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Abstract We study the complexity of determining whether a polytope given
by its vertices or facets is combinatorially isomorphic to its polar dual. We
prove that this problem is Graph Isomorphism hard, and that it is Graph
Isomorphism complete if and only if Vertex Enumeration is Graph Isomor-
phism easy. To the best of our knowledge, this is the first problem that is
not equivalent to Vertex Enumeration and whose complexity status has a
non-trivial impact on the complexity of Vertex Enumeration irrespective of
whether checking Self-duality turns out to be strictly harder than Graph Iso-
morphism or equivalent to Graph Isomorphism. The constructions employed
in the proof yield a class of self-dual polytopes that are interesting on their
own. In particular, this class of self-dual polytopes has the property that the
facet-vertex incident matrix of the polytope is transposable if and only if the
matrix is symmetrizable as well. As a consequence of this construction, we also
prove that checking self-duality of a polytope, given by its facet-vertex inci-
dence matrix, is Graph Isomorphism complete, thereby answering a question
of Kaibel and Schwartz.

Keywords Self-duality, Polytopes, Vertex Enumeration, Graph Isomorphism

1 Introduction

A polytope P ⊆ Rd is the convex hull of a finite number of points in Rd.
A very basic result in the theory of polytopes states that every polytope can
also be represented as the intersection of a finite number of halfspaces. Each of
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these representations is unique assuming that none of the vertices or halfspaces
are redundant. We refer to these representations as V-representation and H-
representation, respectively. Accordingly, a polytope given by its vertices is
called a V-polytope and one given by its defining hyperplanes is called an H-
polytope. The intersection of the defining hyperplanes with the polytope are
called the facets of the polytope. For a thorough treatment of the subject we
refer the reader to [7,15]. Note that if a particular representation of a polytope
contains redundant points (feasible points that are not vertices) or redundant
inequalities (whose removal doesn’t change the polytope) then one can first
remove the redundant points and inequalities using linear programming and
therefore wlog in this paper we assume that we are dealing with non-redundant
representations.

The problem that is the main motivation for this paper is that of converting
one representation of a polytope into another. The problem of enumerating all
vertices given the facets is known as Vertex Enumeration Problem (VE) and
the problem of enumerating all facets given the vertices is known as Convex
Hull Problem (CH). These two problems are polynomial time equivalent to
each other if an oracle for Linear Programming is given and so for rational
polytopes the two problems are equivalent. Since the number of vertices of a
polytope in Rd with n facets can be anywhere between O(d) and O(nbd/2c)
[13], one would like to have an algorithm that runs in time polynomial in both
the size of the input and output. Such an algorithm is called output-sensitive
polynomial algorithm.

The notion of output-sensitivity may be problematic if one wants to relate
the complexity of VE to the complexity classes P or NP . Considering an
equivalent decision version of VE removes this problem. The decision problem
(termed PV henceforth) asks one to decide, given an H-polytope and a subset
of its vertices V , whether the list of vertices is complete. It is known ([2]) that
PV is polynomial equivalent to VE. One can talk about the complexity of this
problem (referred to as PV) in terms of classes P , NP , coNP etc. Whenever
we mention VE in terms of any traditional complexity class, we in fact are
talking about this decision problem.

In spite of strong efforts the complexity status of vertex enumeration has
remained elusive. It has not been shown to be in P nor is it known to be
coNP -complete. Although, if the input facets define an unbounded polyhedra
then the decision problem is indeed coNP -complete [12] . If the dimension is
bounded or if the polytope is non-degenerate, then the problem can be solved
in polynomial time [4]. There is the same ambiguity in the complexity status
for graph isomorphism (GI) which is not known to be either in P or to be NP -
complete . So therefore it is natural to try to relate the complexities of those
two problems. This paper does not yet settle this issue, but we take a step in
this direction by deriving interesting connections between vertex enumeration
and graph isomorphism.

For the purpose of relating vertex enumeration to graph isomorphism, we
use the definition of a complexity class of all problems that are polynomially
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equivalent to GI. A problem Φ is said to be GI-easy if it can be solved in
polynomial time given an oracle for GI and GI-hard if GI can be solved in
polynomial time using an oracle for Φ. A problem that is both GI-easy and
GI-hard is called GI-complete. Note that when talking about complexity of
a problem with respect to an oracle, we assume that the oracle calls take
constant (or polynomial) time. So for equivalence we are allowed to make a
polynomial number of calls to the oracle.

