Exercise 1: Discrete \& Continuous Optimization

1. (a) Show that $(-1,-1)$ is not a local minimum of $f(x, y)=x^{2}+y^{2}-$ $4 x-2 y+1$
(b) Show that $(0,0)$ is not a local minimum of $g(x, y)=x^{3}-3 x y+y^{3}$
(c) Show that $(1,1)$ is not a local minimum of $h(x, y)=e^{-x^{2}-y^{2}}\left(x^{2}+y^{2}\right)$
2. Find the local extrema of the following functions using the second derivative test.
(a) $f(x, y)=x^{2}+y^{2}-4 x-2 y+1$
(b) $g(x, y)=x^{3}-3 x y+y^{3}$
3. Show that the following sets are convex:
(a) $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$
(b) $T=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
4. Show that the following functions are convex or not convex on their domains:
(a) $f(x)=x^{4}-2 x^{2}+3$ on \mathbb{R}
(b) $g(x, y)=x^{2}+y^{2}$ on \mathbb{R}^{2}
(c) $h(x, y)=x y$ on $T=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0\right\}$
