Problem 1. Let (Ω, P) be a discrete probability space and let $X : \Omega \to \mathbb{R}$ be a random variable. Prove that if $\mathbb{E}[X] < a$ for some $a \in \mathbb{R}$, then there exists an outcome $\omega \in \Omega$ such that $X(\omega) < a$.

Solution. Assume that for all $\omega \in \Omega$, we have $X(\omega) \ge a$. Then $\mathbb{E}[X] = \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \ge a \cdot \sum_{\omega \in \Omega} \mathbb{P}(\omega) = a$. \Box

Problem 2. Let G = (V, E) be a graph. The degree of a vertex $v \in V$ – denoted by $\delta_G(v)$ – is the number of edges incident to v. In other words,

$$\delta_G(v) := |\{e \in E \mid v \in e\}|.$$

The average degree of a graph G is defined to be the average of the degrees of the vertices, that is, $\frac{\sum_{v \in V(G)} \delta_G(v)}{|V(G)|}$. Compute the average degrees of $K_n, K_{m,n}, P_n$, and C_n .

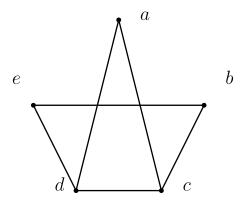
Solution.

For K_n , each vertex has degree n-1 and hence that is the average degree. For $K_{m,n}$ there is m vertices with degree n and n vertices with degree m. Hence the average degree is $\frac{2mn}{m+n}$. In P_n there is n-2 vertices of degree 2 and 2 vertices of degree 1 hence the average degree is $\frac{2n-2}{n}$. In C_n each vertex has degree 2 and that's the average degree as well.

Problem 3. Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the people in the group?

Solution. It is possible for everyone to be friends with exactly 2 people. You could arrange the 5 people in a circle and say that everyone is friends with the two people on either side of them (so you get the graph C_5). However, it is not possible for everyone to be friends with 3 people. That would lead to a graph with an odd number of odd degree vertices which is impossible since the sum of the degrees must be even. \Box

Problem 4. Is the graph G = (V, E) where $V = \{a, b, c, d, e\}$, and $E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{b, d\}, \{b, e\}, \{c, d\}\}$ equal to the graph *H* drawn below? Are they isomorphic?



Solution. The graphs are not equal. For example, graph G has an edge $\{a, b\}$ but graph H does not have that edge. They are isomorphic. One possible isomorphism is $f: V(G) \to V(H)$ defined by f(a) = d, f(b) = c, f(c) = e, f(d) = b, f(e) = a. \Box

Problem 5. Suppose a subset of [n] is picked uniformly at random. Consider the random variable $X : 2^{[n]} \to \mathbb{R}$ with $X(S) = \max S$. For example, $\max\{3, 2, 6, 4\} = 6$. Compute the expected value of X

Problem 6. Show that there is a way to color the edges of K_n , n > 5 with two colors in such a way that there is at most $\binom{n}{5}2^{1-\binom{5}{2}}$ monochromatic copies of K_5 . (Hint: Use linearity of expectation!)

Solution. We color each edge in K_n red or blue at random. Let $X \subseteq V(K_n)$, |X| = 5 and let I_X be the indicator variable for the event that the graph induced by X is monochromatic. Then $P(I_X = 1) = 2^{1-\binom{5}{2}}$. This is because we can choose one edge of the graph induced by X and then X is monochromatic if and only if all of the other edges are colored by the same color. Then, as there are $\binom{n}{5}$ subsets of $V(K_n)$ of size 5 the result follows by linearity of expectation. \Box

Show that there is a way to color the edges of $K_n, m, n, m > 5$ with two colors in such a way that there is at most $\binom{n}{5}\binom{m}{5}2^{1-25}$ monochromatic copies of $K_{5,5}$. Use linearity of expectation!

Problem 7. (*) Let G be a graph on n vertices. Let d be it's average degree, Δ the maximal degree and α the size of the largest independent set (induced subgraph with no edges). Then prove the following:

1. $\alpha(G) \ge \frac{n}{\Delta+1}$ 2. $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{\deg(v)+1}$

Problem 8. (*HW*) The complement of a graph G = (V, E) is the graph $\overline{G} = \left(V, \binom{V}{2} \setminus E\right)$. Show that two graphs are isomorphic if and only if their complements are isomorphic.

Solution. Let G, H be graphs and $f : G \to H$ an isomorphism. Then $\{u, v\} \in E(G) \iff \{f(u), f(v)\} \in E(H)$. Or equivalently $\{u, v\} \in E(\bar{G}) \iff \{u, v\} \notin E(G) \iff \{f(u), f(v)\} \notin E(H) \iff \{u, v\} \in E(\bar{H})$. \Box

Problem 9. (*HW*) We call a graph G self-complementary if it is isomorphic to its complement \overline{G} . Find all self-complementary cycles and prove that no others exist.

Solution. For a cycle graph to be self-complementary, the complement graph must have the same number of edges as its original. This can only happen when n = 5, as the number of edges in $G + \bar{G} = \frac{n(n-1)}{2}$, so we require n(n-1) = 4n, or $n^2 - 5n = 0$ which only has solutions n = 0, 5. To check that K_5 is self complementary, consider the picture below, the C_5 is drawn in black and has cycle structure (a, b, c, d, e) while it's complement has cycle structure (a, c, e, b, d).