Vertex Enumeration has a very interesting property in that if one tries to
solve it by modifying the problem “a little bit”, one runs into two kinds of
problems. One kind are those that are polynomially equivalent to the original
problem like polytope verification [2]. Such problems do not really open up
possibilities for any method that was not applicable to the original problem.
The other kind of problems are ones whose polynomial algorithm would yield
a polynomial algorithm for VE but whose hardness has no consequence on VE.
Examples include polytope containment [6] and computing Minkowski sums
[14]. Moreover, these problems usually turn out to be NP-hard and thus shed
no light on the complexity of VE.

We consider the problem of checking whether a polytope given by vertices
or facets is combinatorially isomorphic to its polar dual. We will shortly clarify
the meaning of the terms isomorphic and polar dual. We call this problem Self-
Duality problem (SD). SD is markedly different from the kind of problems
mentioned earlier. We show that SD is GI-hard and furthermore that it is
GI-complete if and only if VE is GI-easy. The “if and only if” in the result
ensures that whichever way the complexity of SD is settled, it will have non-
trivial consequences for the complexity of VE. To the best of our knowledge
this is the first problem that opens up the possibility of relating the complexity
of VE to that of GI. We now introduce some notions and conventions that will
be used in the paper and in Section 2 we survey some related work. We finally
present our results in Section 3.

A supporting hyperplane of a full-dimensional polytope P is a hyperplane
that contains the entire polytope on one of its (closed) sides and has a non-
empty intersection with the polytope. The intersection of a supporting hyper-
plane with a polytope gives a face of the polytope. Facets are the (d − 1)-
dimensional faces and vertices are the 0-dimensional faces of a polytope. Also,
the polytope is considered a face of itself and the empty set is considered the
(−1)-dimensional face. The faces of a polytope are lower dimensional poly-
topes and each of their faces is a face of the original polytope. The faces of a
polytope define a partial order by inclusion. This partial order defines a lattice
L whose elements are all the faces of the polytope, and faces f, g satisfy g <L f
if and only if g ⊂ f . This lattice is called the face-lattice of the polytope.

For a polytope P, we denote respectively by V(P ) and F(P ) the sets of
vertices and facets of P . The facet-vertex incidence matrix I(P ) ∈ {0, 1}m×n,
of a polytope P with m = |F(P )| and n = |V(P )|, is a 0/1-matrix whose rows
represent the facets and whose columns represent the vertices and I[i, j] = 1
if and only if the i-th facet is incident to the j-th vertex. It is known that
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the face lattice of a polytope is completely determined by its facet-vertex
incidence matrix ([10]). A real matrix A is said to be transposable if it can
be transformed into its transpose AT via row and column permutations, and
is said to be symmetrizable if it can be transformed into a symmetric matrix
via row and column permutations. For a nice survey of transposability and
symmetrizability of matrices the reader is referred to [3].

For a polytope P = {x ∈ Rd | A ·x ≤ 1}, where A ∈ Rk×d is a real matrix,
the polar dual (or simply dual) is the polytope

P ∗ = {x ∈ Rd | v · x ≤ 1, for v ∈ V(P )}.

Thus, for a full-dimensional polytope P that contains the origin in the interior,
P ∗ is also bounded and contains the origin in the interior. Furthermore, the
vertices of P ∗ are the rows of the matrix A treated as points in Rd. In partic-
ular, the vertices and facets of a polytope are in one-to-one correspondence,
respectively, with the facets and vertices of its polar dual. Note that the no-
tion of polarity is not restricted to polytopes but applies even to unbounded
polyhedra and more general convex sets. We, however, only deal with bounded
polytopes and also assume that the polytope always contains the origin in the
interior.

Two polytopes P and Q are said to be combinatorially isomorphic to each
other, denoted by P ∼= Q, if their face-lattices are isomorphic. For exam-
ple, any two convex polygons with equal number of sides are combinatorially
isomorphic. Equivalently, two polytopes are isomorphic if and only if the in-
cidence matrix of one can be transformed into that of the other via row and
column permutations. A polytope is said to be self-dual if it is combinatorially
isomorphic to its polar dual, i.e., if P ∼= P ∗. In terms of incidence matrices
this means that for self-dual polytopes the incidence matrix is transposable.
Also, the row and column permutation that changes the incidence matrix to
its transpose is called the self-duality map. Note that the incidence matrix of
every self-dual polytope need not be symmetrizable (See [9]).

2 Related Work

Our work touches on various topics including vertex enumeration, isomorphism
and self-duality of polytopes, as well as transposability and symmetrizability
of 0/1-matrices. In this section, we will briefly mention some of the existing
literature pertaining to these topics.

