
On Computing the Centroid of the Vertices of

an Arrangement and Related Problems

Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary ⋆

Max-Planck-Institut für Informatik, Saarbrücken, Germany
Universität des Saarlandes, Saarbrücken, Germany

Abstract. We consider the problem of computing the centroid of all the
vertices in a non-degenerate arrangement of n lines. The trivial approach
requires the enumeration of all

`

n

2

´

vertices. We present an O(n log2
n)

algorithm for computing this centroid. For arrangements of n segments

we give an O(n
4

3
+ǫ) algorithm for computing the centroid of its vertices.

For the special case that all the segments of the arrangement are chords of
a simply connected planar region we achieve an O(n log5

n) time bound.
Our bounds also generalize to certain natural weighted versions of those
problems.

1 Introduction

An arrangement of n lines in the plane has up to
(

n
2

)

vertices. However, these
vertices are implicitly specified by only 2n real numbers. Thus it is not neces-
sarily surprising that some functions of this vertex set can be computed in sub-
quadratic time: E.g. the vertex with k-th smallest x-coordinate can be computed
in O(n log n) time [4]. It is an outstanding open problem in computational geom-
etry whether in subquadratic time the true number of vertices can be computed
(in other words, whether in subquadratic time degeneracy can be determined).

In this paper we study the problem of computing the centroid of the vertices
in an arrangement of lines (and also of line segments). In contrast to the problems
mentioned above the centroid function is not combinatorial in the sense that it
does not produce an integer value but it produces real values.

We first show that the centroid of intersection points n lines in the plane
can be computed in O(n log2 n) time. Using this result and employing a segment
query data structure, we show that the centroid of the intersection points of
n line segments in the plane can be computed in O(n4/3+δ) time (δ > 0 arbi-
trarily small). This should be compared with the complexity of the best known
algorithm for counting the number of intersections in the plane by Chazelle [3],
which is Θ(n4/3(log n)1/3). In case the segments have a restricted structure in
that they all are chords of a simply connected region, we can do better: we show
a bound of O(n log5 n) time. We finally show that all the mentioned bounds
continue to hold for a natural weighted generalization of the centroid problem:

⋆ The last author was supported by Graduiertenkolleg der FR Informatik, Universität
des Saarlandes while working on this problem.

endow each line (or segment) with a real weight and define the weight of an
intersection point to be the sum of the weights of the involved lines.

The main computational ingredient in our approach besides the usual com-
putational geometry machinery is the Fast Fourier Transform.

Our approach does in no way solve the above-mentioned degeneracy problem.
However, in the conclusion we offer a brief discussion why algebraic methods as
used in this paper may be a viable approach towards a subquadratic solution
the degeneracy problem For the sake of presentation we assume non-degeneracy.
Degeneracy in the form of non-intersecting lines can easily be taken care of
explicitly. Degeneracy in the form of of concurrent lines is ignored in the sense
that if an arrangement vertex v is incident to k lines then it is counted

(

k
2

)

times,
once for each pair of lines intersecting in v.

The problem of computing the centroid of the vertices of an arrangement is
admittedly somewhat academic. For readers with a strong need for applications
here is a conceivable scenario where our results would be relevant. Consider the
deployment of wireless devices on road-crossings in a city for the purpose of
traffic monitoring (finding traffic rule violations or updating the people about
overcrowded crossings or traffic jams). These devices need to continously trans-
mit the data to a central base station. An important cost criterion here is the
power consumed by these devices. The power needed by a device is proportional
to the square (assuming free space) of the distance to which it needs to transmit
the data. Thus the location of the central base station should be such that it
minimizes the sum of the squares of the distances to the road crossings. This
location is realized by the centroid of the crossings. Thus our results apply if all
the roads in the city are straight and all intersections are crossings of exactly
two roads.

If you assume that the power consumption of the wireless device at an inter-
section is proportional to the number of cars going by and the average number
wi of cars going along road i per unit of time is independent of the position
along the road, then the weighted versions of our centroid problems apply.

