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Abstract

Given a set of polyhedral cones C1, · · · , Ck ⊂ Rd, and a convex set D, does the
union of these cones cover the set D? In this paper we consider the computa-
tional complexity of this problem for various cases such as whether the cones
are defined by extreme rays or facets, and whether D is the entire Rd or a given
linear subspace Rt. As a consequence, we show that it is coNP-complete to
decide if the union of a given set of convex polytopes is convex, thus answering
a question of Bemporad, Fukuda and Torrisi.

1. Introduction

Let S ⊆ Rd be a finite set of points in Rd. The conic hull of S, denoted
by cone(S), is the set of all non-negative linear combinations of points in S,
i.e., cone(S) = {

∑

p∈S µpp : µp ≥ 0 for all p ∈ S}. It is well-known that any
polyhedral cone cone(S) can be written equivalently as the intersection of finitely
many half-spaces, i.e., cone(S) = {x ∈ Rd : Ax ≤ 0}, where A ∈ Rm×d. The
two representations are called the V- and the H-representations, respectively.

In this note we are interested in the complexity of covering problems of the
following form:

ConeCover(C, D): Given a collection of cones C = {C1, . . . , Ck}, and a con-

vex set D, does
⋃k

i=1 Ci + D?
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A polytope P is the convex hull of a finite set S of points in Rd, and it can also
be written in one of two equivalent forms: P = conv(S) = {

∑

p∈S µpp : µp ≥

0 for all p ∈ S,
∑

p∈S µp = 1} (V-representation), or P = {x ∈ Rd|Ax ≤ 1},

where 1 is the vector in which each component is 1 (H-representation)2. A
polyhedron Q is the Minkowski sum of a polytope P and a cone C: Q =

P+C
def
= {x+y|x ∈ P, and y ∈ C}. Similarly, one can also consider the problem

PolytopeCover(P , D): Given a collection of polytopes P = P1, . . . , Pk, and

a convex polytope D, does
⋃k

i=1 Pi 6+ D?
Our motivation for studying the above covering problems comes from two

other related problems on polytopes. The first is the well-known Vertex Enum-
eration problem of finding the vertices of a polytope given its facet defining
inequalities, to be described in more details in the next section. The second
problem is to check whether the union of a given set of polytopes is convex. Be-
mporad, Fukuda and Torrisi [3] gave polynomial-time algorithms for checking if
the union of k = 2 polyhedra is convex, and if so finding this union, no matter
whether they are given in V or H representations. They also gave necessary
and sufficient conditions for the union of a finite number of convex polytopes
in Rd to be convex, and asked whether these conditions can be used to design
a polynomial time algorithm for checking if the union is convex. Bárány and
Fukuda gave slightly stronger conditions in [2]. It will follow from our results
that, if both d and k are part of the input, then these conditions cannot be
checked in polynomial time unless P=NP.

Unless otherwise specified, all the cones considered throughout the paper
will be assumed to be pointed, i.e., contain no lines, or equivalently, have a
well defined apex, namely the origin. As we shall see, the complexity of the
above problem depends on how the cones are represented, and whether they are
disjoint or not. We consider 3 different factors, namely:

(f1) whether the cones in C are given in V- or H-representations, or both
representations (VH);

(f2) what the set D is: we consider D = Rd and D = Rt for some arbitrary
t ≤ d;

(f3) whether the cones in C are

– (f3)-(I): pairwise disjoint in the interior and intersect only at faces;

– (f3)-(II): pairwise disjoint in the interior , but can intersect anywhere
on the boundaries; and

– (f3)-(III): not necessarily pairwise disjoint.

We denote by ConeCover[F1, F2, F3] the different variants of the problem,
where F1 ∈ {V ,H,VH}, F2 ∈ {Rt,Rd} and F3 ∈ {I, II, III} describes cases
(f3)-(I), (f3)-(II), and (f3)-(III).

2possibly after moving first the polytope so that its relative interior contains the origin

2



Rd Rt

I II III I II III
V VE-hard VE-hard NPC NPC NPC NPC

(Thm. 1) (Cor. 1) (Cor. 4) (Thm. 2) (Cor. 2) (Cor. 2)

H P ? NPC P ? NPC

(Thm. 3) (Cor. 4) (Cor. 3) (Cor. 4)

VH P ? NPC P ? NPC

(Cor. 3) (Thm. 4) (Cor. 3) (Cor. 4)

Table 1: Complexity of Cone Covering problem for various input representations.

Following are the main results of this paper:

• We establish the complexity of various variants of the ConeCover problem
(summarized in Table 1).

• PolytopeCover is NP-complete for V- or H-polytopes.

