Problem 1. Let m, n, r be natural numbers such that $m \geq n \geq r$. Prove that $\binom{m}{r} \geq\binom{ n}{r}$.
Problem 2. Find a way to place 8 rooks on a regular 8×8 chessboard in such a way that no two are attacking each other. Is it possible to place 9 rooks in such a way?

Problem 3. Consider a regular deck of playing cards. How many ways are there to place 4 cards from the deck on the table? How many ways are there to place 4 cards on the table if the first card needs to be a red queen?

Problem 4.

1. Let $X=\{1,2,3,4\}$. How many ordered pairs (A, B) can you find, where $A, B \subseteq X$ and $A \cap B=\emptyset$.
2. Let $X=\{1, \ldots, n\}$ for some natural number n. How many ordered pairs (A, B) can you find, where $A, B \subseteq X$ and $A \cap B=\emptyset$.

Problem 5. Give an algebraic and a combinatorial proof of the following:

1. $\binom{n}{2}+\binom{n+1}{2}=n^{2}$
2. $\forall k, n \in \mathbb{N}, k \leq n k\binom{n}{k}=n\binom{n-1}{k-1}$.

Problem 6. Give combinatoiral proof of the following:

1. $\binom{m+n}{k}=\sum_{i=0}^{k}\binom{m}{i}\binom{n}{k-i}$ Hint: If we have a class of m girls and n boys, in how many ways can we choose a council of k people?
2. $\sum_{m=k}^{n-k}\binom{m}{k}\binom{n-m}{k}=\binom{n+1}{2 k+1}$. Hint: How many subsets of size $2 k+1$ does the set
$\{1,2, \ldots, n+1\}$ have?

Problem 7. * Let p be a permutation of $\{1,2, \ldots, n\}$ and let us write it in one line, for example (3 5712698). Now mark the increasing segments in this permutation, on our example we get (357-126-9-8). Let $f(n, k)$ denote the number of permutations of an n element set with exactly k increasing segments. Prove that $f(n, k)=f(n, n+1-k)$.

Problem 8. ($H W$) Consider the $n \times n$ grid with the bottom left point marked $(0,0)$ and the top right point marked $(n-1, n-1)$. In how many ways can we reach $(n-1, n-1)$ from $(0,0)$ by only moving right or up. That is, from a point (i, j) we are only allowed to move either to $(i+1, j)$ (moving right) or to $(i, j+1)$ (moving up).

Problem 9. (HW) Let $F_{0}=0, F_{1}=1$ and for $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$. Let C_{n} be the number of ways to write n as a sum of 1's and 2's. For example $C_{3}=3$ since we can write $1+1+1=2+1=1+2=3$. Prove that $C_{n}=F_{n+1}$.

