Problem 1. The picture below can describes a relation R, where $(x, y) \in R$ means that there is a way to get from x to y using the arrows. Write down all the pairs which are in R.

Solution. The following pairs are in R :

$$
(a, c),(a, b),(a, e),(a, d),(a, f),(b, e),(b, d),(b, f),(c, d),(c, f),(d, f)
$$

Problem 2. Use induction (or strong induction) to prove the following:

1. $\sum_{i=1}^{n} i(i+1)=\frac{1}{3} n(n+1)(n+2)$.
2. If $a_{0}=1, a_{1}=3$ and $\forall n \geq 2, a_{n}=2 a_{n-1}-a_{n-2}$ then $\forall n \geq 0, a_{n}=2 n+1$

Solution. For the first part we will use weak and for the second part strong induction.

1. Base case $n=1: \sum_{i=1}^{1} i(i+1)=2=\frac{1}{3} 1(1+1)(1+2)$. Now we assume that statement holds for n and we want to prove that with this assumption the statement also holds for $n+1$. So we have:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i(i+1)= & \sum_{i=1}^{n} i(i+1)+(n+1)(n+2)=\frac{1}{3} n(n+1)(n+2)+(n+1)(n+2) \\
& =(n+1)(n+2)\left(\frac{1}{3} n+1\right)=\frac{1}{3}(n+1)(n+2)(n+3)
\end{aligned}
$$

2. Base case $n=2: a_{2}=2 a_{1}-a_{0}=5=2 * 2+1$ and $n=3: a_{3}=2 a_{2}-a_{1}=7=2 * 3+1$. Now we assume that the statement holds for all integers until n for some $n \geqslant 3$. With this assumption we want to prove that statement holds for $n+1$. So we have $a_{n+1}=2 a_{n}-a_{n-1}=4 n+2-(2 n-2+1)=2 n+3=2(n+1)+1$.

Problem 3. Consider the relations on people "is a brother of", "is a sibling of", "is a parent of", "is married to", "is a descendant of". Which of the properties of reflexivity, symmetry, antisymmetry and transitivity do each of these relations have?

Solution. Reflexivity: none; Symmetry: "Is a sibling of", "Is married to"; Transitivity: "Is a sibling of", "Is a descendant of".

Note that if you define the word sibling as "two people are siblings if they have the same parent", then the relation becomes reflexive.

Problem 4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be surjective functions. Prove that then $g \circ f: X \rightarrow$ Z is surjective as well. Find an example where $g \circ f$ is surjective but one of the functions f, g is not.

Solution. Let $z \in Z$. We want to show that there is an $x \in X$ such that $g(f(x))=z$. Since g is surjective we know that there exists a $y \in Y$ such that $g(y)=z$. Similarly there exists an $x \in X$ such that $f(x)=y$. Thus $g(f(x))=z$. For the counterexample consider the following sets: $X=\{1,2\}, Y=\{a, b, c\}, Z=\{\alpha\}$. Define $f: X \rightarrow Y$ by $f(1)=a, f(2)=b$, this is clearly not surjective. Define $g: Y \rightarrow Z$ as $g(y)=\alpha$ for every Y. Then the composition $g \circ f$ is celarly surjective while f isn't.

Problem 5. Give a relation R over the set of natural numbers \mathbb{N} such that $R \backslash\{(i, i) \mid i \in \mathbb{N}\}$ is infinite and R is:

1. reflexive, symmetric and transitive.
2. reflexive, antisymmetric and transitive.

Solution. We can use following two examples:

1. $R=\mathbb{N} \times \mathbb{N}$.
2. $R=\{(i, i) \mid i \in \mathbb{N}\} \cup\{(1, i) \mid i \in \mathbb{N}\}$.

Problem 6. Let $f: X \rightarrow Y$ be a function and prove that:

1. f is injective if and only if there is a function $g: Y \rightarrow X$ such that $g \circ f$ is the identity on X.
2. f is surjective if and only if there is a function $g: Y \rightarrow X$ such that $f \circ g$ is the identity on Y.