• Checking if the union of a set of polytopes is convex or not is NP-complete
for V- or H-polytopes.

Some of the results in this paper relate the complexity of some variants of
the cone cover problem to another problem, like Vertex Enumeration or Hyper-
graph Transversal, whose complexity status is itself not very clear. For such a
comparison we use a notion similar to the notion of NP-hardness. For a prob-
lem Φ, the class Φ-hard denotes all problems Φ′ such that there is a polynomial
time Turing reduction of Φ to Φ′. Essentially, saying a certain problem is Φ-
hard means that if this problem has a polynomial time algorithm then Φ has a
polynomial time algorithm as well.

2. Results

Converting the H-representation of a polytope to its V-representation and
vice versa, is a well studied problem. Despite years of research, it is neither
known if an output-sensitive algorithm exists for this problem, nor is it known
to be NP-hard. The following decision version of this problem is known to be
equivalent to the enumeration problem [1].

VertEnum(P, V ): Given an H-polytope P ⊆ Rd and a subset of its vertices
V ⊆ V(P ), check whether P = conv(V ).

Let P be the polytope defined as {x|Ax ≤ 1}, where A ∈ Rm×d. Every
full-dimensional rational polytope can be brought into this form by moving the
origin to its interior and scaling the normals of the facet-defining hyperplanes
appropriately. For any vertex v of P , consider the cone of all vectors c such
that v is the solution of the following linear program: max cTx s.t. Ax ≤ 1.

For every vertex v of P , this cone is uniquely defined. We call this cone the
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maximizer cone of v. Such a maximizer cone can be defined for every proper
face of a polytope. The union of all such cones is also known as the normal fan

of a polytope [8]. It is easy to see that if A′ is the maximal subset of rows of A
such that A′v = 1, then the maximizer cone of v is the conic hull of the rows of
A′ treated as vectors in Rd.

Theorem 1. Problem ConeCover[V ,Rd, I] is VertEnum-hard.

Proof. For an H-polytope P and a subset of its vertices V , the V-representation
of the maximizer cone for each vertex in V can be computed easily from the
facets of P . Clearly, the union of these cones covers Rd if and only if P =
conv(V ). To see this, note that if P 6= conv(V ) then P has a vertex v not in V

and any vector in the interior of the maximizer cone of v does not lie in any of
the cones corresponding to the given vertices.

Corollary 1. Problem ConeCover[V ,Rd, II] is VertEnum-hard.

Theorem 2. Problem ConeCover[V ,Rt, I] is NP-complete.

Proof. ConeCover[V ,Rt, I] is clearly in NP. Now, given an H-polytope P ⊂
Rd, a linear subspace Rt and a V-polytope Q ⊂ Rt, it is NP-complete to de-
cide whether Q is the projection of P onto the given subspace [7]. We give a
polynomial reduction from this problem to ConeCover[V ,Rt, I].

Every vertex v of Q is an image of some (possibly more than one) vertices of
P . If this is not the case then Q clearly cannot be the projection of P . Since the
vertices of Q are known this condition can be checked in polynomial time. To
see why this is true, consider a vertex v of Q and consider any direction α in the
affine hull of Q such that αTx is maximized at v over all points in Q. If we use
the same vector α as objective function over the points in P then the maximum
is achieved at the face containing all vertices whose image under projection is
v. Therefore from now on consider only the case in which the vertices of Q are
a subset of the projected vertices of P .

Now, for any vertex v of Q pick any vertex v′ of P whose projection is v.
We associate the maximizer cone C(v′) of v′ with v and refer to it as C(v). Since
C(v) for every vertex v of Q is actually the maximizer cone of some vertex of P,
the V-representation of C(v) can be easily computed from the matrix A of the
normals of facet defining hyperplanes of P .

It is not difficult to see that if Q is not the projection of P onto the given
subspace Rt, then one can find a direction c parallel to the given subspace such
that a vertex that maximizes cTx in P is such that its projection is a vertex of
the projection of P but not of Q. Hence, the union of cones C(v) for each vertex
v of Q covers Rt if and only if Q is the projection of P . Also, all these cones
intersect each other only at some proper face.

Corollary 2. Problems ConeCover[V ,Rt, II], and ConeCover[V ,Rt, III] are
NP-complete.
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For a given set of H-cones, if the union does not cover Rd then there is a
facet with normal a ∈ Rd, of at least one of these cones and a point p in the
interior of this facet such that p + ǫa lies outside every cone, for some ǫ > 0.
Let us call this facet a witness facet, and p a witness point of the fact that Rd

is not covered.