Our results heavily rely on the following two facts from computational algebra
(see Chapter 1 of [9], [5]).

Fact 1 (Fast polynomial multiplication) The product of two univariate
polynomials over the reals of maximal degree n can be computed in time O(n log n).

Fact 2 (Fast multiple evaluation) Let p(x) be polynomial over the reals of
degree at most n and let A be a set of n real number.

The set {(a, p(a)|a ∈ A} can be computed in O(n log2 n) time.

2 Computing the centroid of the intersection points of n

lines

We are given a set L of n lines li : y = mix − ci (for 1 ≤ i ≤ n) in general
position (no three of them intersect at the same point and no two of them are

parallel). Let (Xij , Yij) represent the intersection point of lines li and lj . We
want to compute the centroid (XL, YL) of the intersection points (Xij , Yij). By
the definition of centroid,

XL =

(

n

2

)−1
∑

i,j∈[1...n]
i<j

Xij , YL =

(

n

2

)−1
∑

i,j∈[1...n]
i<j

Yij

Consider a query line l : y = µx − γ. We would like to compute the sum of
the x-coordinates of the intersection points of l with each of the lines in L. This
is given by

FL(µ, γ) =
∑

1≤i≤n

ci − γ

mi − µ

This function can be represented as:

FL(µ, γ) =
PL(µ) − γQL(µ)

SL(µ)
(∗)

where PL, QL and SL are single variable polynomials of degree at most n.

We assume that the query line is not parallel to any of the lines in L. We do,
however, allow it to be identical to one of the lines in L in which case we want
to compute the sum of the x coordinates of the intersection of l with the other
lines in L. If l is not identical to any of the lines in L, then FL(µ, γ) as defined
above is well defined. If l is identical to one of the lines (lj) in L, then F (µ, γ) is
of the form 0

0 and thus F cannot be evaluated using (*). We therefore evaluate
F at µ = mj , γ = cj applying de l’Hôpital’s rule, which yeilds

FL(mj , cj) =
P ′

L(mj) − cjQ
′
L(mj)

S′
L(mj)

,

where P ′
L, Q′

L, and S′
L denote the derivatives of PL, QL, and LL with respect to

µ. We will associate the polynomials PL, QL and SL defined above with the set
L of lines.

Lemma 1. Given a set of n lines L, the associated polynomials PL, QL and SL

can be computed in O(n log2 n) time.

Proof. We arbitrarily color half the lines blue and the rest red. Let R and B be
the set of red and blue lines respectively. We then recursively compute PR, QR

and SR for the red lines and PB, QB and SB for the blue lines. Then,

FL(µ, γ) =
PR(µ) − γQR(µ)

SR(µ)
+

PB(µ) − γQB(µ)

SB(µ)

=
(PR(µ) · SB(µ) + PB(µ) · SR(µ)) − γ(QR(µ) · SB(µ) + QB(µ) · SR(µ))

SR(µ) · SB(µ)

Therefore,

PL(µ) = PR(µ) · SB(µ) + PB(µ) · SR(µ)
QL(µ) = QR(µ) · SB(µ) + QB(µ) · SR(µ)
SL(µ) = SR(µ) · SB(µ)

Since two polynomials of degree at most n can be multiplied in O(n log n)
time using FFT (Fact 1), PL, QL and SL can be computed in O(n log n) time
from PR, QR, SR, PB, QB and SB. Therefore PL, QL and SL can be computed
in O(n log2 n) time (we get one log factor due to recursion).

Theorem 3. Given a set R of n red lines and a set B of n blue lines such that
no red line is parallel (or identical) to any blue line, we can compute the centroid
(XRB , YRB) of red-blue intersection points in O(n log2 n) time.

