
Discrete Math Tutorial 9
Todor Antić/Hans Raj Tiwary HW Due: 20.12.2023

Problem 1. Three unfriendly neighbours use the same water, beer and food sources. In
order to avoid meeting, they wish to build non-crossing paths from each of their houses to
each of the three sources. Can this be done?

Solution. The three neigbours houses and the three sources form an instance of the
graph K3,3 where edges are formed by paths between houses and sources. Since we know
that K3,3 is not planar, construction of such paths is impossible. □

Problem 2. 1. Draw two non-isomorphic planar graphs with the same number of ver-
tices, edges, and faces.

2. Draw two planar graphs with the same number of vertices and edges, but different
number of faces.

3. Can the graphs in the previous question be isomorphic?

Problem 3. Draw the below graphs with as few crossings as possible.

Solution. Left for the reader. □

Problem 4. Let G be a simple, connected, planar graph on n vertices and m edges. Use
Euler’s formula to prove that m ≤ 3n − 6. Now assume that G also has no triangles and
prove that in this case m ≤ 2n− 4.

Solution. Assume that we have a plane drawing of G. If we allow triangles then each
face is bounded by at least 3 edges. Then if we denote the number of faces by f , it follows
that 3f ≤ 2m. Factor 2 appears next to m because each edge bounds two faces. Combining
this inequality with Euler’s formula gives the result. In the case where we forbid triangles,
the solution is the same but we replace 3f ≤ 2m by 4f ≤ 2m. □

Problem 5. For a graph G, we define the line graph of G, L(G) to be the graph such that
V (L(G)) = E(G) and e, e′ form an edge in L(G) if e ∩ e′ ̸= ∅. Prove that if G is connected
then so is L(G).
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Solution. Suppose G is connected. Then for any two vertices u, v ∈ G, there is a path
P = u → x1 → x2 → · · · → xn → v where the xi’s are some other vertices of G.

By the existence of such a path P , we can say that u is adjacent to x1, xi is adjacent to
xi+1 (for 1 ≤ i ≤ n) and xn is adjacent to v

By the definition of the line graph L(G), this means (u, x1), (xi, xi+1) and (xn, v) are
vertices of L(G) [for 1 ≤ i ≤ n]

Now, since (u, x1) and (x1, x2) share a common endpoint x1, they must be adjacent in
L(G). Similarly, (xi, xi+1) is adjacent to (xi+1, xi+2) for 1 ≤ i ≤ n − 1 and (xn−1, xn) is
adjacent to L(G)

So, we have a path LP in L(G) as Lp = (u, x1) → (x1, x2) → · · · → (xn−1, xn) → (xn, v)
Hence, for every path P in G, there is a path LP in L(G).
□

Problem 6. (*) For any natural number n define the graphs Hn = (Vn, En) as follows:

Vn = {0, 1, . . . , 2n − 1},

E0 = ∅, En+1 = En ∪ {{2n + i, 2n + j} | {i, j} ∈ En} ∪ {{i, 2n + i} | 0 ⩽ i ⩽ 2n − 1}.

1. Draw Hn for n = 3.

2. For which values of n is Hn planar.

Problem 7. Let G be a set of graphs such that for no two distinct G,H ∈ G are isomorphic
to each other. Let ⪯ be a relation over G defined as follows: H ⪯ G iff H is a minor of G.
Prove that (G,⪯) is a poset.

Solution. Reflexivity is obvious sinceG can be obtained from G without any contractions
nor deletions. For antysimmetry suppose that H is a minor of G and G is a minor of H.
Then G can be obtained from H by removing vertices and edges and vice versa. It then
easily follows that G and H must be isomorphic, which is impossible in G unless they’re the
same graph. Transitivity easily follows since if H is a minor of G and G is a minor of F I
can obtain H from F by first performing the minor operations needed to get G from F and
then the minor operations needed to get H from G □

Problem 8. A graph G is called outerplanar if it can be drawn in the plane in such a way
every vertex of G lies on the outer face.

1. Prove that K4 and K2,3 are planar but not outerplanar.

2. Prove that every outerplanar graph contains a vertex of degree 2 or less.

Solution. We only prove first part since the second part was shown in a later tutorial.
For the first part assume for contradiction that K4 is outerplanar. Add a vertex in the outer
face and connect it to all of the other vertices. This gives us a planar embedding of K5 which
we know is impossible. Similarly for K2,3 but we replace 5 with 3, 3. □

Problem 9. Prove that in each drawing of Kn for n > 5, there is at least 1
5

(
n
4

)
crossings.

Use the non-planarity of K5
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Solution. Write cr(n) for the crossing number of Kn. Pick any 5 vertices of Kn. Then
the K5 induced by them contains at least one crossing. So that would give us at leasted

(
n
5

)
crossings. But we might have counted crossings multiple times. In particular, each crossing

is counted at most n−4 times. Thus we have cr(n) · (n−4) ≥
(
n
5

)
=⇒ cr(n) ≥ (n5)

n−4
= 1

5

(
n
4

)
.

□

Problem 10. (HW) Prove that there is a number n0 such that for any graph with n ⩾ n0

vertices, either G or G is not planar.

Problem 11. (HW) Characterize all values of m,n such that Km,n is planar.
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