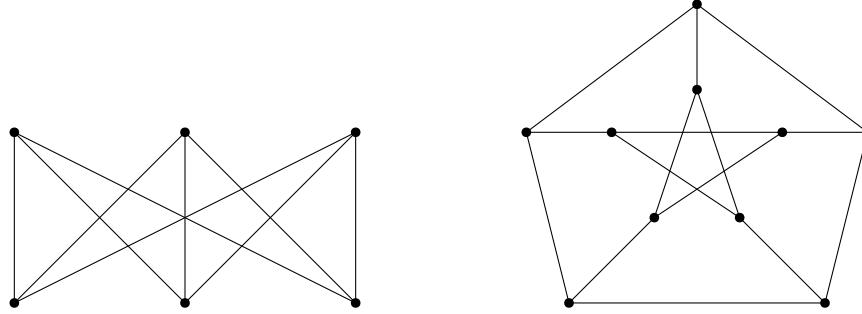


Problem 1. Find the chromatic number of P_n , C_n and K_n for all value of n .

Problem 2. Find the chromatic number of the graphs in pictures.



Problem 3. We say that a graph G on n vertices is k -degenerate if each **induced** subgraph H of G contains a vertex of degree at most k . Show that a graph is k -degenerate iff each subgraph contains a vertex of degree at most k .

Problem 4. Show that there is no graph G , such that G has 6 vertices and 13 edges and $\chi(G) \leq 3$.

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that $\chi(G) \leq 5$.

Problem 6. Show that a graph G on n vertices is k -degenerate if and only if admits a linear ordering $v_1 < v_2 < \dots < v_n$ on the vertices such that each v_i forms at most k edges with vertices coming before it in the ordering.

Problem 7. Let G be a planar, triangle-free graph. Use Euler theorem to prove that G contains a vertex of degree at most three. Then use this to prove that $\chi(G) \leq 4$.