Exercise 2: Discrete \& Continuous Optimization

1. Show that the following functions are convex or not convex on their domains using the test of Hessian being positive semidefinite:
(a) $f(x, y)=x^{3}+y^{3}-3 x y$ on \mathbb{R}^{2}
(b) $g(x, y)=x^{2}+2 x y+y^{2}$ on \mathbb{R}^{2}
(c) $h(x, y, z)=x^{2}+y^{2}+z^{2}-2 x y z$ on \mathbb{R}^{3}
2. Let M be a convex set. Recall that a function $f: M \rightarrow \mathbb{R}$ is said to be convex over M if for all $x_{1}, x_{2} \in M$ and for all $\lambda \in[0,1]$ we have that $f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)$. Prove that $f: M \rightarrow \mathbb{R}$ is convex over M if and only if for any $x_{1}, \ldots, x_{k} \in M$ and $\lambda_{1}, \ldots, \lambda_{k} \geqslant$ $0, \sum_{i=1}^{k} \lambda_{i}=1$ we have that

$$
f\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right) \leqslant \sum_{i=1}^{k} \lambda_{i} f\left(x_{i}\right) .
$$

3. Let P be a symmetric $n \times n$ matrix and let $c, d \in \mathbb{R}^{n}$. Prove that $f(x)=$ $x^{\boldsymbol{\top}} P x+c^{\boldsymbol{\top}} x+d$ is convex if and only if P is positive semidefinite.
4. Prove that $f(x)=-\sum_{i=1}^{m} \ln \left(b_{i}-a^{\boldsymbol{\top}} x\right)$, is convex over $\left\{x \mid a_{i}^{\top} x<b_{i}, i=\right.$ $1, \ldots, m\}$.
