Problem 1. The picture below can describes a relation R, where $(x, y) \in R$ means that there is a way to get from x to y using the arrows. Write down all the pairs which are in R.

Problem 2. Use induction (or strong induction) to prove the following:

1. $\sum_{i=1}^{n} i(i+1)=\frac{1}{3} n(n+1)(n+2)$.
2. If $a_{0}=1, a_{1}=3$ and $\forall n \geq 2, a_{n}=2 a_{n-1}-a_{n-2}$ then $\forall n \geq 0, a_{n}=2 n+1$

Problem 3. Consider the relations on people "is a brother of", "is a sibling of", "is a parent of", "is married to", "is a descendant of". Which of the properties of reflexivity, symmetry, antisymmetry and transitivity do each of these relations have?

Problem 4. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be surjective functions. Prove that then $g \circ f: X \rightarrow$ Z is surjective as well. Find an example where $g \circ f$ is surjective but one of the functions f, g is not.

Problem 5. Give a relation R over the set of natural numbers \mathbb{N} such that $R \backslash\{(i, i) \mid i \in \mathbb{N}\}$ is infinite and R is:

1. reflexive, symmetric and transitive.
2. reflexive, antisymmetric and transitive.

Problem 6. Let $f: X \rightarrow Y$ be a function and prove that:

1. f is injective if and only if there is a function $g: Y \rightarrow X$ such that $g \circ f$ is the identity on X.
2. f is surjective if and only if there is a function $g: Y \rightarrow X$ such that $f \circ g$ is the identity on Y.

Problem 7. * Let R be a relation on a set X. Prove that R is transitive if and only if $R \circ R \subseteq R$

Problem 8. * Let R, S be two equivalence relations on a set X. Prove that $R \circ S$ is an equivalence relation if and only if $R \circ S=S \circ R$

Problem 9. (HW) Let $f: A \rightarrow A$ be a function different from identity such that $f \circ f \circ f=$ $f \circ f$. Prove that f is neither injective nor surjective.
Hint: Use contradiction and Problem 6!
Problem 10. (HW) Let R, S be two equivalence relations on a set X. Which of the following are also equivalence relations? Prove your claims!

1. $R \cup S$
2. $R \cap S$

Problem 11. (HW) Fibonacci numbers are defined as follows: $F_{0}=0, F_{1}=1, F_{n+1}=$ $F_{n}+F_{n-1}$ for $n \geq 1$. Prove the following:

1. $\sum_{i=1}^{n} F_{i}=F_{n+2}-1$
2. $\sum_{i=1}^{n} F_{i}^{2}=F_{n} F_{n+1}$

Hint: Your proof should use induction!

