Exercise 2: Discrete & Continuous Optimization

- 1. Show that the following functions are convex or not convex on their domains using the test of Hessian being positive semidefinite:
 - (a) $f(x,y) = x^3 + y^3 3xy$ on \mathbb{R}^2
 - (b) $g(x,y) = x^2 + 2xy + y^2$ on \mathbb{R}^2
 - (c) $h(x, y, z) = x^2 + y^2 + z^2 2xyz$ on \mathbb{R}^3
- 2. Let M be a convex set. Recall that a function $f: M \to \mathbb{R}$ is said to be convex over M if for all $x_1, x_2 \in M$ and for all $\lambda \in [0, 1]$ we have that $f(\lambda x_1 + (1 \lambda)x_2) \leq \lambda f(x_1) + (1 \lambda)f(x_2)$. Prove that $f: M \to \mathbb{R}$ is convex over M if and only if for any $x_1, \ldots, x_k \in M$ and $\lambda_1, \ldots, \lambda_k \geq 0, \sum_{i=1}^k \lambda_i = 1$ we have that

$$f\left(\sum_{i=1}^k \lambda_i x_i\right) \leqslant \sum_{i=1}^k \lambda_i f(x_i).$$

- 3. Let P be a symmetric $n \times n$ matrix and let $c, d \in \mathbb{R}^n$. Prove that $f(x) = x^{\mathsf{T}} P x + c^{\mathsf{T}} x + d$ is convex if and only if P is positive semidefinite.
- 4. Prove that $f(x) = -\sum_{i=1}^{m} \ln (b_i a^{\mathsf{T}} x)$, is convex over $\{x | a_i^{\mathsf{T}} x < b_i, i = 1, \dots, m\}$.