Problem 1. Let (Ω, P) be a discrete probability space and let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. Prove that if $\mathbb{E}[X]<a$ for some $a \in \mathbb{R}$, then there exists an outcome $\omega \in \Omega$ such that $X(\omega)<a$.

Problem 2. Let $G=(V, E)$ be a graph. The degree of a vertex $v \in V$ - denoted by $\delta_{G}(v)$ - is the number of edges incident to v. In other words,

$$
\delta_{G}(v):=|\{e \in E \quad \mid v \in e\}| .
$$

The average degree of a graph G is defined to be the average of the degrees of the vertices, that is, $\frac{\sum_{v \in V(G)} \delta_{G}(v)}{|V(G)|}$. Compute the average degrees of $K_{n}, K_{m, n}, P_{n}$, and C_{n}.

Problem 3. Among a group of 5 people, is it possible for everyone to be friends with exactly 2 of the people in the group? What about 3 of the people in the group?

Problem 4. Is the graph $G=(V, E)$ where $V=\{a, b, c, d, e\}$, and $E=\{\{a, b\},\{a, c\},\{a, e\}$, $\{b, d\},\{b, e\},\{c, d\}\}$ equal to the graph H drawn below? Are they isomorphic?

Problem 5. Suppose a subset of $[n]$ is picked uniformly at random. Consider the random variable $X: 2^{[n]} \rightarrow \mathbb{R}$ with $X(S)=\max S$. For example, $\max \{3,2,6,4\}=6$. Compute the expected value of X

Problem 6. Show that there is a way to color the edges of $K_{n}, n>5$ with two colors in such a way that there is at most $\left.\binom{n}{5} 2^{1-(} \begin{array}{l}5 \\ 2\end{array}\right)$ monochromatic copies of K_{5}. (Hint: Use linearity of expectation!)

Problem 7. (${ }^{*}$) Let G be a graph on n vertices. Let d be it's average degree, Δ the maximal degree and α the size of the largest independent set (induced subgraph with no edges). Then prove the following:

1. $\alpha(G) \geq \frac{n}{\Delta+1}$
2. $\alpha(G) \geq \sum_{v \in V(G)} \frac{1}{\operatorname{deg}(v)+1}$

Problem 8. (HW) The complement of a graph $G=(V, E)$ is the graph $\bar{G}=\left(V,\binom{V}{2} \backslash E\right)$. Show that two graphs are isomorphic if and only if their complements are isomorphic.

Problem 9. (HW) We call a graph G self-complementary if it is isomorphic to its complement \bar{G}. Find all self-complementary cycles and prove that no others exist.

