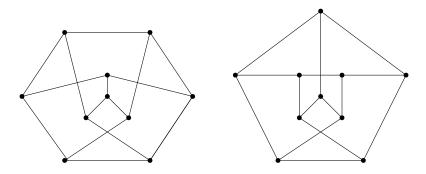
Problem 1. Decide weather the graphs in pictures are isomorphic.



Problem 2. Decide weather sequences (1, 1, 1, 2, 2, 3, 4, 4, 5, 5) and (1, 2, 3, 4, 5, 5, 6) are degree sequences of a simple graph and try to construct the graph.

Problem 3. For a graph G, we say that a map $f : V(G) \to V(G)$ is an automorphism if it's a graph isomorphism. Find a nontrivial graph whose only automorphism is the identity map and prove that it is such.

Problem 4. Let G, H, I be three graphs and $g : G \to H$, $f : H \to I$ isomorphisms. Prove that $f \circ g : G \to I$ is an isomorphism as well.

Problem 5. Let \mathbb{G} be the set of all graphs on finite number of vertices and let \leq be a relation on \mathbb{G} defined by $H \leq G$ iff G contains an induced subgraph isomorphic to H. Show that $H \leq G \land G \leq H \implies G \simeq H$.

Problem 6. Show that \simeq is an equivalence relation on the set of graphs on *n* vertices. Show that \simeq has at least $\frac{2^{\binom{n}{2}}}{n!}$ equivalence classes.

Problem 7. (*) Let G(V, E) be a graph. The excentricity of a vertex $V \in V$ – denoted by ex(v) – is defined to be $\max_{w \in V} d_G(v, w)$, where $d_G(x, y)$ denotes the length of a shortest path in G between x and y. The center of a graph G – denoted by CT(G) – is the set $\{v \mid ex(v) \leq ex(w) \forall w \in V\}$.

- 1. Compute $CT(K_n)$, $CT(K_{m,n})$, $CT(C_n)$, $CT(P_n)$.
- 2. Show that if G is a tree than $|CT(G)| \leq 2$.

Problem 8. (*HW*) For a graph G on n vertices, we define the adjacency matrix A(G) to be the matrix which has n rows and n columns corresponding to the vertices of G. We define $M(G)_{ij} = 1$ if there is an edge between vertices i and j and $M(G)_{ij} = 0$ otherwise. Show that if M(G) = M(H) then $G \sim H$.

Problem 9. (*HW*) Describe all automorphisms of K_n and $K_{n,m}$ where $n \neq m$.