
Discrete Math Tutorial 2
Todor Antić/Hans Raj Tiwary HW Due: 25.10.2023

Problem 1. The picture below can describes a relation R, where (x, y) ∈ R means that there
is a way to get from x to y using the arrows. Write down all the pairs which are in R.

Solution. The following pairs are in R:

(a, c), (a, b), (a, e), (a, d), (a, f), (b, e), (b, d), (b, f), (c, d), (c, f), (d, f).

□

Problem 2. Use induction (or strong induction) to prove the following:

1.
∑n

i=1 i(i+ 1) = 1
3
n(n+ 1)(n+ 2).

2. If a0 = 1,a1 = 3 and ∀n ≥ 2, an = 2an−1 − an−2 then ∀n ≥ 0, an = 2n+ 1

Solution. For the first part we will use weak and for the second part strong induction.

1. Base case n = 1:
∑1

i=1 i(i+1) = 2 = 1
3
1(1+ 1)(1+ 2). Now we assume that statement

holds for n and we want to prove that with this assumption the statement also holds
for n+ 1. So we have:

n+1∑
i=1

i(i+ 1) =
n∑

i=1

i(i+ 1) + (n+ 1)(n+ 2) =
1

3
n(n+ 1)(n+ 2) + (n+ 1)(n+ 2)

= (n+ 1)(n+ 2)(
1

3
n+ 1) =

1

3
(n+ 1)(n+ 2)(n+ 3)
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2. Base case n = 2: a2 = 2a1−a0 = 5 = 2∗2+1 and n = 3: a3 = 2a2−a1 = 7 = 2∗3+1.
Now we assume that the statement holds for all integers until n for some n ⩾ 3.
With this assumption we want to prove that statement holds for n + 1. So we have
an+1 = 2an − an−1 = 4n+ 2− (2n− 2 + 1) = 2n+ 3 = 2(n+ 1) + 1.

□

Problem 3. Consider the relations on people “is a brother of”, “is a sibling of”, “is a parent
of”, “is married to”, “is a descendant of”. Which of the properties of reflexivity, symmetry,
antisymmetry and transitivity do each of these relations have?

Solution. Reflexivity: none; Symmetry: ”Is a sibling of”, ”Is married to”; Transitivity:
”Is a sibling of”, ”Is a descendant of”.

Note that if you define the word sibling as “two people are siblings if they have the same
parent”, then the relation becomes reflexive. □

Problem 4. Let f : X → Y , g : Y → Z be surjective functions. Prove that then g ◦f : X →
Z is surjective as well. Find an example where g ◦ f is surjective but one of the functions
f, g is not.

Solution. Let z ∈ Z. We want to show that there is an x ∈ X such that g(f(x)) = z.
Since g is surjective we know that there exists a y ∈ Y such that g(y) = z. Similarly
there exists an x ∈ X such that f(x) = y. Thus g(f(x)) = z. For the counterexample
consider the following sets: X = {1, 2}, Y = {a, b, c}, Z = {α}. Define f : X → Y by
f(1) = a, f(2) = b, this is clearly not surjective. Define g : Y → Z as g(y) = α for every Y .
Then the composition g ◦ f is celarly surjective while f isn’t. □

Problem 5. Give a relation R over the set of natural numbers N such that R \{(i, i)|i ∈ N}
is infinite and R is:

1. reflexive, symmetric and transitive.

2. reflexive, antisymmetric and transitive.

Solution. We can use following two examples:

1. R = N× N.

2. R = {(i, i)|i ∈ N} ∪ {(1, i)|i ∈ N}.

□

Problem 6. Let f : X → Y be a function and prove that:

1. f is injective if and only if there is a function g : Y → X such that g ◦ f is the identity
on X.

2. f is surjective if and only if there is a function g : Y → X such that f ◦g is the identity
on Y .
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Solution. We only prove the first part as second is very similar. Suppose f : X → Y is
injective, then by definition f(x) = f(y) implies x = y which means that if y ∈ im(f), then
there exists a unique x ∈ X such that f(x) = y. Define g : Y → X as follows: Fix x ∈ X
and define

g(y) =

{
f−1(y) if y ∈ im(f),

x if y /∈ im(f).

Observe that g ◦ f(x) = g
(
f(x)

)
= f−1

(
f(x)

)
= x = idX(x) by injectivity of f and

construction of g.
Conversely, suppose that there exists g : Y → X such that g ◦ f = idX . Suppose

f(x) = f(y), then by hypothesis, we have x = idX(x) = g ◦ f(x) = g ◦ f(y) = idX(y) = y.
Conclude by definition that f is injective. □

Problem 7. * Let R be a relation on a set X. Prove that R is transitive if and only if
R ◦R ⊆ R

Problem 8. * Let R, S be two equivalence relations on a set X. Prove that R ◦ S is an
equivalence relation if and only if R ◦ S = S ◦R

Problem 9. (HW) Let f : A → A be a function different from identity such that f ◦ f ◦ f =
f ◦ f . Prove that f is neither injective nor surjective.
Hint: Use contradiction and Problem 6!

Solution. Assume that f is injective. By problem 6 there is a function g : X → X such
that g ◦ f = idX . Then f = g ◦ g ◦ f ◦ f ◦ f = g ◦ g ◦ f ◦ f = idX which contradicts our
choice of f . Similar analysis works in the case where f is surjective but we need to use the
existance of the right inverse from problem 6. □

Problem 10. (HW) Let R, S be two equivalence relations on a set X. Which of the following
are also equivalence relations? Prove your claims!

1. R ∪ S

2. R ∩ S

Solution.

1. LetX = {a, b, c, d},R = {(a, a), (b, b), (c, c), (d, d), (a, c), (c, a)} and S = {(a, a), (b, b), (c, c), (d, d), (b, c), (c, b)}.
Then (a, c), (c, b) ∈ R ∪ S but (a, b) ̸∈ R ∪ S. So R ∪ S is not an equivalence relation.

2. We need to check that R ∩ S is reflexive,symmetric and transitive. For any x ∈ X,
(x, x) ∈ R and (x, x) ∈ S since R, S are equivalence relations so R∩S is reflexive. Let
(a, b) ∈ R ∩ S. Then, by symmetry of R, (b, a) ∈ R and similarly (b, a) ∈ S so R ∩ S
is symmetric. Finally if (a, b), (b, c) ∈ R ∩ S. Then by transitivity of R and S, (a, c) is
an element of both R and S and thus of R ∩ S.

□

Problem 11. (HW) Fibonacci numbers are defined as follows: F0 = 0, F1 = 1, Fn+1 =
Fn + Fn−1 for n ≥ 1. Prove the following:
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1.
∑n

i=1 Fi = Fn+2 − 1

2.
∑n

i=1 F
2
i = FnFn+1

Hint: Your proof should use induction!

Solution. We will prove only the first part as the second part is basically the same.
Base case n = 1 is obviously true. Now assume that for every n,

∑n
i=1 Fi = Fn+2 − 1. Then∑n+1

i=1 Fi =
∑n

i=1 Fi + Fn+1 = Fn+2 − 1 + Fn+1 = Fn+3 − 1. And the proof is finished.
□
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