Problem 1. Three unfriendly neighbours use the same water, beer and food sources. In order to avoid meeting, they wish to build non-crossing paths from each of their houses to each of the three sources. Can this be done?

- **Problem 2.** 1. Draw two non-isomorphic planar graphs with the same number of vertices, edges, and faces.
 - 2. Draw two planar graphs with the same number of vertices and edges, but different number of faces.
 - 3. Can the graphs in the previous question be isomorphic?

Problem 3. Draw the below graphs with as few crossings as possible.

Problem 4. For a graph G, we define the line graph of G, L(G) to be the graph such that V(L(G)) = E(G) and e, e' form an edge in L(G) if $e \cap e' \neq \emptyset$. Prove that if G is connected then so is L(G).

Problem 5. For any natural number n define the graphs $H_n = (V_n, E_n)$ as follows:

$$V_n = \{0, 1, \dots, 2^n - 1\},\$$

 $E_0 = \emptyset, E_{n+1} = E_n \cup \{\{2^n + i, 2^n + j\} \mid \{i, j\} \in E_n\} \cup \{\{i, 2^n + i\} \mid 0 \le i \le 2^n - 1\}.$

- 1. Draw H_n for n = 3.
- 2. For which values of n is H_n planar.

Problem 6. Let \mathcal{G} be a set of graphs such that for no two distinct $G, H \in \mathcal{G}$ are isomorphic to each other. Let \leq be a relation over \mathcal{G} defined as follows: $H \leq G$ iff H is a minor of G. Prove that (\mathcal{G}, \leq) is a poset.

Problem 7. A graph G is called outerplanar if it can be drawn in the plane in such a way every vertex of G lies on the outer face.

- 1. Prove that K_4 and $K_{2,3}$ are planar but not outerplanar.
- 2. Prove that every outerplanar graph contains a vertex of degree 2 or less.

Problem 8. Prove that in each drawing of K_n for n > 5, there is at least $\frac{1}{5} {n \choose 4}$ crossings. Use the non-planarity of K_5

Problem 9. (*HW*) Prove that there is a number n_0 such that for any graph with $n \ge n_0$ vertices, either G or \overline{G} is not planar.

Problem 10. (*HW*) Characterize all values of m, n such that $K_{m,n}$ is planar.