Theorem 3. ConeCover[H,Rd, I] can be solved in polynomial time.

Proof. If the cones are allowed to intersect only at common faces, then every
point in the interior of a witness facet is a witness point. Thus, one can deter-
mine in polynomial time whether the union of the given cones cover Rd or not
as follows.

For every facet f , with normal a, of each cone C pick a point p ∈ relint(f).
For every other cone C′ 6= C in C compute the smallest ǫ ≥ 0 such that p+ ǫa

lies in C′. This can be done via linear programming. Note that some of the
linear programs might be infeasible if p + ǫa never enters some cone for any
positive ǫ, and we ignore these cones. If all the feasible linear programs output
a strictly positive value of ǫ then we know that p + ǫa does not lie in any of
the cones for some value of ǫ (in particular, for a value of ǫ smaller than the
smallest minimum). In this case we declare that the cones do not cover Rd. If
the minimum ǫ for some cone is zero for each f then we conclude that none of
the facets is a witness facet and thus Rd is covered.

Corollary 3. The problems ConeCover[VH,Rd, I], ConeCover[H,Rt, I],
and ConeCover[VH,Rt, I] can all be solved in polynomial time.

Proof. The polynomiality of ConeCover[VH,Rd, I] is obvious from Theorem
3. Since for an H-cone one can find the facets of its intersection with any flat
in polynomial time, it follows from Theorem 3 that ConeCover[H,Rt, I] is
polynomially solvable too. Again, it is an obvious consequence of this that
ConeCover[VH,Rt, I] can be solved in polynomial time as well.

Fact 1. For any t ∈ N, we can write Rt =
⋃t+1

i=1 Ri, where R1, . . . , Rt+1 are

pointed cones, pairwise-disjoint in the interior, whose H- and V-representations
can be found in polynomial time.

Proof. Take a simplex containing the origin in its interior. There are t+1 facets
and the conic hull of the vertices each facet defines a cone. These t + 1 cones
are pairwise-disjoint in the interior, cover Rt, and the H- and V-representations
of these cones can be computed from the H- and the V-representation of the
simplex.

Let C1 = {x ∈ Rm | A1x ≤ 0} = cone(S1) and C2 = {x ∈ Rn | A2x ≤
0} = cone(S2), where A1 ∈ Rl×m, A2 ∈ Rr×n and S1 ⊆ Rm, S2 ⊆ Rn, be two
polyhedral cones. The direct-sum of C1 and C2, is defined as:

C1 ⊕ C2 = {(x, y) ∈ Rm × Rn| A1x ≤ 0, A2y ≤ 0}

= cone

({(

v

0

)

: v ∈ S1

}

∪

{(

0

v

)

: v ∈ S2

})

.
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Theorem 4. Problem ConeCover[VH,Rd, III] is NP-complete.

Proof. Clearly the problem is in NP since a direction exists outside the union
of the given cones if they do not cover Rd. We can easily check if such a given
direction indeed lies outside each of the cones since the facets of each cone are
known. For proving its NP-hardness, we use a reduction from the following
problem:

Sat(V,F ,G): Given a finite set V and two hypergraphs F ,G ⊆ 2V , is there a
set X ⊆ V such that:

X 6⊇ F for all F ∈ F and X 6⊆ G for all G ∈ G? (1)

When F = G, this problem is called the saturation problem in [4], where it is
proved to be NP-complete. Given F ,G ⊆ 2V , we construct two families of cones
CF and CG in RV , such that there is a point x ∈ RV \

⋃

C∈CF∪CG
C if and only

if the pair (F ,G) is not saturated (i.e. there is a set X ⊆ V satisfying (1)).
For X ⊆ V , denote respectively by RX

≥ and RX
≤ the cones cone{ei : i ∈ X} =

{x ∈ RX : x ≥ 0} and cone{−ei : i ∈ X} = {x ∈ RX : x ≤ 0}, where ei
denotes the standard ith unit vector. LetX = V \X , and Ri(X), for i ∈ [|X |+1]
the partition of RX given by Fact 1. For each F ∈ F , we define |V | − |F | + 1
cones Ci

F = RF
≥⊕Ri(F ), for i ∈ [|F |+1], and for each G ∈ G, we define |G|+1

cones Ci
G = RG

≤ ⊕ Ri(G), for i ∈ [|G| + 1]. Finally, we let CF = {Ci
F : F ∈

F , i ∈ [|F |+ 1]}, CG = {Ci
G : G ∈ G, i ∈ [|G|+ 1]}, and C = CF ∪ CG . Then it

is not difficult to see that all the cones in C are pointed.
Suppose that X ⊆ V satisfies (1). Define x ∈ RV by

xi =

{

1, if i ∈ X,

−1, if i ∈ V \X.

