
Discrete Math Tutorial 4
Todor Antić/Hans Raj Tiwary HW Due: 15.11.2023

Problem 1. Give an example of a partial order on X where X has 15 elements such that
width of your partial order is 3 and length is 5.

Solution. There is a lot of solutions but we give one example. Take our underlying set
to be {2, 4, 8, 16, 32, 3, 9, 27, 81, 243, 5, 25, 125, 625, 3125}. And as for our ordering let’s say
that x ≤ y if x divides y. This is clearly a partial ordering and our longest chain is 5, for
example 2 ≤ 4 ≤ 8 ≤ 16 ≤ 32. And to see that our biggest antichain has size 3 take for
example 2, 3, 5, this is clearly an antichain. To see that it is indeed the biggest one, we can
argue by contradiction and this is left as an exercise for the reader. □

Problem 2. Suppose that in a bushel of 100 apples there are 20 that have worms in them
and 15 that have bruises. Only those apples with neither worms nor bruises can be sold. If
there are 10 bruised apples that have worms in them, how many of the 100 apples can be
sold?

Solution. We can apply the inclusion exclusion principle here. Let A be the set of all
bruised apples and B the set of all apples with worms. Then |A ∪ B| = 20 + 15− 10 = 25.
So we can in fact sell 100− 25 = 75 apples. □

Problem 3. Describe all relations on a set X that define an equivalence relation and a
partial ordering at the same time.

Solution. We want to find all relations that are reflexive, transitive, symmetric and
antisymmetric at the same time. So one obvious candidate for such a relation is ∆ =
{(x, x) : x ∈ X}. Can we have something more? Well, assume that we have a relation R
that is an equivalence and a partial order and that (a, b) ∈ R where a ̸= b. Then because
R is symmetric we need to have (b, a) ∈ R. However R is also antisymmetric so this is
impossible. Thus ∆ is the only such relation that can exist. □

Problem 4. Answer/prove the following:

1. For a given totally ordered set (X,<), any subset A ⊆ X has at most one supremum
and at most one infimum.

2. Which element is the supremum/infimum of the empty set.

3. Give an example of a poset in which every nonempty subset has an infimum but there
are subsets with no supremum.

Solution. We will prove only one part of the first question as the other is very similar.

1. Assume that A ⊆ X has two suprema. Then because M is a supremum, every other
upper bound of A bigger than it, so in particular M ′ is bigger than M . In a com-
pletely symmetric fashion one can see that M is bigger than M ′. But since ordering is
antisymmetric, we get that M = M ′.
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2. Consider the empty set as a subset of some totally ordered set X. Then for any element
x ∈ X the following holds:

∀a ∈ ∅ : x < a < x.

Why is this? Well there is no elements in the empty set so clearly all elements of the
empty set are smaller and bigger than x since there is none (yes this takes some time
to get into your head). Therefore the smallest element of X is the supremum of the ∅
and the biggest element of X is the infimum of the ∅.

□

Problem 5. Let R be a relation over a set X, and let Y ⊆ X.

1. Prove that if R is an ordering over X then R ∩ (Y × Y ) is an ordering over Y .

2. Prove that if R is an equivalence relation over X then R ∩ (Y × Y ) is an equivalence
relation over Y .

Solution. We only prove the first part since the other is basically the same. In order to
prove that S = R∩ (Y ×Y ) is an ordering we need to prove that S is reflexive,antisymmetric
and transitive. Let y ∈ Y we need to show that (y, y) ∈ S. But (y, y) ∈ R since R is an
ordering and (y, y) ∈ Y ×Y obviously, hence S is reflexive. To show that S is antisymmetric,
assume that (a, b) ∈ S, then (a, b) ∈ R and since R is antisymmetric (b, a) ̸∈ R. Now
(b, a) ̸∈ S since S ⊆ R so we get what we want. Lastly we need to prove that S is transitive.
Let a, b, c ∈ Y be such that (a, b), (b, c) ∈ S ⊆ R. Then it follows that (a, c) ∈ R and
(a, c) ∈ Y × Y , therefore (a, c) ∈ S. □

Problem 6. Use inclusion-exclusion principle to determine the number of integer solutions
of the equation

x1 + x2 + x3 + x4 = 20

satisfying the constraints 1 ≤ x1 ≤ 6; 0 ≤ x2 ≤ 7; 4 ≤ x3 ≤ 8; 2 ≤ x4 ≤ 6.

