Exercise 3: Discrete \& Continuous Optimization

1. Approximate $\sqrt{2}$ using Newton's method for root-finding. Use $x_{0}=1$ as the initial approximation and iterate the method four times.
2. Find the minimum point of $f(x)=e^{-x}+x^{2}$ using Newton's method. Use $x_{0}=1$ as the intial value and stop when the solution changes by less than 0.01 .
3. Consider the following unconstrained optimization problem:

$$
\min _{x \in \mathbb{R}^{2}} f(x)=x_{1}^{4}+x_{2}^{4}-2 x_{1} x_{2}
$$

(a) Find the gradient and the Hessian of f.
(b) Use the Newton's method to find an approximate solution starting from $x_{0}=(1,1)$.
(c) Explain why it is more efficient to solve the system of linear equations $\nabla^{2} f\left(x_{k}\right) y=\nabla f\left(x_{k}\right)$ than to invert the matrix $\nabla^{2} f\left(x_{k}\right)$ at each iteration.

