Problem 1. Use induction to prove the following statements:

- 1. (HW) $\forall n \in \mathbb{N}, 5^n 1$ is divisible by 4.
- 2. $\forall n \in \mathbb{N}, 2^n \leq (n+1)!$.

Problem 2. Let a relation \sqsubseteq on $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ be defined as $(a, b) \sqsubseteq (c, d)$ if $ad \leq cb$. Is $\sqsubseteq a$ partial order?

Problem 3. Let $a_1, ..., a_n$ be n integers which are not necessarily distinct. Prove that there is always a set of consecutive numbers $a_k, a_{k+1}, ..., a_l$ whose sum is a multiple of n. Hint: Define a function sending $m \in \{1, ..., n\}$ to the remainder of $\sum_{i=1}^{m} a_i$ when divided by n. Then use pigeonhole principle.

Problem 4. Prove that $E[X^2] \ge (E[X])^2$ holds for any random variable X.

Problem 5. Euler's formula (v - e + f = 2) holds for all connected planar graphs. What if a graph is not connected? Suppose a planar graph has two components. What is the value of v - e + f now? What if it has k components?

Problem 6. Let R be a relation over a set X. The symmetric closure of R is the relation $R \cup R^{-1}$. The transitive closure of R is the smallest superset of R that is transitive.

- 1. Prove that the symmetric closure of R is the smallest superset of R that is symmetric.
- 2. Prove that the transitive closure of R is $\bigcup_{i=1}^{\infty} R^i$, where $R^1 = R$ and $R^{i+1} = R \circ R^i$.
- 3. Prove that the transitive closure of a symmetric relation is symmetric.
- 4. Prove that the symmetric closure of a transitive relation need not be transitive.

Problem 7. Prove that if you color the edges of K_6 in red and blue, you are guarteed to have a monochromatic triangle.

Problem 8. Let \mathcal{R}_n be the set of all relations over the set [n]. A relation R is picked from \mathcal{R}_n uniformly at random.

- 1. What is the probability that R is reflexive?
- 2. What is the probability that R is symmetric?
- 3. (HW) Are the events "R is reflexive" and "R is symmetric" independent?
- 4. (HW) Define the set $E_R := \{\{i\} \cup \{j\} \mid (i, j) \in R\}$. What is the probability that $([n], E_R)$ is a (simple undirected) graph?
- 5. (HW) Define $X : \mathcal{R}_n \to \mathbb{N}$ as follows:

$$X(R) = \begin{cases} |R|, & \text{if } R \text{ is reflexive} \\ 0, & \text{otherwise} \end{cases}$$

What is the expected value of X?