Problem 1. Let (Ω, P) be a discrete probability space and let $X : \Omega \to \mathbb{R}$ be a random variable. Prove that if $\mathbb{E}[X] < a$ for some $a \in \mathbb{R}$, then there exists an outcome $\omega \in \Omega$ such that $X(\omega) < a$.

Problem 2. Let G = (V, E) be a graph. The degree of a vertex $v \in V$ – denoted by $\delta_G(v)$ – is the number of edges incident to v. In other words,

$$\delta_G(v) := |\{e \in E \mid v \in e\}|.$$

The average degree of a graph G is defined to be the average of the degrees of the vertices, that is, $\frac{\sum_{v \in V(G)} \delta_G(v)}{|V(G)|}$. Compute the average degrees of $K_n, K_{m,n}, P_n$, and C_n .

Problem 3. Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the people in the group?

Problem 4. Is the graph G = (V, E) where $V = \{a, b, c, d, e\}$, and $E = \{\{a, b\}, \{a, c\}, \{a, e\}, \{b, d\}, \{b, e\}, \{c, d\}\}$ equal to the graph *H* drawn below? Are they isomorphic?

Problem 5. Suppose a subset of [n] is picked uniformly at random. Consider the random variable $X : 2^{[n]} \to \mathbb{R}$ with $X(S) = \max S$. For example, $\max\{3, 2, 6, 4\} = 6$. Compute the expected value of X

Problem 6. Show that there is a way to color the edges of K_n , n > 5 with two colors in such a way that there is at most $\binom{n}{5}2^{1-\binom{5}{2}}$ monochromatic copies of K_5 . (Hint: Use linearity of expectation!)

Problem 7. (*) Let G be a graph on n vertices. Let d be it's average degree, Δ the maximal degree and α the size of the largest independent set (induced subgraph with no edges). Then prove the following:

1. $\alpha(G) \ge \frac{n}{\Delta + 1}$ 2. $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{deg(v) + 1}$ **Problem 8.** (*HW*) The complement of a graph G = (V, E) is the graph $\overline{G} = \left(V, \begin{pmatrix} V \\ 2 \end{pmatrix} \setminus E\right)$. Show that two graphs are isomorphic if and only if their complements are isomorphic.

Problem 9. (HW) We call a graph G self-complementary if it is isomorphic to its complement \overline{G} . Find all self-complementary cycles and prove that no others exist.