Problem 1. Three unfriendly neighbours use the same water, beer and food sources. In order to avoid meeting, they wish to build non-crossing paths from each of their houses to each of the three sources. Can this be done?

Problem 2. 1. Draw two non-isomorphic planar graphs with the same number of vertices, edges, and faces.
2. Draw two planar graphs with the same number of vertices and edges, but different number of faces.
3. Can the graphs in the previous question be isomorphic?

Problem 3. Draw the below graphs with as few crossings as possible.

Problem 4. For a graph G, we define the line graph of $G, L(G)$ to be the graph such that $V(L(G))=E(G)$ and e, e^{\prime} form an edge in $L(G)$ if $e \cap e^{\prime} \neq \emptyset$. Prove that if G is connected then so is $L(G)$.

Problem 5. For any natural number n define the graphs $H_{n}=\left(V_{n}, E_{n}\right)$ as follows:

$$
\begin{gathered}
V_{n}=\left\{0,1, \ldots, 2^{n}-1\right\}, \\
E_{0}=\emptyset, E_{n+1}=E_{n} \cup\left\{\left\{2^{n}+i, 2^{n}+j\right\} \mid\{i, j\} \in E_{n}\right\} \cup\left\{\left\{i, 2^{n}+i\right\} \mid 0 \leqslant i \leqslant 2^{n}-1\right\} .
\end{gathered}
$$

1. Draw H_{n} for $n=3$.
2. For which values of n is H_{n} planar.

Problem 6. Let \mathcal{G} be a set of graphs such that for no two distinct $G, H \in \mathcal{G}$ are isomorphic to each other. Let \preceq be a relation over \mathcal{G} defined as follows: $H \preceq G$ iff H is a minor of G. Prove that (\mathcal{G}, \preceq) is a poset.

Problem 7. A graph G is called outerplanar if it can be drawn in the plane in such a way every vertex of G lies on the outer face.

1. Prove that K_{4} and $K_{2,3}$ are planar but not outerplanar.
2. Prove that every outerplanar graph contains a vertex of degree 2 or less.

Problem 8. Prove that in each drawing of K_{n} for $n>5$, there is at least $\frac{1}{5}\binom{n}{4}$ crossings. Use the non-planarity of K_{5}

Problem 9. (HW) Prove that there is a number n_{0} such that for any graph with $n \geqslant n_{0}$ vertices, either G or \bar{G} is not planar.

Problem 10. (HW) Characterize all values of m, n such that $K_{m, n}$ is planar.

