Problem 1. Let m, n, r be natural numbers such that $m \ge n \ge r$. Prove that $\binom{m}{r} \ge \binom{n}{r}$.

Problem 2. Find a way to place 8 rooks on a regular 8×8 chessboard in such a way that no two are attacking each other. Is it possible to place 9 rooks in such a way?

Problem 3. Consider a regular deck of playing cards. How many ways are there to place 4 cards from the deck on the table? How many ways are there to place 4 cards on the table if the first card needs to be a red queen?

Problem 4.

- 1. Let $X = \{1, 2, 3, 4\}$. How many ordered pairs (A, B) can you find, where $A, B \subseteq X$ and $A \cap B = \emptyset$.
- 2. Let $X = \{1, ..., n\}$ for some natural number n. How many ordered pairs (A, B) can you find, where $A, B \subseteq X$ and $A \cap B = \emptyset$.

Problem 5. Give an algebraic and a combinatorial proof of the following:

1. $\binom{n}{2} + \binom{n+1}{2} = n^2$

2.
$$\forall k, n \in \mathbb{N}, k \le n \ k \binom{n}{k} = n \binom{n-1}{k-1}.$$

Problem 6. *Give combinatoiral proof of the following:*

- 1. $\binom{m+n}{k} = \sum_{i=0}^{k} \binom{m}{i} \binom{n}{k-i}$ Hint: If we have a class of m girls and n boys, in how many ways can we choose a council of k people?
- 2. $\sum_{m=k}^{n-k} {m \choose k} {n-m \choose k} = {n+1 \choose 2k+1}$. Hint: How many subsets of size 2k+1 does the set $\{1, 2, \ldots, n+1\}$ have?

Problem 7. * Let p be a permutation of $\{1, 2, ..., n\}$ and let us write it in one line, for example (3 5 7 1 2 6 9 8). Now mark the increasing segments in this permutation, on our example we get (3 5 7—1 2 6—9—8). Let f(n,k) denote the number of permutations of an n element set with exactly k increasing segments. Prove that f(n,k) = f(n, n+1-k).

Problem 8. (*HW*) Consider the $n \times n$ grid with the bottom left point marked (0,0) and the top right point marked (n-1, n-1). In how many ways can we reach (n-1, n-1) from (0,0) by only moving right or up. That is, from a point (i, j) we are only allowed to move either to (i + 1, j) (moving right) or to (i, j + 1) (moving up).

Problem 9. (*HW*) Let $F_0 = 0$, $F_1 = 1$ and for $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$. Let C_n be the number of ways to write n as a sum of 1's and 2's. For example $C_3 = 3$ since we can write 1 + 1 + 1 = 2 + 1 = 1 + 2 = 3. Prove that $C_n = F_{n+1}$.