Proof. We shall treat each of the red lines as a query line and compute the sum
of the x-coordinates of its intersection with the blue lines. We then add the sums
for all the red lines and the divide by the number of red-blue intersections (n2)
to get the x-coordinate of the centroid of the red-blue intersections. Since none
of the red lines are identical to any of the blue lines, the x-coordinate XL of the
centroid of red-blue intersections is

XL = n−2
∑

li∈R

FB(mi, ci) = n−2
∑

li∈R

PB(mi) − ciQB(mi)

SB(mi)

Since the polynomials PB, QB and SB can be computed in O(n log2 n) time using
Lemma 1 and also they can be evaluated at the n mi’s corresponding to the n
red lines in O(n log2 n) time using FFT (See Fact 2), the overall time for the
computation of XL is O(n log2 n). The y-coordinate of the centroid of red-blue
intersections can be computed similarly.

Corollary 1. Given a set R of r red lines and a set B of b blue lines, the
centroid (XRB , YRB) of the red-blue intersections can be computed in O((r +
b) log3 (r + b)) time.

Theorem 4. Given a set L of n lines, we can compute the centroid (XL, YL) of
their intersections in O(n log2 n) time.

Proof. In this case, we treat each of the lines as a query line and compute the
sum of the x-coordinates of its intersections with the lines in L. We know that
each of these query lines is identical to exactly one line in L (i.e. the line itself).
Therefore, the x-coordinate of the centroid of the intersections of the lines is
given by,

XL = n−2
∑

li∈L

FL(mi, ci) =
∑

li∈L

P ′
L(mi) − ciQ

′
L(mi)

S′
L(mi)

Since PL, QL and SL can be computed in O(n log2 n) time, P ′
L, Q′

L and S′
L can

also be computed in O(n log2 n) time. Also, P ′
L, Q′

L and S′
L can be evaluated at

the n mi’s corresponding to the n lines in O(n log2 n) time. Therefore, XL can
be computed in O(n log2 n) time. Similarly, YL can be computed in O(n log2 n)
time.

If each of the lines li ∈ L of n lines is endowed with a weight wi, we define
the centroid of weighted lines to be

(XL, YL) = (
∑

li,lj∈L
i<j

Xij(wi + wj),
∑

li,lj∈L
i<j

Yij(wi + wj))

where (Xij , Yij) is the intersection point of li and lj .

We proceed exactly as in the unweighted case by considering a query line
l : y = µx − γ with weight ω. Then, the weighted sum of the x-coordinates of
the intersections of l with the lines in L is given by

GL(µ, γ, ω) =
∑

1≤i≤n

ci − γ

mi − µ
· (ω + wi)

This function can again be represented as:

GL(µ, γ, ω) = ω ·
PL(µ) − γQL(µ)

SL(µ)
+

UL(µ) − γVL(µ)

SL(µ)

where PL, QL and SL are as before and UL and VL are some other polynomials
of degree at most n in µ.

We can now apply the same techniques as for the unweighted case to obtain
the following:

Lemma 2. Given a set R of n red weighted lines and a set B of n blue weighted
lines and their associated polynomials the centroid of the red-blue intersections
can be computed in O(n log2 n).

Theorem 5. Given a set L of n weighted lines the centroid (XL, YL) of their
intersections can be computed in O(n log2 n) time.

Corollary 2. Given a set R of r weighted red lines and a set B of b weighted
blue lines, the centroid (XRB , YRB) of the red-blue intersections can be computed
in O((r + b) log2 (r + b)) time.

