Discrete Math Todor Antić/Hans Raj Tiwary

Problem 1. The picture below can describes a relation R, where $(x, y) \in R$ means that there is a way to get from x to y using the arrows. Write down all the pairs which are in R.

Problem 2. Use induction (or strong induction) to prove the following:

1.
$$\sum_{i=1}^{n} i(i+1) = \frac{1}{3}n(n+1)(n+2).$$

2. If $a_0 = 1, a_1 = 3$ and $\forall n \ge 2, a_n = 2a_{n-1} - a_{n-2}$ then $\forall n \ge 0, a_n = 2n + 1$

Problem 3. Consider the relations on people "is a brother of", "is a sibling of", "is a parent of", "is married to", "is a descendant of". Which of the properties of reflexivity, symmetry, antisymmetry and transitivity do each of these relations have?

Problem 4. Let $f: X \to Y$, $g: Y \to Z$ be surjective functions. Prove that then $g \circ f: X \to Z$ is surjective as well. Find an example where $g \circ f$ is surjective but one of the functions f, g is not.

Problem 5. Give a relation R over the set of natural numbers \mathbb{N} such that $R \setminus \{(i, i) | i \in \mathbb{N}\}$ is infinite and R is:

- 1. reflexive, symmetric and transitive.
- 2. reflexive, antisymmetric and transitive.

Problem 6. Let $f : X \to Y$ be a function and prove that:

1. f is injective if and only if there is a function $g: Y \to X$ such that $g \circ f$ is the identity on X.

2. f is surjective if and only if there is a function $g: Y \to X$ such that $f \circ g$ is the identity on Y.

Problem 7. * Let R be a relation on a set X. Prove that R is transitive if and only if $R \circ R \subseteq R$

Problem 8. * Let R, S be two equivalence relations on a set X. Prove that $R \circ S$ is an equivalence relation if and only if $R \circ S = S \circ R$

Problem 9. (*HW*) Let $f : A \to A$ be a function different from identity such that $f \circ f \circ f = f \circ f$. Prove that f is neither injective nor surjective. *Hint: Use contradiction and Problem 6!*

Problem 10. (*HW*) Let R, S be two equivalence relations on a set X. Which of the following are also equivalence relations? Prove your claims!

- 1. $R \cup S$
- 2. $R \cap S$

Problem 11. (*HW*) Fibonacci numbers are defined as follows: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$. Prove the following:

- 1. $\sum_{i=1}^{n} F_i = F_{n+2} 1$
- 2. $\sum_{i=1}^{n} F_i^2 = F_n F_{n+1}$

Hint: Your proof should use induction!