Problem 1. Let (Ω, P) be a discrete probability space and let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. Prove that if $\mathbb{E}[X]<$ a for some $a \in \mathbb{R}$, then there exists an outcome $\omega \in \Omega$ such that $X(\omega)<a$.

Solution. Assume that for all $\omega \in \Omega$, we have $X(\omega) \geq a$. Then $\mathbb{E}[X]=\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega) \geq$ $a \cdot \sum_{\omega \in \Omega} \mathbb{P}(\omega)=a$.

Problem 2. Let $G=(V, E)$ be a graph. The degree of a vertex $v \in V$ - denoted by $\delta_{G}(v)$ - is the number of edges incident to v. In other words,

$$
\delta_{G}(v):=|\{e \in E \quad \mid v \in e\}| .
$$

The average degree of a graph G is defined to be the average of the degrees of the vertices, that is, $\frac{\sum_{v \in V(G)} \delta_{G}(v)}{|V(G)|}$. Compute the average degrees of $K_{n}, K_{m, n}, P_{n}$, and C_{n}.

Solution.

For K_{n}, each vertex has degree $n-1$ and hence that is the average degree. For $K_{m, n}$ there is m vertices with degree n and n vertices with degree m. Hence the average degree is $\frac{2 m n}{m+n}$. In P_{n} there is $n-2$ vertices of degree 2 and 2 vertices of degree 1 hence the average degree is $\frac{2 n-2}{n}$. In C_{n} each vertex has degree 2 and that's the average degree as well.

Problem 3. Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the people in the group?

Solution. It is possible for everyone to be friends with exactly 2 people. You could arrange the 5 people in a circle and say that everyone is friends with the two people on either side of them (so you get the graph C_{5}). However, it is not possible for everyone to be friends with 3 people. That would lead to a graph with an odd number of odd degree vertices which is impossible since the sum of the degrees must be even.

Problem 4. Is the graph $G=(V, E)$ where $V=\{a, b, c, d, e\}$, and $E=\{\{a, b\},\{a, c\},\{a, e\}$, $\{b, d\},\{b, e\},\{c, d\}\}$ equal to the graph H drawn below? Are they isomorphic?

Solution. The graphs are not equal. For example, graph G has an edge $\{a, b\}$ but graph H does not have that edge. They are isomorphic. One possible isomorphism is $f: V(G) \rightarrow V(H)$ defined by $f(a)=d, f(b)=c, f(c)=e, f(d)=b, f(e)=a$.

Problem 5. Suppose a subset of $[n]$ is picked uniformly at random. Consider the random variable $X: 2^{[n]} \rightarrow \mathbb{R}$ with $X(S)=\max S$. For example, $\max \{3,2,6,4\}=6$. Compute the expected value of X

Problem 6. Show that there is a way to color the edges of $K_{n}, n>5$ with two colors in such a way that there is at most $\binom{n}{5} 2^{1-\binom{5}{2} \text { monochromatic copies of } K_{5} \text {. (Hint: Use linearity }}$ of expectation!)

Solution. We color each edge in K_{n} red or blue at random. Let $X \subseteq V\left(K_{n}\right),|X|=5$ and let I_{X} be the indicator variable for the event that the graph induced by X is monochromatic. Then $P\left(I_{X}=1\right)=2^{1-\binom{5}{2} \text {. This is because we can choose one edge of the graph induced }}$ by X and then X is monochromatic if and only if all of the other edges are colored by the same color. Then, as there are $\binom{n}{5}$ subsets of $V\left(K_{n}\right)$ of size 5 the result follows by linearity of expectation.

Show that there is a way to color the edges of $K_{n}, m, n, m>5$ with two colors in such a way that there is at most $\binom{n}{5}\binom{m}{5} 2^{1-25}$ monochromatic copies of $K_{5,5}$. Use linearity of expectation!

Problem 7. (${ }^{*}$) Let G be a graph on n vertices. Let d be it's average degree, Δ the maximal degree and α the size of the largest independent set (induced subgraph with no edges). Then prove the following:

1. $\alpha(G) \geq \frac{n}{\Delta+1}$
2. $\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$

Problem 8. (HW) The complement of a graph $G=(V, E)$ is the graph $\bar{G}=\left(V,\binom{V}{2} \backslash E\right)$. Show that two graphs are isomorphic if and only if their complements are isomorphic.

Solution. Let G, H be graphs and $f: G \rightarrow H$ an isomorphism. Then $\{u, v\} \in$ $E(G) \Longleftrightarrow\{f(u), f(v)\} \in E(H)$. Or equivalently $\{u, v\} \in E(\bar{G}) \Longleftrightarrow\{u, v\} \notin E(G) \Longleftrightarrow$ $\{f(u), f(v)\} \notin E(H) \Longleftrightarrow\{u, v\} \in E(\bar{H})$.

Problem 9. (HW) We call a graph G self-complementary if it is isomorphic to its complement \bar{G}. Find all self-complementary cycles and prove that no others exist.

Solution. For a cycle graph to be self-complementary, the complement graph must have the same number of edges as its original. This can only happen when $n=5$, as the number of edges in $G+\bar{G}=\frac{n(n-1)}{2}$, so we require $n(n-1)=4 n$, or $n^{2}-5 n=0$ which only has solutions $n=0,5$. To check that K_{5} is self complementary, consider the picture below, the C_{5} is drawn in black and has cycle structure (a, b, c, d, e) while it's complement has cycle structure (a, c, e, b, d).

