Problem 1. Draw all non-isomorphic graphs with vertex set $\{1,2,3,4\}$.
Solution. Left for the reader.
Problem 2. Draw all non-isomorphic trees on 6 vertices.
Solution. Left to the reader.
Problem 3. Prove that each graph on n vertices with c components has at least $n-c$ edges.
Solution. Let $n_{1}, n_{2}, \ldots, n_{c}$ be the sizes of vertex sets of each component. Since each component is connected it has at least $n_{i}-1$ edges. Hence there are at least $\sum_{i=1}^{c}\left(n_{i}-1\right)=$ $n-c$ edges in the graph!

Problem 4. Prove that edges of each eulerian graph can be decomposed into a disjoint union of cycles. Use induction on the number of edges!

Solution.
Consider an Eulerian graph G and assume that the statement holds for each graph with at most as many edges as G. Take an Eulerian trail in G and fix a vertex v, then the edges between first two occurrences of v form a cycle C. Take out the edges of C from G, call this graph $G-C$. Then $G-C$ is a graph in each vertex again has an even degree. Thus by induction we can decompose $G-C$ into cycles.

Problem 5. Prove that a graph and it's complement can't both be disconnected.
Solution. Suppose G is disconnected with connected components $G_{1}, G_{2}, \ldots, G_{m}$. Consider two vertices $u, v \in G_{i}$. In \bar{G} they are connected since both will be connected to every vertex in other components of G. If u, v are in two distinct components of G then they're obviously connected in \bar{G}, proving the result.

Problem 6. Suppose that a tree has a vertex of degree k, show that it has at least k leaves.
Solution. Let T be a tree with a vertex v of degree k. Then the graph obtained by deleting v from T is a collection of k disjoint trees each of which contains at least one leaf proving the statement.

Problem 7. Graph G is 2-connected if each two vertices $u, v \in V(G)$ are connected by two vertex-disjoint paths in G. Diameter of G is defined as diam $(G)=\max _{u, v \in V(G)} d(u, v)$. where $d(u, v)$ is the length of the shortest path between u and v. With these definitions prove the following:

1. Show that in a 2-connected graph each vertex is contained in a cycle.
2. Show that there is no graph G such that both G and \bar{G} have diameter greater than three. That is, if G has diameter at least 4 then \bar{G} has diameter at most 3 .
3. Let x be vertex of G and consider the two vertex-disjoint paths from x to v where v is another vertex of G. Write $\left(x, v_{0}, v_{1}, \ldots, v_{k}, v\right)$ and $\left(x, w_{0}, \ldots, w_{s}, x\right)$ for the two paths. Then the concatenation of those two paths gives a cycle $\left(x, v_{0}, v_{1}, \ldots, v_{k}, v, w_{s}, w_{s-1}, \ldots, w_{1}, x\right.$ which contains x !.
4. We can assume that G is connected as otherwise the statement is trivially true. We write d for distance in G and \bar{d} for distance in \bar{G}. Take $u, v \in V(G)$ such that $d(v, u)=3$ and let (v, x, y, u) be the shortest path from v to u in G. Let a, b be vertices in G. Since $d(u, v)=3$, it's impossible that a is adjacent to both u, v in G. Thus without loss of generality a is adjacent to v in \bar{G}. Similarly we can assume that b is adjacent to u in \bar{G}. FInally since u, v are adjecent in \bar{G} the result follows.

Problem 8. (${ }^{*}$) Let G be a graph on $2 k$ vertices in which not three vertices form a triangle. Prove that G has at most k^{2} edges using induction on k.

Problem 9. (HW) Prove that every k-regular graph contains P_{k} as a subgraph.
Solution. We will build our path in the following way. Start from any vertex of a k regular graph G, call it v_{1}. Choose any of it's k neighbours which wasn't choosen already, call it v_{2}. We can continue doing this until at some point all of the neighbours of the vertex we arrived to have been used. But this vertex has k neighbours, meaning we have constructed a path of length at least k.

Problem 10. ($H W$) A rooted binary tree is a tree where one of the vertices is labeled as root vertex and each node has zero,one or two child vertices connected to it (see picture below for example). Catalan numbers C_{n} are defined as follows: $C_{0}=1$ and $C_{n}=\sum_{i=0}^{n} C_{i-1} C_{n-i}$. Prove that the number of rooted binary trees on n vertices is equal to C_{n}.
Hint: Consider a tree t with $n+1$ parent nodes, what can you say about the left and right subtrees of t ?

Solution. Catalan numbers satisfy the recurrence:
$C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}, n \geq 0$
So it suffices that show that binary trees satisfy the same recurrence.
Let T_{n} be the number of binary trees with n parent nodes.
There is 1 tree with zero parent nodes. So $T_{0}=1$.
For $n \geq 0$: A tree t with $n+1$ parent nodes has a root with two subtrees as children t_{1} and t_{2}. Since the root of t is a parent node, t_{1} and t_{2} must have n parent nodes together (i.e. if t_{1} has i parent nodes then t_{2} has $n-i$ parent nodes). Then the number of ways to make children t_{1} and t_{2} is $\sum_{i=0}^{n} T_{i} T_{n-i}$.