3 Centroid of line segment intersections

Theorem 6. Given a set R of r red segments and a set B of b blue segments,
if R can be preprocessed into a data structure of size O(s(r)) in time O(p(r))
so that all segments intersecting a query segment t ∈ B can be reported as
the union of O(u(r)) “canonical” prestored subsets in O(q(r)) time, then we
can form sets R1, R2, · · · , Rk of red segments and sets B1, B2, · · · , Bk of blue
segments in O(p(r) + b q(r)) time such that

1. For 1 ≤ i ≤ k, all segments in Ri intersect all segments in Bi

2. If a red segment ρ intersects a blue segment β, there is a unique i such that
ρ ∈ Ri and β ∈ Bi

3.

n
∑

i=1

|Ri| = O(s(r)),

n
∑

i=1

|Bi| = O(b u(r))

Proof. We use a method used by Agarwal and Varadarajan in [2]. We construct
the data structure for the red segments. The canonical prestored subsets pro-
duced by the data structure form our sets Ri. With each set Ri we associate
a bucket which is initially empty. We query this data structure for each blue
segment β ∈ B one by one. The output of the query is given as the disjoint
union of O(u(r)) canonical subsets and we put the segment β into the buckets
associated with each of those subsets. The set of segments in the bucket asso-
ciated with Ri forms the set Bi. It is clear that each segment in Ri intersects
each segment in Bi since we put exactly those segments in Bi which intersect
all segments in Ri. Also, since the output to each query is given as a disjoint
union of canonical subsets, whenever a red segment ρ and a blue segment β
intersect, there is a unique i such that ρ ∈ Ri and β ∈ Bi. Since the size of

the data structure is O(s(r)),
n
∑

i=1

|Ri| = O(s(r)) and since each query returns

O(u(r)) canonical subsets, each blue segment is contained in at most O(u(r))

buckets and therefore
n
∑

i=1

|Bi| = O(b u(r)). The time required to construct the

data structure is O(p(r)) and the time for the b queries is O(b q(r)). So, the
total time complexity is O(p(r) + b q(r)).

Theorem 7. Given a set R of r (weighted) red segments and a set B of b
(weighted) blue segments, if R can be preprocessed into a data structure of size
O(s(r)) in time O(p(r)) so that all segments intersecting a query segment t ∈ B
can be reported as the union of O(u(r)) “canonical” prestored subsets in O(q(r))
time, then we can compute the number of the red-blue intersections and their
centroid in O

(

p(r) + b q(r) + (s(r) + b u(r)) log2 (r + b)
)

time.

Proof. We use Theorem 6 to form the sets Ri and Bi. Since all segments in
Ri intersect all segments in Bi, the total number of intersections between the
segments in Ri and the segments in Bi is mi = |Ri||Bi| and the centroid of those
intersections (Xi, Yi) can be computed in O(ni log2 ni) time (Corollaries 1 and 2)

where ni = |Ri| + |Bi|. So, the total number of intersections is m =
∑

i

mi and

the centroid of all red-blue intersections is m−1
∑

i

miXi and can be computed in

O

(

p(r) + b q(r) +
∑

i

ni log2 ni

)

= O

(

p(r) + b q(r) + log2 (r + b)(
∑

i

ni)

)

=

O
(

p(r) + b q(r) + (s(r) + b u(r)) log2 (r + b)
)

time.

Theorem 8. If a set S of n (weighted) segments in the plane can be prepro-
cessed into a data structure of size O(s(n)) in time O(p(n)) so that all segments
intersecting a query segment t ∈ S can be reported as the union of O(u(n))
“canonical” prestored subsets in O(q(n)) time, then we can compute the number
of segment intersections and their centroid in O((p(n) + n q(n)) log n + (s(n) +
n u(n)) log4 n) time.

Proof. We color half the segments red and the rest blue and then use Theorem 7
with r = b = n/2 to compute the number mRB of red-blue intersections and
their centroid (XRB, YRB). We recursively compute the number mR of red-red
intersections and their centroid (XR, YR) and also the number mB of blue-blue
intersections and their centroid (XB, YB). The total number of intersections
is m = mRB + mR + mB and their centroid is (m−1(mRBXRB + mRXR +
mBXB), (m−1(mRBYRB + mRYR + mBYB)). The time required for the compu-
tation is O((p(n) + n q(n)) log n + (s(n) + n u(n)) log3 n) (we get an extra log n
factor due to the recursion).