Then x 6∈
⋃

C∈C C. Indeed, if x ∈ Ci
F , for some F ∈ F and i ∈ [|F | + 1], then

xj ≥ 0 and hence xj = 1, for all j ∈ F , implying that X ⊇ F . Similarly, if
x ∈ Ci

G, for some G ∈ G and i ∈ [|G| + 1], then xj ≤ 0 and hence xj = −1, for
all j ∈ G, implying that X ⊆ G.

Conversely, suppose that x ∈ RV \
⋃

C∈C C. Let X = {i ∈ V : xi ≥ 0}.
Then we claim that X satisfies (1). Indeed, if X ⊇ F for some F ∈ F , then
xi ≥ 0 for all i ∈ F , and hence there exists an i ∈ [|F | + 1] such that x ∈ Ci

F

(since the cones R1(F ), . . . , R|F |+1(F ) cover RF ). Similarly, if X ⊆ G for some

G ∈ G, then xi < 0 for all i ∈ G, and hence there exists an i ∈ [|G| + 1] such
that x ∈ Ci

G. In both cases we get a contradiction.

Corollary 4. The problems ConeCover[V ,Rd, III], ConeCover[H,Rd, III],
ConeCover[VH,Rt, III] and ConeCover[H,Rt, III] are all NP-complete.
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Proof. NP-completeness ofConeCover[V ,Rd, III] andConeCover[H,Rd, III]
follows from Theorem 4. NP-completeness of ConeCover[H,Rt, III] is an im-
mediate consequence of the NP-hardness of ConeCover[H,Rd, III] by setting
t = d.

An interesting special case of problem Sat is when the hypergraphs F and
G are transversal to each other:

F 6⊆ G for all F ∈ F and G ∈ G. (2)

In this case, the problem is known as the hypergraph transversal problem, de-
noted HyperTrans. Even though the complexity of this problem is still open,
it is unlikely to be NP-hard since there exist algorithms [5] that solve the prob-
lem in quasi-polynomial time |V |mo(logm), where m = |F| + |G|. Improving
this to a polynomial bound is a standing open problem. We observe from our
reduction in Theorem 4 that ConeCover includes HyperTrans as a special
case.

Corollary 5. Consider a family of cones C that can be partitioned into two

families C1 and C2 such that

int(C1) ∩ int(C2) = ∅, for all C1 ∈ C1 and C2 ∈ C2. (3)

Then ConeCover(C,Rd) is HyperTrans-hard.

Proof. We note in the construction used for the proof of Theorem 4 that if the
hypergraphs F and G satisfy (2), then the families of cones CF and CG satisfy
(3). Indeed, if x ∈ Ci

F ∩ C
j
G, for some F ∈ F , i ∈ [|F | + 1], G ∈ G, and

j ∈ [|G| + 1], then xk ≥ 0 for all k ∈ F and xk ≤ 0 for all k ∈ G. Thus for any
k ∈ F \G (which must exist by (2)), we have xk = 0, implying that x is not an
interior point in either Ci

F or Cj
G.

Freund and Orlin [6] proved that, for an H-polytope P and a V-polytope
Q, checking if Q ⊇ P is NP-hard. For all other representations of P and Q,
checking P ⊆ Q can be done by solving a linear program. Here we can show
that the union version of this problem is hard, no matter how the polytopes are
represented.

Corollary 6. Given a set of H-polytopes P = {P1, . . . , Pk} and an H-polytope
Q, problem PolytopeCover(P , Q) is NP-hard.

Proof. We give a reduction from problem ConeCover[H,Rd, III] which is NP-
hard by Corollary 4. Let Sd be a “shifted” simplex in Rd such that 0 ∈ int(Sd).
Given cones C1, . . . , Ck, we define polytopes P1, . . . Pk, by Pi = Ci ∩ Sd. Given
the H-representations of Ci, we can compute the H-representations of Pi in
polynomial time using linear programming (LP) for removing possible redun-
dancies.

Now one can easily see that
⋃k

i=1 Ci = Rd if and only if
⋃k

i=1 Pi = Sd.
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Corollary 7. Given a set of V-polytopes P = {P1, . . . , Pk} and a V-polytope
Q, problem PolytopeCover(P , Q) is NP-hard.

Proof. We give a reduction from problem ConeCover[V ,Rd, III] which is NP-
hard by Corollary 4. Recall that in the proof of Theorem 4, for each hyperedge
F we construct a set of pointed cones Ci

F = RF
≥ ⊕ Ri(F ), for i ∈ [|F | + 1].