Self-dual polytopes form an interesting subclass of polytopes and their
classification is a fundamental problem in the theory of polytopes. Self-dual
polytopes have been studied extensively at least in 3-dimensions and the 3-
dimensional spherical and projective self-dual polytopes have been fully char-
acterized (See [1]). In higher dimensions not much appears to be known. As
we will see, the free-join of a polytope P and its polar dual always generates
self-dual polytopes. In fact, instead of the polar dual one can use any polytope
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combinatorially isomorphic to the polar P ∗. Also, the free-join of any two self-
dual polytopes yields another self-dual polytope. These constructions do not
yield all possible self-dual polytopes but the ones that do arise have interest-
ing properties, namely that they also admit an involutory self-duality map. In
Subsection 3.2, we describe a class of polytopes which we call roofed-prisms
that are self-dual but are not obtainable as free-join of simpler polytopes. We
do not use these polytopes in our proofs but the construction is simple enough
to warrant mentioning these polytopes in this context.

Kaibel and Schwartz ([11]) studied various isomorphism questions about
polytopes and proved that it is GI-complete to determine if two polytopes
given by their facet-vertex incidences are combinatorially isomorphic to each
other. The problem remains GI-complete even if the coordinates of vertices
and facet-normals are provided or if the polytopes are restricted to be simple
or simplicial polytopes. The authors in [11], however, leave open the question
of checking self-duality of a polytope given by its facet-vertex incidence matrix.
This problem (called SDI from now on) is a variant of SD and in the process of
relating SD to VE, we settle the question of Kaibel and Schwartz by proving
that SDI is GI-complete as well. Recall that for SD the polytope is given only
by its facets or only vertices.

As we noted before, self-duality of a polytope implies that its incidence
matrix is transposable. Also, if the self-duality map is involutory, i.e. the map
applied twice yields the identity map, then the incidence matrix is symmetriz-
able. Note that every symmetrizable matrix is transposable, but there are
transposable matrices that are not symmetrizable [3]. Grünbaum asked in [8]
if there are self-dual polytopes that do not have any involutory self-duality
maps. Jendrol [9] answered this question in the affirmative.

We should remark that we do not claim the novelty of the constructions
provided in this paper. Free join of two polytopes is a well known operation
([15]). The same construction is also attributed to David Eppstein [5] in finding

examples of polytopes with n vertices, n facets and nb d+1
3 c faces improving an

earlier bound of n
√
d by Seidel et al. [5][2]. The authors are not aware of any

other work mentioning the roofed-prisms, that we mention in this paper, as
an example of indecomposable self-dual polytopes.

3 Main Results

In this paper we consider the following three problems:

VE: Given a polytope P by facets, enumerate all the vertices of P .
SD: Given a polytope P by facets or vertices, determine if P is self-dual.
SDI: Given a polytope P by its facet-vertex Incidence Matrix, determine if P
is self-dual.
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Our main results are the following:
• SD is GI-hard.
• SD is GI-complete if and only if VE is GI-easy.
• SDI is GI-complete.

For proving the GI-hardness of SD and its relations to the complexity of
VE, we start by exploring the complexity of SDI. We establish that SDI is
GI-complete first and the other results are easy consequences of this fact. Our
results on the complexity of SDI strengthens the result of [11] that it is GI-
complete to determine if two polytopes given by their facet-vertex incidences
are combinatorially isomorphic to each other. We arrive at this result by show-
ing that, essentially the free join of two polytopes is self-dual if and only if the
two polytopes are isomorphic.

3.1 Constructing Self Dual Polytopes

3.1.1 Free Join

For a set of points S ⊆ Rd, we denote respectively by aff(S) and conv(S), the
affine and convex hulls of S. The dimension of S, denoted by dim(S), is the
dimension of aff(S). Two affine spaces are called skew if they neither intersect
nor contain any parallel lines.