Corollary 3. The centroid of the intersections of arbitrary (weighted) segments
in the plane can be computed in O(n4/3+ǫ) time.

Proof. Agarwal and Sharir [1] have shown that given a collection S of segments
in the plane and a parameter n1+ǫ ≤ s ≤ n2+ǫ we can preprocess S into a data
structure of size s, in time O(s1+ǫ) so that we can report all k segments of S

intersecting a query segment in time O(n1+ǫ/s
1

2 +k). Furthermore, the output to

such a query is given as the disjoint union of O(n1+ǫ/s
1

2) “canonical” prestored
subsets. We put s = n4/3 and apply Theorem 8 and the result follows.

Since the time complexity of the best known algorithm even for computing
the number of intersections among n line segments in the plane is Θ(n4/3(log n)1/3)
[3], it is unlikely that this can be improved.

4 Intersection of lines inside a polygon

If the configuration of the given set of segments allows a better query structure
for segment intersections, we can do better. This for example is the case when
the segments are chords of a simple region.

A region D ⊂ ℜ2 is called simple if any line intersects it at most c(a constant)
times and the intersection of any set of n lines and the boundary of D can be
ordered along the boundary in O(n log n) time [8]. A chord of the region is a
segment joining two boundary points and lying completely in the interior of
the region. Let c1, c2, · · · , cn be chords of a simple region R. We represent a
chord ci with the pair (li, ri) where li and ri are indices of the endpoints of ci

in the sorted order and li < ri. Now given a query chord c, we can do binary
searching of its endpoints in the sorted order of endpoints to compute their
ranks lc and rc in O(log n) time. Denote by I(c) the set of chords intersecting c.
Observe that I(c) = I1(c) ∪ I2(c) where I1(c) = {ci|li < lc & lc < ri < rc} and

I2(c) = {ci|lc < li < rc & ri > rc}. If we represent ci by the point (li, ri) in the
plane, then I1 and I2 can be computed using orthogonal range queries of the
types [−∞, lc] × [lc, rc] and [lc, rc] × [rc,∞]. We can use range trees [6], which
can be built in O(n log n) time and O(n log n) space, to answer such queries
in O(log2 n) time where the answer to each query is the union of O(log2 n)
pairwise disjoint canonical subsets. We can therefore apply Theorem 8 (with
p(n) = O(n log n), s(n) = O(n log n), u(n) = O(log2 n), q(n) = O(log2 n)) to
show that the centroid of the intersections of the chords can be computed in
O(n log5 n) time.

Corollary 4. The centroid of the intersection points of n (weighted) lines lying
inside a given simple region D can be computed in O(n log5 n) time.

Proof. Since each line intersects D at most c times, the problem can be reduced
to computing the centroid of the intersections of at most ⌊c/2⌋n chords of D.

5 Computing Higher Moments

The x and y coordinates of the centroid of the intersection points are the aver-
ages of the coorresponding coordinates of the intersection points. We are now
interested in the averages of the higher powers of the x and y coordinates.

As in Section 2, consider a set L of n lines and a query line l : y = µx − γ.

We want to compute the averages of the kth powers, X
(k)
L and Y

(k)
L , of the x

and y-coordinates of the intersection points of the line l with the lines in L. The
sum of the the kth powers of the x-coordinates of these intersection points is

F
(k)
L (µ, γ) =

∑

1≤i≤n

(

ci − γ

mi − µ

)k

This function can be represented as:

F
(k)
L (µ, γ) =

∑

0≤j≤k γjP
(j)
L (µ)

SL(µ)

where the P
(j)
L ’s and SL are polynomials of degree at most kn in µ.

We can therefore proceed as before and prove that computing the averages
of the kth powers of the coordinates requires at most k2 times the time required
to compute the centroid (We get one k since there are O(k) polynomials to deal
with and another k since the polynomials are of degree kn).