Solution. We start by making a slight modification to our equation. In particular if
k ≤ xi ≤ l we replace xi with yi = xi − k and we change our bounds to 0 ≤ yi ≤ l− k. This
leaves us with:

y1 + y2 + y3 + y4 = 13

satisfying constraints 0 ≤ y1 ≤ 5; 0 ≤ y2 ≤ 7; 0 ≤ y3 ≤ 4; 0 ≤ y4 ≤ 4.
So the number of non-negative integer solutions to this equation is

(
13+4−1

13

)
. It is impor-

tant to note that these equations obey no other contsraints except that each variable is non-
negative! We want to proceed by inclusion-exclusion. To start we make 4 sets A1, A2, A3, A4,
where Ai is the set of all solutions of our equation where yi is bigger than the corresponding
upper bound. We will show how to find |A1| and leave the rest as practice. So solutions in
A1, are such that y1 ≥ 6. Thus we introduce a new variable z1 = y1 − 6. Then we have the
equation

z1 + y2 + y3 + y4 = 7

Now, we find the number of nonegative solutions to the above equation as before. There-
fore |A1| =

(
7+4−1

7

)
.
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Once you have preformed all of the calculations needed you find the number of solutions
satisfying the original constraints by substracting the |A1 ∪ A2 ∪ A3 ∪ A4| which you can
obtain using inclusion-exclusion. □

Problem 7. (*) Prove Erdős-Szekeres theorem1 using the Pigeonhole principle.

Problem 8. Use Erdős-Szekeres theorem to prove the following statement: In a set P of
at least rs − r − s + 2 points in the plane there is a polygonal path of either r − 1 positive
slope edges or s − 1 negative slope edges. You can assume that no two points have same x
coordinate.

Solution. Construct a sequence {ai} of length rs − r − s + 2 the following way. Start
”scanning” the plane from left to right and record the y coordinate of the ith point we see as
the value of ai. Then we apply Erdős-Szekeres theorem to obtain an increasing subsequence
of length r − 1 or a decreasing one of length s− 1. These correspond exactly to our wanted
polygonal paths! We just need to connect the corresponding points. □

Problem 9. Use inclusion-exclusion principle to calculate the number of onto functions from
X to Y where |X| = n and |Y | = m.

Solution. We will provide first part of the calculation and the sets that need to be
used for Inclusion-exclusion and will leave the rest for an easy practice. Name the elements
of Y y1, y2, . . . , ym. Then name Ai the set of all functions f : X → Y such that yi ̸∈
Im(f). These sets will be used for inclusion-exclusion and our result will be obtained as
mn − |A1 ∪ A2 ∪ · · · ∪ Am|. How do we determine the number of functions in Ai for any i?
Well, if a function misses yi, that is basically a function from X to Y \ {yi}, and there are
(m − 1)n such functions. Similarly one can count Ai ∩ Aj for i ̸= j as (m − 2)n and so on
and so forth. From here you just need to perform the actual inclusion-exclusion calculation
and write down the sum. □

Problem 10. (HW) Use inclusion-exclusion principle to determine how many numbers below
100 are divisible by 2,3, or 5?

Solution. We make three sets, A,B,C. Elements of A will be numbers below 100
divisible by 2. Elements of B will be numbers below 100 divisible by 3 and similarly for C
and 5. Then it’s easy to see that A = ⌊100/2⌋ = 50, B = 33, C = 50. To calculate the size
of A ∩B we need to find the number of numbers below 100 divisible by 6 which is ⌊100/6⌋.
To calculate the size of A ∩ C we need to find the number of numbers below 100 divisible
by 10 and similarly for B ∩ C. To find |A ∩B ∩ C| we need to find the number of numbers
below 100 divisible by 30. Then the rest is a simple application of the inclusion-exclusion
formula. □

Problem 11. (HW) Let X be a set of size n. How many distinct total orders can be defined
over X?

1The version in the lecture was actually only a special case of the actual theorem. For general formulation
see this link to the Wikipedia entry.
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Solution. In total order every two elements are comparable. This means that we have a
partial order of length n and width 0. In other words we have a chain. We can then choose
n elements for the first element in the chain, n− 1 for the second and soforth. Giving us a
total on n! total orders on a set of size n. □

Problem 12. (HW) Prove that every partial ordering on a finite sex X has at least one
linear extension. For a partial ordering ≤, linear extension is any linear order ≼ such that
x ≼ y =⇒ x ≤ y.

Solution. We will proceed by induction. on the size of X. If X is a singleton then
every partial order is a total order and we’re done. For the inductive step assume that the
statement holds for all sets of size n. Now assume that |X| = n+ 1. Let x0 be the minimal
element of X. Then consider the set X ′ = X \ {x} with the parital order obtained by
restricting the original partial order on X to X ′. Then, as |X ′| = n, we can assume that it
admits a linear extension to this partial ordering. Now add x0 back to X ′ in and adjust the
linear order so that x0 is the new minimum element. Then we have a linear ordering which
is clearly an extension of the original partial ordering on X, as we wanted.

□

Problem 13. (HW) Determine that number of permutations of 1, 2, . . . , 8 in which no
even integers are in their initial positions.

Solution. Perform inclusion exclusion on sets A2, A4, A6, A8 where Ai is the set of all
permutations of {1, 2, . . . , 8} fixing i. Size of each Ai is 7! since every permutation in Ai fixes
i and permutes the other elements. And there are 4 A′

is. Size of each Ai∩Aj is 6! by similar
logic and there are

(
4
2

)
such pairs. Size of each Ai ∩ Aj ∩ Ak is 5! and there is 4 of them.

Size of A2 ∩ A4 ∩ A6 ∩ A8 is 4!. The rest is pure computation using the inclusion-exclusion
formula. □
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