The free join of two polytopes is obtained by embedding the polytopes in
skew subspaces and taking the convex hull. For example, the free join of two
line segments is a 3-dimensional tetrahedron. Since in the context of this paper
we are interested only in the combinatorial structure of polytopes arising as
free-joins of smaller polytopes independent of the actual embedding, we will
choose some specific skew hyperplanes for the purpose of embedding the com-
ponent polytopes. Let P1 and P2 be two polytopes in Rm and Rn respectively,
such that:

P1 = {x ∈ Rm | A1x ≤ 1} = conv(V1),

P2 = {x ∈ Rn | A2x ≤ 1} = conv(V2),

where A1 ∈ Rl×m, V1 ⊆ Rm, A2 ∈ Rr×n, and V2 ⊆ Rn, then the vertices of
the free join P ∗Q ⊆ Rm+n+1 are

V(P1 ∗ P2) =


 v

0
−1

 : v ∈ V(P1)

⋃
 0
v
1

 : v ∈ V(P2)


and

P1 ∗ P2 =


 x
y
z

 : 2A1x+ z · 1l ≤ 1l, 2A2y − z · 1r ≤ 1r

 ,

where 1k is a vector in Rk all whose entries are 1. The following are some
easy observations about the free join operation.
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Fact 1 Suppose P1 is an i-dimensional polytope and P2 is a j-dimensional
polytope. If P = P1 ∗ P2, then

(i) An i-dimensional face of P is the free join of an r-dimensional face of P1

with an s-dimensional face of P2 such that r+ s+ 1 = i, and consequently,
(ii) every face of P1 or P2 is a projection of a face of P, with the same dimen-

sion,
(iii) P is an (i+ j + 1)-dimensional polytope,
(iv) |V(P )| = |V(P1)|+ |V(P2)|, and
(v) |H(P )| = |H(P1)|+ |H(P2)|. Furthermore, every facet of P is either a free

join of P1 and some facet of P2, or that of P2 and some facet of P1.

3.1.2 Incidence Matrix of Free-Join

Recall that the facet-vertex incidence matrix I(P ) of a polytope P has facets
as rows and vertices as columns and the (i, j)-th entry is 1 iff the i-th facet
contains the j-th vertex. In particular, if P is full-dimensional, then no row
or column of I(P ) can consist of all ones. It follows that the incidence matrix
of a polytope P = P1 ∗ P2, that is a free join of two polytopes P1 and P2, is

of the form
[
A|B
C|D

]
where A and D are submatrices all whose entries are 1’s,

and B and C are the incidence matrices of P1 and P2. The following lemma
establishes that for the incidence matrix of a polytope to be decomposable into
the aforementioned form, it is also necessary that the polytope be a free-join
of other (simpler) polytopes.

Lemma 1 Let P be a full-dimensional polytope in Rd. Under suitable labeling

of vertices and facets, the incidence matrix I(P ) of P is of the form
[
A|B
C|D

]
,

where A and D are submatrices all of whose entries are 1’s, if and only if P
is a free join of two polytopes P1 and P2 with respective incidence matrices B
and C.

Proof If P is a free join of two polytopes, then the incidence matrix of P can
be written in the desired form, as explained above.

Now, suppose that the incidence matrix of P is of the required form. Sup-
pose, the dimensions of the matrices A,B,C,D are m1×n1, m1×n2, m2×n1
and m2× n2, respectively. Let the set of vertices corresponding to the first n1
columns of I(P ) be V1 and the ones corresponding to the last n2 columns be
V2. Similarly, let F1 and F2 be the sets of facets corresponding to the first m1

and last m2 rows respectively.
Since any affine transformation preserves incidences, we can assume that P

contains the origin in the interior. Suppose that the halfspaces corresponding
to the facets F1 of P be A1x ≤ 1, and the halfspaces corresponding to the
facets F2 of P be A2x ≤ 1.

Note that no row or column of B or C has all 1’s, since otherwise I(P )
has such a row or a column. This implies that the affine hull of V1 can be
obtained as the intersection of the hyperplanes defining the facets in F1 and
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that of V2 can be obtained as the intersection of the hyperplanes defining F2.
Specifically, the affine hull of V1 is {x|A1x = 1} and that of V2 is {x|A2x = 1}.

Since P is full dimensional polytope, there is no common intersection for
all the hyperplanes defining F1∪F2. (Indeed, if x is a point in such intersection
and x′ ∈ int(P ), then the ray starting at x and moving through x′ must hit P
at some facet F ∈ F(P ) whose defining hyperplane contains x. But this would
imply that the whole ray belongs to this hyperplane, and hence that x′ ∈ F,
in contradiction to the fact that x′ is an interior point in P.) Hence, the affine
hulls of V1 and V2 don’t intersect.

Now suppose that the affine hulls of V1 and V2 are not skew, i.e. they
contain parallel lines. Let the copy of this parallel line in the affine hull of V1
have the parametric equation l1 = {x|x = α1+t·u, t ∈ R}, where x, α1, u ∈ Rd.
Similarly let the copy in the affine hull of V2 be l2 = {x = α2 + t · u, t ∈ R}.
Note that since the two copies are parallel to each other their “direction” is
defined by the same vector u.

