Exercise 1: Discrete & Continuous Optimization

- 1. (a) Show that (-1, -1) is not a local minimum of $f(x, y) = x^2 + y^2 4x 2y + 1$
 - (b) Show that (0,0) is not a local minimum of $g(x,y) = x^3 3xy + y^3$
 - (c) Show that (1,1) is not a local minimum of $h(x,y) = e^{-x^2 y^2}(x^2 + y^2)$
- 2. Find the local extrema of the following functions using the second derivative test.
 - (a) $f(x,y) = x^2 + y^2 4x 2y + 1$
 - (b) $g(x,y) = x^3 3xy + y^3$
- 3. Show that the following sets are convex:
 - (a) $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ (b) $T = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$
- 4. Show that the following functions are convex or not convex on their domains:
 - (a) $f(x) = x^4 2x^2 + 3$ on \mathbb{R}
 - (b) $g(x, y) = x^2 + y^2$ on \mathbb{R}^2
 - (c) h(x,y) = xy on $T = \{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$