Problem 1. For each natural number t, let $X_{t}=(-t, t)=\{x \in \mathbb{R}:-t<x<t\}$ and $Y_{t}=[-t, t]=\{x \in \mathbb{R}:-t \leq x \leq t\}$. Describe the following sets:

1. $\bigcup_{i=0}^{\infty} X_{i}$ and $\bigcup_{i=0}^{\infty} Y_{i}$
2. $\bigcap_{i=0}^{\infty} X_{i}$ and $\bigcap_{i=0}^{\infty} Y_{i}$

Problem 2. Let $A=\{2,7,15\}$ and B be a set such that $|B|=5$ answer the following:

1. What is the smallest and largest cardinality (size) of $A \cap B$.
2. What is the smallest and largest cardinality (size) of $A \cup B$.
3. What is the smallest and largest cardinality (size) of $A \times B$.

Problem 3. Find an example of a set A of cardinality 5 whose elements are sets and if $B \in A$ then $B \subseteq A$. (These sets are called transitive)

Problem 4. Describe the following Venn diagrams in set notation:

Problem 5. $(\boldsymbol{H} \boldsymbol{W})$ Let A, B, C be sets and prove the following:

1. $(A, B \subset C) \Longrightarrow(A \cup B \subset C)$
2. $(A=B) \Longleftrightarrow(A \cup B=A \cap B)$
3. $(A \subset B) \Longrightarrow((A \cup C) \subset(B \cup C))$

Problem 6. Let $A, B \subset \mathbb{N}$ be sets of natural numbers and prove the following:

1. $(A \cup B)^{c}=A^{c} \cap B^{c}$
2. $(A \cap B)^{c}=A^{c} \cup B^{c}$

Problem 7. Let A be a set and for some $n \in \mathbb{N}$ consider the collection of subsets of A denoted by X_{1}, \ldots, X_{n}. Then prove the following:

1. $A \backslash \bigcup_{i=1}^{n} X_{i}=\bigcap_{i=1}^{n}\left(A \backslash X_{i}\right)$
2. $A \backslash \bigcap_{i=1}^{n} X_{i}=\bigcup_{i=1}^{n}\left(A \backslash X_{i}\right)$

How does this exercise relate to the previous one?
Problem 8. $(\boldsymbol{H} \boldsymbol{W})$ Prove or Disprove: Let X, Y, Z be sets, if $X \times Y=Z \times Y$ then $X=Z$.