Instead of constructing multiple cones for each hyperedge let us just consider

one cone CF = RF
≥ ⊕ R|F | per hyperedge. Similarly for the cones corresponding

to the hypergraph G. It is clear that CF =
⋃|F |+1

i=1 Ci
F . Note that each such cone

is not pointed but instead has a pointed part RF
≥ corresponding to the vertices

in the hyperedge F and the affine space R|F | corresponding to the vertices not
in F . Also, RF

≥ is one orthant in R|F |.

For such cones checking whether the union covers Rd or not is NP-hard as
well (see proof of Theorem 4). Now consider the d-dimensional cross-polytope
βd = conv(±e1, · · · ,±ed), where ei is the i-th unit vector. Also, let C1, . . . , Ck

be the cones constructed above. The cross-polytope βd contains the origin in its
interior, and the vertices of Pi = βd∩Ci for each cone constructed above can be
easily computed. (Note that intersecting each of the cones with a simplex, as in
the proof of previous theorem, does not work since it is not clear whether the
intersection of Ci and a simplex does not have very large number of vertices, let
alone computing them.)

It is easy to see that
⋃k

i=1 Ci = Rd if and only if
⋃k

i=1 Pi = βd, thus com-
pleting the proof of the theorem.

Theorem 5. Given a set of rational convex polytopes P1, . . . , Pk ⊆ Rd, it

is coNP-complete to check whether their union is convex, for both H and V-
representations of the input polytopes.

Proof. First we show that the problem is in coNP. Let Q =
⋃k

i=1 Pi. If this
union is not convex then there are two points x, y ∈ Q, such that the line

segment [x, y]
def
= {λx + (1 − λ)y| λ ∈ [0, 1]} 6⊆ Q. Given such a certificate line

segment it is easy to verify that [x, y] 6⊆ Q by iterating the algorithm for two
polytopes in [3]:

1. Let P be the polytope Pi such that x ∈ Pi;

2. Find the (last) point z ∈ P on the ray {x + λ(y − x)| λ ≥ 0} such that λ

is maximized;

3. If x = y then output “Yes” and halt;

4. If there is another polytope Pj such that z ∈ Pj , then set P ← Pj , x← z,
and go to step 2 else output “No” and halt.

The reader can verify that all the above steps can be implemented in polynomial
time no matter how the polytopes are represented.

To establish NP-hardness, consider the H-representation first. Let P =
{P1, . . . , Pk} and Sd be the polytope used in the construction in Corollary 6.
We now reduce the problem PolytopeCover(P , Sd) to checking if the union of
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a given set of polytopes is convex. Using an algorithm for the latter problem, we
can check if P =

⋃k

i=1 Pi is convex. If the answer is ”No”, we conclude that P 6=
Sd. Otherwise, since P ⊆ Sd, either P = Sd, or there is hyperplane separating
a vertex of Sd from P . The latter condition can be checked in polynomial time
by solving k linear programs for each vertex.

For the V-representation the same argument as above works if we use βd

instead of Sd.

3. Conclusion and Outlook

In this paper we studied the complexity of some polyhedral covering prob-
lems. Since a polytope (polyhedral cone resp.) can be represented both by
its vertices (extreme rays resp.) or by its facet-defining hyperplanes there are
many variants of these problems based on the input representation. We settle
the complexity of most of the variants, but the status of a few variants remain
unknown. In particular, when the input cones do not intersect in the interior
but neither are the intersections necessarily common faces (condition (f3)-(II)),
then it is not clear whether the problem is NP-hard like case (f3)-(III) or can
be solved in polynomial time.

Also, ConeCover[V ,Rd, I] and ConeCover[V ,Rd, II] are shown to be at
least as hard as the Vertex Enumeration problem. The complexity of the latter
problem itself is not known, and thus a polynomial algorithm for these vari-
ants of the ConeCover problem would be a very interesting achievement. It
is also very well possible that these two variants are NP-hard irrespective of
the complexity of Vertex Enumeration, but at the moment we cannot prove an
independent hardness result for either of these two variants.

We also showed that checking whether the union of a set of polytopes is con-
vex or not is NP-hard when the polytopes are given either by facets of vertices.
When both the representations are known then it is not clear if the problem
remains NP-hard. The corresponding version of the problem for cones remains
NP-hard even in this case but since for our reductions we need to intersect the
cones with a simplex or a cross-polytope depending on the representation, we
cannot extend the NP-hardness to the polytope version. We believe that choos-
ing a simplex or a cross-polytope is just a technicality that can be removed from
the proofs.
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