6 Conclusion and Outlook

In this paper we describe subquadratic algorithms for computing certain func-
tions on the set of all intersecting pairs of lines (or segments) in an arrange-
ment. Which functions do admit such subquadratic computations? The most

outstanding question of this sort akss whether two distinct intersecting pairs
of lines define the same intersection point, in other word, do some three lines
intersect in a point. This is known as the line arrangement degeneracy problem.
At this point this problem seems out of reach. However, we would like to point
out the related problem of 3-Sum may be amenable to an algebraic approach as
used in this paper.

The 3-Sum problem [7] asks whether for three given sets A, B, and C of n
real numbers each, we have (A + B) ∩ C = ∅, where A + B is the Minkowski
sum {a + b|a ∈ A, b ∈ B}. No subquadratic time solutions to this problem are
known, except for the case where the three sets consist of integers in the range
of 0 to K. In that case it suffices to compare C with the support of the product
polynomial

(
∑

a∈A xa
)

·
(
∑

b∈B xb
)

. This can be done in O(K log K) time.
Let us consider the simpler question whether we have A∩B = ∅. There is an

obvious O(n log n) solution via sorting and merging. This solution is combinato-
rial in that it relies on order comparisons <, =, >. It may be somewhat surprising
that there is a also subquadratic solution relying solely on equality comparisons:
Consider the polynomial pA(x) =

∏

a∈A(x−a). We have A∩B 6= ∅ iff pA(b) = 0

for some b ∈ B. The polynomial pA can be computed in O(n log2 n) time using
divide-and-conquer and FFT-based polynomial multiplication, and within the
same bound pA can be evaluated for all n elements of B. Thus A ∩ B = ∅ can
be decided in O(n log2 n) time without using order comparisons.

Algebraically maybe more succinct is the formulation A ∩ B = ∅ iff
gcd(pA(x), pB(x)) = 1, where of course pB(x) =

∏

b∈B(x− b). This also leads to

an O(n log2 n) time solution since the gcd of two polynomials of degree n can be
computed within this time (See Section 2.4, Chapter 2 of [9]).

The 3-Sum problem allows the following algebraic formulation:

(A + B) ∩ C = ∅ iff gcd(resultant(pA(x), pB(z − x), x) , pC(z)) = 1 .

Here pC(z) =
∏

c∈C(z − c). Note that resultant(pA(x), pB(z − x), x) is nothing
but pA+B(z), i.e. the polynomial whose roots are exactly the elements of A+B.
Current techniques of computational algebra do not seem to allow the evaluation
of gcd(resultant(pA(x), pB(z − x), x) , pC(z)) in subquadratic time. However,
there may be a better chance of success along such an algebraic approach than
along a traditional combinatorial approach.

References

1. Pankaj K. Agarwal and Micha Sharir. Applications of a new space-partitioning
technique. Discrete Comput. Geom., 9(1):11–38, 1993.

2. P.K. Agarwal and K.R. Varadarajan. Efficient algorithms for approximating polyg-
onal chains. Discrete Computational Geometry, 23:273–291, 2000.

3. B. Chazelle. Cutting hyperplanes for divide-and-conquer. Discrete Computational

Geometry, 9(2):145–158, 1993.
4. R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. Optimal slope selection. SIAM

J. Computing, 18:792–810, 1989.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms: Chapter 32. MIT Press, 2nd edition, 2001.

6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational

Geometry: Algorithms and Applications: Chapter 5. Springer, 1997.
7. Anka Gajentaan and Mark H. Overmars. On a class of ø(n2) problems in compu-

tational geometry. Comput. Geom. Theory Appl., 5(3):165–185, 1995.
8. S. Langerman and W. Steiger. Ham-sandwich cuts and other tasks in arrangements.

2001. Technical report.
9. Chee Keng Yap. Fundamental problems of algorithmic algebra. Oxford University

Press, Inc., New York, NY, USA, 2000.

