Problem 1. Use induction to prove the following statements:

1. $(H W) \forall n \in \mathbb{N}, 5^{n}-1$ is divisible by 4 .
2. $\forall n \in \mathbb{N}, 2^{n} \leq(n+1)$!.

Problem 2. Let a relation \sqsubseteq on $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ be defined as $(a, b) \sqsubseteq(c, d)$ if $a d \leq c b$. Is $\sqsubseteq a$ partial order?

Problem 3. Let a_{1}, \ldots, a_{n} be n integers which are not necessarily distinct. Prove that there is always a set of consecutive numbers $a_{k}, a_{k+1}, \ldots, a_{l}$ whose sum is a multiple of n. Hint: Define a function sending $m \in\{1, \ldots, n\}$ to the remainder of $\sum_{i=1}^{m} a_{i}$ when divided by n. Then use pigeonhole principle.

Problem 4. Prove that $E\left[X^{2}\right] \geq(E[X])^{2}$ holds for any random variable X.
Problem 5. Euler's formula $(v-e+f=2)$ holds for all connected planar graphs. What if a graph is not connected? Suppose a planar graph has two components. What is the value of $v-e+f$ now? What if it has k components?
Problem 6. Let R be a relation over a set X. The symmetric closure of R is the relation $R \cup R^{-1}$. The transitive closure of R is the smallest superset of R that is transitive.

1. Prove that the symmetric closure of R is the smallest superset of R that is symmetric.
2. Prove that the transitive closure of R is $\bigcup_{i=1}^{\infty} R^{i}$, where $R^{1}=R$ and $R^{i+1}=R \circ R^{i}$.
3. Prove that the transitive closure of a symmetric relation is symmetric.
4. Prove that the symmetric closure of a transitive relation need not be transitive.

Problem 7. Prove that if you color the edges of K_{6} in red and blue, you are guarteed to have a monochromatic triangle.

Problem 8. Let \mathcal{R}_{n} be the set of all relations over the set $[n]$. A relation R is picked from \mathcal{R}_{n} uniformly at random.

1. What is the probability that R is reflexive?
2. What is the probability that R is symmetric?
3. (HW) Are the events " R is reflexive" and " R is symmetric" independent?
4. (HW) Define the set $E_{R}:=\{\{i\} \cup\{j\} \mid(i, j) \in R\}$. What is the probability that $\left([n], E_{R}\right)$ is a (simple undirected) graph?
5. (HW) Define $X: \mathcal{R}_{n} \rightarrow \mathbb{N}$ as follows:

$$
X(R)= \begin{cases}|R|, & \text { if } R \text { is reflexive } \\ 0, & \text { otherwise }\end{cases}
$$

What is the expected value of X ?

