Problem 1. Find the chromatic number of P_{n}, C_{n} and K_{n} for all value of n.
Problem 2. Find the chromatic number of the graphs in pictures.

Problem 3. We say that a graph G on n vertices is k-degenerate if each induced subgraph H of G contains a vertex of degree at most k. Show that a graph is k-degenerate iff each subgraph contains a vertex of degree at most k.

Problem 4. Show that there is no graph G, such that G has 6 vertices and 13 edges and $\chi(G) \leq 3$.

Problem 5. Let G be a graph without two disjoint odd cycles. Prove that $\chi(G) \leq 5$.
Problem 6. Show that a graph G on n vertices is k-degenerate if and only if admits a linear ordering $v_{1}<v_{2}<\ldots<v_{n}$ on the vertices such that each v_{i} forms at most k edges with vertices coming before it in the ordering.

Problem 7. (*) We say that a graph G is outerplanar if it can be drawn in the plane without edge crossings and with all vertices on the outer face, A dual graph of a planar graph G is the graph G^{*} whose vertices correspond to faces of G and two faces are connected by an edge if they share at least one edge.

1. Show that every subgraph of an outerplanar graph is outerplanar.
2. Prove that the dual of an outerplanar graph is a forest.
3. Conclude that every outerplanar graph has a vertex of degree 2.
4. Prove that every outerplanar graph is 3-colorable

Problem 8. (HW) Let G be a planar, triangle-free graph. Use Euler theorem to prove that G contains a vertex of degree at most three. Then use this to prove that $\chi(G) \leq 4$. You might want to use induction.

Problem 9. (HW) Let G be a graph on n vertices. We call an induced subgraph H of G a clique, if it is isomorphic to K_{l} for some value of l and we call an it an independent set if it is isomorphic to an empty graph. We denote the sizes of the largest clique and independent set of G by $\omega(G)$ and $\alpha(G)$ respectively. With this, show the following:

$$
\begin{aligned}
& \text { 1. } \chi(G) \geq \omega(G) \\
& \text { 2. } \chi(G) \geq \frac{n}{\alpha(G)}
\end{aligned}
$$