Since l1 lies in the affine space A1x = 1, we have A1 · (α1 + t ·u) = 1 for all
values of t. This means A1 · u = 0. Similarly it follows from l2 that A2 · u = 0.
But A1 and A2 cover all rows of A and so A ·u = 0. Clearly for l1 and l2 to be
lines u must not be the zero vector. But if A · x = 0 has a non-trivial solution
u then A · (λu) = 0 ≤ 1, ∀λ ∈ R. This contradicts our assumption that P is a
bounded polytope and hence does not contain any lines.

Hence, the affine hulls of V1 and V2 are skew and P is the free-join of the
two polytopes defined by these two sets of vertices.

3.2 Complexity of SDI and SD

Our starting point is the following result of Kaibel and Schwartz [11]: Given
two polytopes P1 and P2 by their vertices and facets, it is GI-complete to
determine whether they are isomorphic to each other. In fact, this is true even
if each polytope Pi satisfies the following conditions, for i ∈ {1, 2}:

(C1) Pi is simple, i.e., every vertex of Pi lies on exactly d facets, where d =
dim(Pi),

(C2) |V(Pi)|+ 2 6= 2|F(Pi)|, and
(C3) |F(Pi)| > 2 dim(Pi).

(More precisely, the reduction in [11] constructs for a graph G = (V,E) a
simple polytope P (G) of dimension d = |V | − 1, with |V(P (G))| = |V |(|V | −
1)+2|E|(|V |−2) and |F(P (G))| = 2|V |+2|E|. In particular, |V(P (G))|+2 >
2|F(P (G))| for |V | ≥ 5, i.e., (C1), (C2), and (C3) are satisfied.)

Before we proceed with the details of our reduction, we need the following
definition. Given a full-dimensional polytope P ∈ Rd, a (d + 1)-dimensional
bipyramid bipyr(P ), constructed from P, is obtained by taking two points
u, v ∈ Rd+1, strictly in two different sides of aff(P ), such that the line segment
connecting u and v intersects the relative interior of P, and defining bipyr(P ) =
conv(P ∪ {u, v}). P is called the base of the bipyramid and u, v are called the
apexes.
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Our reduction of GI to SDI works as follows: Given two graphs G1 and G2,
we first construct polytopes P1 and P2 as in Kaibel and Schwartz ([11]). Next
we consider the polytope P obtained by taking the free join of bipyr(P1) with
the polar dual of bipyr(P2). We show that under assumptions (C1), (C2) and
(C3) P is self-dual if and only if G1 and G2 are isomorphic.

Lemma 2 Let P be a full-dimensional polytope in Rd, d ≥ 3, with m facets
and n vertices such that n + 2 6= 2m. Then the bipyramid Q = bipyr(P ) is
neither a self-dual polytope nor can it be obtained as the free join of two other
polytopes.

Proof The bipyramid Q has 2m facets and n+2 vertices. Since Q has unequal
number of vertices and facets it is clearly not self-dual.

To prove that Q is not decomposable as free-join of smaller polytopes,
consider the two apexes of Q. Suppose Q is decomposable as P1 ∗ P2. Since
every pair of vertices from P1 and P2 generates an edge in the free-join, both
apexes of Q must be part of one of the component polytopes, say P1 wlog. But
then both apexes must lie in a proper face of Q contradicting the fact that
they are the apexes of a bipyramid.

Lemma 3 Let P1 and P2 be two polytopes satisfying (C1) and (C3). Then
P1
∼= P2 if and only if bipyr(P1) ∼= bipyr(P2).

Proof If P1
∼= P2, then clearly bipyr(P1) ∼= bipyr(P2). Suppose now that

bipyr(P1) ∼= bipyr(P2). Then there is an order-preserving bijection φ be-
tween the face lattices of bipyr(P1) and bipyr(P2). Let ui, vi be the apexes of
bipyr(Pi), di = dim(Pi), ni = |V(Pi)|, and mi = |F(Pi)|, for i ∈ {1, 2}. Since
bipyr(P1) ∼= bipyr(P2), we have d1 = d2 = d, n1 = n2 = n, and m1 = m2 = m.
For a point u ∈ Rd and a polytope P , we denote by f(P, u) the number of
facets of P containing u. Then f(Pi, u) = d for all u ∈ V(Pi) follows from the
simplicity of Pi, for i ∈ {1, 2}. Thus, f(bipyr(Pi), ui) = f(bipyr(Pi), vi) = m,
while f(bipyr(Pi), u) = 2d for all u ∈ V(bipyr(Pi)) \ {ui, vi}, for i ∈ {1, 2}.
Since m > 2d by (C3), it follows that φ({u1, v1}) = {u2, v2}. Then the restric-
tion of φ on the faces of P1 gives an isomorphism between the face lattices of
P1 and P2.

