Problem 1. For each natural number t, let $X_t = (-t,t) = \{x \in \mathbb{R} : -t < x < t\}$ and $Y_t = [-t,t] = \{x \in \mathbb{R} : -t \le x \le t\}$. Describe the following sets:

- 1. $\bigcup_{i=0}^{\infty} X_i$ and $\bigcup_{i=0}^{\infty} Y_i$
- 2. $\bigcap_{i=0}^{\infty} X_i$ and $\bigcap_{i=0}^{\infty} Y_i$

Problem 2. Let $A = \{2, 7, 15\}$ and B be a set such that |B| = 5 answer the following:

- 1. What is the smallest and largest cardinality (size) of $A \cap B$.
- 2. What is the smallest and largest cardinality (size) of $A \cup B$.
- 3. What is the smallest and largest cardinality (size) of $A \times B$.

Problem 3. Find an example of a set A of cardinality 5 whose elements are sets and if $B \in A$ then $B \subseteq A$. (These sets are called transitive)

Problem 4. Describe the following Venn diagrams in set notation:

Problem 5. (*HW*) Let A, B, C be sets and prove the following:

- 1. $(A, B \subset C) \implies (A \cup B \subset C)$
- 2. $(A = B) \iff (A \cup B = A \cap B)$
- 3. $(A \subset B) \implies ((A \cup C) \subset (B \cup C))$

Problem 6. Let $A, B \subset \mathbb{N}$ be sets of natural numbers and prove the following:

- 1. $(A \cup B)^c = A^c \cap B^c$
- 2. $(A \cap B)^c = A^c \cup B^c$

Problem 7. Let A be a set and for some $n \in \mathbb{N}$ consider the collection of subsets of A denoted by X_1, \ldots, X_n . Then prove the following:

- 1. $A \setminus \bigcup_{i=1}^{n} X_i = \bigcap_{i=1}^{n} (A \setminus X_i)$
- 2. $A \setminus \bigcap_{i=1}^{n} X_i = \bigcup_{i=1}^{n} (A \setminus X_i)$

How does this exercise relate to the previous one?

Problem 8. (*HW*) Prove or Disprove: Let X, Y, Z be sets, if $X \times Y = Z \times Y$ then X = Z.