Problem 1. Assume that we are flipping a fair coin 6 times. What is the probability of the event "There is an even number or heads or there is exactly 3 heads and 3 tails"?

Problem 2. A standard deck of 52 cards is dealt out to 4 players so that each player gets 4 cards. What is the probability that none of the 4 players have cards of all four suits? You do not need to simplify the binomial symbols.

Problem 3. Suppose $m>1$ begonias and $n>1$ fuchsias are randomly arranged on a window sill. All orderings of the $m+n$ flowers are equally likely. What is the probability that to the right of the leftmost begonia there is another begonia?

Problem 4. A nonnegative integer solution of $x_{1}+x_{2}+x_{3}=11$ is picked uniformly at random. What is the probability that $x_{1} \leqslant 3, x_{2} \leqslant 4$, and $x_{3} \leqslant 6$ in the chosen solution?

Problem 5. Let (Ω, P) be a probability space and B an event. Consider a function P^{\prime} : $2^{B} \rightarrow[0,1]$ defined as $P^{\prime}(X)=P(X) / P(B)$. Prove that $\left(B, P^{\prime}\right)$ forms a probability space.

Problem 6. $\left(^{*}\right) A$ set of events A_{1}, \ldots, A_{i} is said to be independent if $P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{i}\right)=$ $\prod_{j=1}^{i} P\left(A_{j}\right)$. Now take a probability space with 8 elements where each event, i.e., equally likely and in it 4 events A, B, C, D such that each triple of events is independent but all 4 events aren't.

Problem 7. Let π be a permutation of the set $\{1, \ldots, n\}$. For $1 \leqslant i \leqslant n$, we call i a fixed point of π if $\pi(i)=i$. A permutation is called a derangement if it has no fixed points.

1. List all derangements of $\{1,2,3,4\}$.
2. Compute the number of derangements of $\{1, \ldots, n\}$.
3. What is the probability that a permutation of $\{1, \ldots, n\}$, picked uniformly at random, is a derangement as $n \rightarrow \infty$?

Problem 8. (HW) Let R be a relation over a set X. Consider the relation \preceq_{R} defined over $X \times X$ as follows: $\left(a_{1}, b_{1}\right) \preceq_{R}\left(a_{2}, b_{2}\right)$ if either $a_{1} \neq a_{2} \wedge\left(a_{1}, a_{2}\right) \in R$ or $a_{1}=a_{2} \wedge\left(b_{1}, b_{2}\right) \in R$. Prove that \preceq_{R} is an order over $X \times X$ if and only if R is an order over X.

Problem 9. (HW) Let X be a set and let R be a relation over X that is both reflexive and transitive. Define the relation \sim_{R} over X as follows: $a \sim_{R} b$ iff $(a, b) \in R \wedge(b, a) \in R$.

1. Prove that \sim_{R} is an equivalence relation over X.
2. Let \mathcal{X}_{R} be the set of equivalence classes of \sim_{R}. Define the relation \preceq_{R} over \mathcal{X}_{R} as follows: $A \preceq_{R} B$ iff $\exists a \in A, b \in B:(a, b) \in R$. Prove that \preceq_{R} defines an order over \mathcal{X}_{R}.