Solution. We only prove the first part as second is very similar. Suppose $f: X \rightarrow Y$ is injective, then by definition $f(x)=f(y)$ implies $x=y$ which means that if $y \in \operatorname{im}(f)$, then there exists a unique $x \in X$ such that $f(x)=y$. Define $g: Y \rightarrow X$ as follows: Fix $x \in X$ and define

$$
g(y)= \begin{cases}f^{-1}(y) & \text { if } y \in \operatorname{im}(f) \\ x & \text { if } y \notin \operatorname{im}(f)\end{cases}
$$

Observe that $g \circ f(x)=g(f(x))=f^{-1}(f(x))=x=\operatorname{id}_{X}(x)$ by injectivity of f and construction of g.

Conversely, suppose that there exists $g: Y \rightarrow X$ such that $g \circ f=\mathrm{id}_{X}$. Suppose $f(x)=f(y)$, then by hypothesis, we have $x=\operatorname{id}_{X}(x)=g \circ f(x)=g \circ f(y)=\mathrm{id}_{X}(y)=y$. Conclude by definition that f is injective.

Problem 7. * Let R be a relation on a set X. Prove that R is transitive if and only if $R \circ R \subseteq R$

Problem 8. * Let R, S be two equivalence relations on a set X. Prove that $R \circ S$ is an equivalence relation if and only if $R \circ S=S \circ R$

Problem 9. (HW) Let $f: A \rightarrow A$ be a function different from identity such that $f \circ f \circ f=$ $f \circ f$. Prove that f is neither injective nor surjective.
Hint: Use contradiction and Problem 6!
Solution. Assume that f is injective. By problem 6 there is a function $g: X \rightarrow X$ such that $g \circ f=i d_{X}$. Then $f=g \circ g \circ f \circ f \circ f=g \circ g \circ f \circ f=i d_{X}$ which contradicts our choice of f. Similar analysis works in the case where f is surjective but we need to use the existance of the right inverse from problem 6.

Problem 10. (HW) Let R, S be two equivalence relations on a set X. Which of the following are also equivalence relations? Prove your claims!

1. $R \cup S$
2. $R \cap S$

Solution.

1. Let $X=\{a, b, c, d\}, R=\{(a, a),(b, b),(c, c),(d, d),(a, c),(c, a)\}$ and $S=\{(a, a),(b, b),(c, c),(d, d),(b, c$ Then $(a, c),(c, b) \in R \cup S$ but $(a, b) \notin R \cup S$. So $R \cup S$ is not an equivalence relation.
2. We need to check that $R \cap S$ is reflexive,symmetric and transitive. For any $x \in X$, $(x, x) \in R$ and $(x, x) \in S$ since R, S are equivalence relations so $R \cap S$ is reflexive. Let $(a, b) \in R \cap S$. Then, by symmetry of $R,(b, a) \in R$ and similarly $(b, a) \in S$ so $R \cap S$ is symmetric. Finally if $(a, b),(b, c) \in R \cap S$. Then by transitivity of R and $S,(a, c)$ is an element of both R and S and thus of $R \cap S$.

Problem 11. (HW) Fibonacci numbers are defined as follows: $F_{0}=0, F_{1}=1, F_{n+1}=$ $F_{n}+F_{n-1}$ for $n \geq 1$. Prove the following:

1. $\sum_{i=1}^{n} F_{i}=F_{n+2}-1$
2. $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$

Hint: Your proof should use induction!

Solution. We will prove only the first part as the second part is basically the same. Base case $n=1$ is obviously true. Now assume that for every $n, \sum_{i=1}^{n} F_{i}=F_{n+2}-1$. Then $\sum_{i=1}^{n+1} F_{i}=\sum_{i=1}^{n} F_{i}+F_{n+1}=F_{n+2}-1+F_{n+1}=F_{n+3}-1$. And the proof is finished.