Recall that a matrix is called transposable if its rows and columns can
be permuted to obtain its transpose, and is called symmetrizable if it can be
converted into a symmetric matrix by row and column permutation.

Fact 2 A polytope is self-dual if and only if its incidence matrix is transpos-
able.

With these notions, we are ready to establish the following result.

Theorem 1 Let P1, P2 ∈ Rd be two polytopes, neither of which is self-dual
or decomposable into a free join of other polytopes. Then, P1 ∗ P2 is self-dual
if and only if P1

∼= P ∗2 .
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Fig. 1 The incidence matrix C = I(P1 ∗ P2) before and after applying the permutations
σ and ρ. In (b), the two dotted lines, crossing at y, indicate the partition of CT resulting
from the original partition of C. In particular, the upper-right corner above y contains the
matrix AT

2 , while the lower-left corner contains AT
1 .

Proof For i ∈ {1, 2}, let Vi, Fi and Ai be respectively the set of vertices, set of
facets, and incidence matrix of Pi, and write ni = |V(Pi)| and mi = |F(Pi)|.
Then the incidence matrix of P1 ∗ P2 is of the form shown in Figure 1-(a).

If P1 is isomorphic to P ∗2 , then m1 = n2 = m, n1 = m2 = n, and there
exist row and column permutations σ1, ρ1 for A1 that transform it to AT

2 and
also, there exist row and column permutations σ2, ρ2 for A2 that transform it
to AT

1 . Now consider the following permutations σ, ρ of the rows and columns
for the incidence matrix of P1∗P2 (assume the vertices of P1∗P2 are numbered
1, 2, 3, . . ., and similarly the facets):

σ(i) =

{
σ1(i) if i ≤ m,
m+ σ2(i−m) if i > m.

ρ(i) =

{
ρ2(i) if i ≤ m,
m+ ρ1(i−m) if i > m.

It is easy to see that this permutation of rows and columns applied to the
incidence matrix of P1 ∗ P2 produces its transpose and hence P1 ∗ P2 is self-
dual.

Now, to prove the other direction, assume that P1 ∗ P2 is self-dual. Then
m1 +m2 = n1 +n2, and there exist row and column permutations, σ, ρ, of the
incidence matrix C = I(P1 ∗ P2) that transform it to its transpose. Assume
w.l.o.g. that m1 ≥ n2 and hence n1 ≥ m2. Define the following subsets of row
and column indices according to σ and ρ:

L1 = {i | i ≤ n2, ρ(i) > n2} , L2 = {i | i ≤ n2, ρ(i) ≤ n2} ,

R1 = {i | i > n2, ρ(i) > n2} , R2 = {i | i > n2, ρ(i) ≤ n2} ,
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U1 = {i | i ≤ m1, σ(i) ≤ m1} , U2 = {i | i ≤ m1, σ(i) > m1} ,

D1 = {i | i > m1, σ(i) ≤ m1} , D2 = {i | i > m1, σ(i) > m1} .

In other words, if we call the initial columns corresponding to V2 left
columns and those corresponding to V1 right columns then L1 corresponds
to the set of vertices of V1 that moves to the left after applying ρ and R1

corresponds to the set of vertices of V1 that remains in the right. Similarly, if
we call the rows up or down depending on whether they correspond to facets
F1 or F2 respectively, then U1 corresponds to the subset of F1 that remains
up after the column permutation σ and D1 corresponds to the subset that
moves down (see Figure 1-(b)).

Since ρ, σ transform C to CT , it follows from the definitions of the above
sets that CT [i, j] = 1 for (i, j) ∈ U1 × L2, U1 × R2, U2 × L1, U2 × R1, D1 ×
L2, D1 ×R2, D2 × L1, D2 ×R1 (see Figure 1-(b)).

