow:$ Let G be a graph with according ordering. Let H be an induced subgraph of G. Then consider the maximal vertex in H with respect to the ordering, call it u. Then u has at most k vertices adjacent to it in H since all of them are smaller in the ordering. \Longrightarrow : Since every induced subgraph of G has a vertex of degree at most k, so does G. So we let this vertex be the last one in the ordering, i.e we label it v_{n}. Then for each $i=n-1, \ldots, 1$, we say that v_{i} is the vertex of degree at most k in $G-\left\{v_{n}, . ., v_{i+1}\right\}$. It is easy to check that this gives the desired ordering.
Problem 7. (*) We say that a graph G is outerplanar if it can be drawn in the plane without edge crossings and with all vertices on the outer face, A dual graph of a planar graph G is the graph G^{*} whose vertices correspond to faces of G and two faces are connected by an edge if they share at least one edge.

1. Show that every subgraph of an outerplanar graph is outerplanar.
2. Prove that the dual of an outerplanar graph is a forest.
3. Conclude that every outerplanar graph has a vertex of degree 2.
4. Prove that every outerplanar graph is 3-colorable

Solution. To see that a subgraph H of an outerplanar graph G is outerplanar, just consider the drawing of H inside the outerplanar drawing of G, it will clearly be outerplanar as well. To show that G^{*} is a tree, assume that it has a cycle. Cycle of length k in G^{*} corresponds to k faces F_{1}, \ldots, F_{k} such that each F_{i} shares an edge with F_{i-1}, F_{i+1}. Then it is not hard to see that this forces us to have vertices on a face different than the outer face, contradicting the outerplanarity of G. Now since G^{*} is a tree it has a vertex of degree 1 , this corresponds to a face that shares an edge with only one other face, and such a face must have a vertex of degree 2 . Lastly, since G every subgraph of G is outerplanar, it also has a vertex of degree 2, so G is 2-degenerate and thus 3-colorable.
Problem 8. (HW) Let G be a planar, triangle-free graph. Use Euler theorem to prove that G contains a vertex of degree at most three. Then use this to prove that $\chi(G) \leq 4$. You might want to use induction.

Solution. First we know that by Euler's formula, $v-e+f=2$. Then, since each face is bounded by at least 4 edges, it follows that $\frac{4 f}{2}<2 e \Longrightarrow 2 f<e \Longrightarrow v>\frac{e}{2}+2$. Now, if we assume that each vertex has degree at least 4 , we obtain by a similar simple calculation that $v<\frac{e}{2}$ giving us a contradiction. Now for the second part we proceed by induction on the number of vertices in G. The result obviously holds for graphs with a single vertex. Assume that it also holds for graphs with n vertices. In this case consider a planar, triangle-free graph with $n+1$ vertices. It has a vertex v of degree at most 3 . Then consider the graph $G-v$, obtained by removing v from G. By inductive assumption it can be 4 -colored. Then when we add back v, we can color it in one of the colors as it's neigbours can have at most 3 distinct colors.

Problem 9. (HW) Let G be a graph on n vertices. We call an induced subgraph H of G a clique, if it is isomorphic to K_{l} for some value of l and we call an it an independent set if it is isomorphic to an empty graph. We denote the sizes of the largest clique and independent set of G by $\omega(G)$ and $\alpha(G)$ respectively. With this, show the following:

1. $\chi(G) \geq \omega(G)$
2. $\chi(G) \geq \frac{n}{\alpha(G)}$

Solution.

If $\omega(G)=k$, then G contains a copy of K_{k} and thus needs at least k colors to be colored. The result follows.

If $\chi(G)=k$, then we can partition $V(G)$ into k independent sets $V_{1}, . ., V_{k}$. Then $|V(G)|=$ $\sum_{i=1}^{k}\left|V_{i}\right| \leq k \alpha(G)$ and the result follows.