We claim that |U1|+ |U2| = |L1|+ |L2|, or in other words, the two points x
and y in Figure 1-(b) coincide. If this was not the case, then the point y would
lie in one of the four possible corners U1 ×R2, U1 ×R1, U2 ×R2, or U2 ×R1.
Consider w.l.o.g. the situation in Figure 1-(b), where y ∈ U2 × R2. Since the
submatrix of CT above and to the right of y is AT

2 , it follows from Lemma 1
that the polytope P ∗2 is decomposable, in contradiction to our assumptions.
Similarly, in all the other three cases for y, one can verify that there exist row
and column permutations of AT

1 , such that the resulting matrix, and hence
P ∗1 , have a decomposition in the sense of Lemma 1.

Thus both |U1| + |U2| and |L1| + |L2| are equal to, say m, and hence
transposing C gives CT [i, j] = 1 for all (i, j) ∈ (U1∪U2)× (L1∪L2). However,
CT is also obtained by transforming C using ρ, σ, and thus we get C[i, j] = 1
for (i, j) ∈ L1 × U1, D1 × R1. Since P1 is indecomposable, it follows from
Lemma 1 that either L1 = D1 = ∅ or R1 = U1 = ∅ (any other choice would
give an all 1’s row or column in C). The latter case would imply that A1 is
mapped by row and column permutations into AT

1 , and hence is not possible,
since P1 is assumed not to be self-dual. Hence the permutations σ, ρ leave the
vertices of V1 and the facets of F1 in their own blocks. A similar argument can
be made about the rows and columns corresponding to V2 and F2. Hence, the
permutations σ, ρ satisfy the following:

ρ(i) ≤ m iff i ≤ m
σ(i) ≤ m iff i ≤ m

Now we can define a permutation of rows σ
′

and columns ρ
′

of the incidence
matrix A of P as follows:

σ
′
(i) = σ(i) for i = 1 . . . ,m

ρ
′
(i) = ρ(m+ i)−m for i = m+ 1 . . . ,m+ n

This transforms A1 into AT
2 and hence shows that P1 is isomorphic to the

dual of P2.
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We remark that assuming the polytopes in the previous theorem not to
be self-dual is not a very strong assumption. In fact, for self-dual polytopes
arising from the free-join of smaller indecomposable polytopes, it is always
true that either the component polytopes are dual to each other or they are
each self-dual. In other words, the following version of Theorem 1 is true:

Theorem 2 Let P1, P2 ∈ Rd be two polytopes that are not decomposable into
free join of other polytopes. Then, the free join P1 ∗ P2 is self-dual if and only
if either P1

∼= P ∗2 or both P1 and P2 are self-dual.

This theorem can be proved with only a slight modification of the proof
of Theorem 1 but for the purposes of our proof of GI-completeness of SDI,
we need the polytopes to not be self-dual and so we will keep working with
the weaker version of the theorem. Also, it follows from the proof of Theorem
1 that although the notion of transposability and symmetrizability of general
0/1-matrices are different, for the incidence matrices of the self-dual polytopes
that arise from Theorem 1, both notions are equivalent.

Corollary 1 If P and Q are two polytopes in Rd such that both P and Q are
neither decomposable nor self-dual, then P is isomorphic to Q if and only if
the incidence matrix P ∗Q∗ is symmetrizable.

Corollary 2 For a polytope P , P ∗ P ∗ is self-dual and the incidence matrix
of the free join is symmetrizable.

Now, we can state the final theorem of this subsection.

Theorem 3 Let P be a polytope in Rd given by its facet-vertex incidence
matrix or both vertices and facets. It is GI-complete to determine whether P
is self-dual.

Proof Clearly, if an oracle for GI is given then it can be used to check self-
duality of a polytope given by its incidence matrix simply by checking if P ∼=
P ∗. Since the incidence matrix can also be computed from the vertices and
facets in polynomial time, checking self-duality in this case is GI-easy.

To show that the self-duality checking is also GI-hard, we use the following
GI-complete problem [11]: Given two polytopes P1 and P2 by their facet and
vertex descriptions, or by their facet-vertex incidence matrix, determine if
P1
∼= P2.
As mentioned at the beginning of Subsection 3.2, we may assume that P1

and P2 satisfy conditions (C1), (C2) and (C3). From the vertices, facets or
facet-vertex incidence matrices of P1 and P2, we can construct, in polynomial-
time, the vertices, facets or incidence matrix (resp.) of P = bipyr(P1) ∗ bipyr(P2)∗.
By Lemma 2, both bipyr(P1) and bipyr(P2)∗ are neither self-dual nor decom-
posable as free-joins of other polytopes. By Theorem 1, P is self-dual if and
only if bipyr(P1) ∼= bipyr(P2), and by Lemma 3, the latter condition is equiv-
alent to P1

∼= P2.
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Fig. 2 A 3-dimensional self-dual indecomposable polytope and its incidence matrix.

Recall that for problem SD we want to verify whether a polytope, given
by only vertices or only facets, is self-dual. An easy corollary of Theorem 3 is
that SD is GI-hard.

Corollary 3 Let P be a polytope in Rd given by its vertices (or facets). It is
GI-hard to determine whether P is self-dual.

In the next subsection, we will discuss some interesting consequences of the
complexity of SD on the problem of enumerating vertices of a polytope given
by its facets.

We conclude this subsection by remarking that not all self-dual polytopes
arise from free-join of other ”smaller” self-dual polytopes. For instance, Fig-
ure 2 shows an example of a 3-dimensional polytope which is self-dual but
indecomposable in the sense of free-join. This example can be generalized to
yield an infinite family of indecomposable self-dual polytopes, which we call
roofed-prisms, as follows. Let P be a d-dimensional polytope and u, v ∈ Rd+1

be two points strictly in two different sides of aff(P ), such that the line seg-
ment connecting u and v intersects the interior of P . Let P ′ be a parallel copy
of P containing u and define Q(P ) = conv(P ∪ P ′ ∪ {v}). Informally, Q(P )
is obtained by putting the pyramid of P as a roof on the (vertical) prism of
P . Then for any self-dual polytope P , the roofed-prism Q(P ) is self-dual and
indecomposable (a fact that can be proved using Lemma 1.)

3.3 Vertex Enumeration

As noted in the introduction, a problem that is polynomially equivalent to
vertex enumeration is the problem of determining whether an H-polytope P is
the same as a V-polytope Q [2], also known as polytope verification. Clearly, we
may assume that V(Q) ⊆ V(P ), and furthermore that {aff(F ) | F ∈ F(P )} ⊆
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{aff(Q) | F ∈ F(Q)}, for otherwise, P and Q can not be the same. The
following theorem relates this problem (and hence VE) to the problem of
checking self-duality of a given polytope.

Theorem 4 Let P ⊂ Rd be an H-polytope and Q ⊂ Rd be a V-polytope such
that V(Q) ⊆ V(P ) and {aff(F ) | F ∈ F(P )} ⊆ {aff(Q) | F ∈ F(Q)}. Then,
P = Q if and only if P ∗Q∗ is self-dual.

Proof It is easy to see that if P = Q then P ∗ Q∗ is self-dual. On the other
hand, if P 6= Q then |V(P )| > |V(Q)| and also |F(Q)| > |F(P )|. Hence,
|F(P ∗Q∗)| = |F(P )|+ |V(Q)| < |F(Q) + |V(P )| = |V(P ∗Q∗)|. Thus P ∗Q∗
has strictly fewer facets than vertices and hence it can not be self-dual.

As we have seen in the previous subsection SD is GI-hard. Now there are
two possibilities: either SD is really harder than GI in that there is a strict
(non-polynomial) gap between the complexities of SD and GI, or SD is in
fact GI-easy and hence GI-complete as well. In both cases, we get a similar
statement about the complexity of VE.

Theorem 5 VE is GI-easy if and only if SD is GI-complete.

Proof Clearly, if SD is GI-easy then VE is GI-easy, since an oracle for GI
would solve SD, which in turn would solve polytope verification, by Theorem
4. On the other hand, suppose that VE is GI-easy, and suppose we are given
an instance of SD, i.e., a polytope P described by, say, its facets, and we want
to check whether P is self-dual. Using the oracle for GI, we can enumerate
the vertices of P . If P has too many vertices, we know that it is not self-dual
and if the number of vertices of P is equal to the number of facets of P , then
after enumerating vertices of P we have both vertex and facet descriptions of
P, and now the self-duality can be checked using an oracle for GI. Since we
know SD to be GI-hard by Corollary 3, SD is also GI-complete.

Since GI is not believed to be NP-hard, by Theorem 5, if SD is GI-easy,
then VE is probably also not NP-hard.

4 Conclusion

In this paper we answered a question about the complexity of checking self-
duality of a polytope given by its incidence matrix. It was also shown that free-
join creates an interesting class of self-dual polytopes for which the incidence
matrix is always symmetrizable. We also proved that checking self-duality of a
polytope given only by its vertices (or only facets) is Graph Isomorphism hard.
Any other insight into the complexity of checking self-duality of V-polytopes
will have non-trivial consequence for the complexity of enumerating all vertices
of an H-polytope which is a fundamental problem in the theory of polytopes
and whose complexity status remains open.
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