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Abstract

Given a set P of n points in the plane, the Oja depth of a point x ∈ R2 is defined to be the sum of
the areas of all triangles defined by x and two points from P , normalized by the area of convex-hull
of P . The Oja-depth of P is the minimum Oja-depth of any point in R2. The Oja-depth conjecture
states that any set P of n points in the plane has Oja-depth at most n2/9 (this would be optimal
as there are examples where it is not possible to do better). We present a proof of this conjecture.
We also improve the previously best bounds for all Rd, d ≥ 3, via a different, more combinatorial
technique.

1 Introduction

The general area of statistical data analysis involves designing measures to quantitatively capture the
spread and variance of multivariate data. For example, for a set of points in R, the notion of mean
and median are two natural measures. In particular, when the data consists of a set of finite points in
Euclidean space Rd, several notions for data depth have been proposed over the years. With each such
measure, there come two questions: i) proving the existence of a point which suitably captures, with
some guaranteed bounds, the spread under that measure and ii) devising efficient algorithms to compute
this point.

Given a set P of n points in Rd, some examples of various measures are the following. Location depth
of a point x is the minimum number of points of P lying in any halfspace containing x [Hod55, Tuk75,
RRT99]. The centerpoint theorem [Eck93] asserts that there always exists a point of location depth at
least n/(d + 1), and that that is the best possible. The point with the highest location depth w.r.t. to a
pointset P is called the Tukey-median of P . The corresponding computational question of finding the
Tukey-median of a pointset has also been studied extensively, and an optimal algorithm with running
time O(n log n) is known in R2 [Cha04]. Another example of a statistical depth measure is Simplicial
depth [Liu90], which for a point x is the number of simplices spanned by P that contain x. The First
Selection Lemma [Mat02] asserts that there always exists a point with simplicial depth at least cd ·nd+1,
where c > 0 is a constant depending only d. The optimal value of cd is known only for d = 2, where
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Figure 1: (a) Set of 30 points, together with a point (shaded black) with minimum Oja-depth, (b) Contours
for a variant of Oja-depth for the pointset on the left implemented in the statistical package R.

c2 = 1/27 [BF84]. Determining the exact value of c3 is still open, though it has been the subject of a
flurry of work recently [BMRR10, BMN10, Gro10]. The current-best algorithm computes the point with
maximum simplicial depth in time O(n4 log n) [Alo01].

Another well-studied measure, first proposed by Weber in 1909, is the so-called L1 median, where the
depth of a point q ∈ R2 is defined to be the sum of the distances of q to the n input points. Furthermore,
it is known that the point with the lowest such depth is unique in R2.

In this paper, we study another well-known measure called the Oja depth of a pointset.

Oja depth. Given a set P of n points in Rd, the Oja depth (first proposed by Oja [Oja83] in 1983) of a
point x ∈ Rd w.r.t. P is defined to be the sum of the volumes of all (d + 1)-simplices spanned by x and
d other points of P . Formally, given a set Q ⊂ Rd, let conv(Q) denote the convex-hull of Q. And given
an object C ⊂ Rd, let vol(C) denote the d-dimensional volume of C. Then,

Oja-depth(x) =
∑

y1,...,yd∈(Pd)

vol(conv(x, y1, . . . , yd))

vol(conv(P ))
(1)

The Oja-depth of P is the minimum Oja depth over all x ∈ Rd. From now onwards, w.l.o.g., assume
that vol(conv(P )) = 1. See Figure 1(a) for an example of Oja-depth of a random pointset in the plane.

Known bounds. First note the following relation:(
n

d + 1

)d

≤ Oja-depth(P ) ≤
(
n

d

)
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For the upper-bound, observe that any (d + 1)-simplex spanned by points inside the convex-hull of P
can have volume at most 1, and so a trivial upper-bound for Oja-depth of any P ⊂ Rd is

(
n
d

)
, achieved

by picking any x ∈ conv(P ). For the lower-bound, construct P by placing n/(d + 1) points at each of
the (d + 1) vertices of a unit-volume simplex in Rd. It is easy to see that any point will have Oja-depth
at least (n/(d + 1))d.

The conjecture [CDI+10] is that the lower-bound given above is tight.

Oja-depth Conjecture. Oja-depth(P ) ≤ ( n
d+1)d for any P ⊂ Rd of n points.

The current-best upper-bound [CDI+10] is that the Oja-depth of any set of n points is at most
(
n
d

)
/(d+1).

In particular, for d = 2, this gives n2/6. This can be computed in linear time.

The Oja-depth conjecture states the existence of a low-depth point, but given P , computing the low-
est-depth point is also an interesting problem. In R2, Rousseeuw and Ruts [RR96] presented a straight-
forward O(n5 log n) time algorithm for computing the lowest-depth point, which was then improved to
the current-best algorithm with running time O(n log3 n) [Alo01]. An approximate algorithm utilizing
fast rendering systems on current graphics hardware was presented in [KMV06, Mus04]. For general
d, various heuristics for computing points with low Oja-depth were given by Ronkainen, Oja and Orpo-
nen [ROO03].

Our results. We present progress on the Oja-depth conjecture. In Section 2, we present our main
theorem, which completely resolves the planar case.

Theorem 1.1. Every set P of n points in R2 has Oja-depth at most n2

9 . Furthermore, such a point can
be computed in O(n log n) time.

In Section 3, using completely different (and more combinatorial) techniques for higher dimensions, we
also prove the following:

Theorem 1.2. Every set P of n points in Rd, d ≥ 3, has Oja-depth at most 2nd

2dd!
− 2d

(d+1)2(d+1)!

(
n
d

)
+

O(nd−1).

This improves the previously best bounds by an order of magnitude.

2 The optimal bound

We now come to prove the optimal bound for R2. First, let us give some basic definitions. The center of
mass or centroid of a convex set X is defined as

c(X) =

∫
x∈X x dx

area (X)
.

For a discrete point set P , the center of mass is simply defined as the center of mass of the convex hull
of P . When we talk about the centroid of P , we refer to the center of mass of the convex hull and hope
the reader does not confuse this with the discrete centroid

∑
p/|P |.

During this paper, we will bound the Oja-depth of the centroid of a set, and show that it is worst-case
optimal. Our proof will rely on the following two Lemmas.
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Lemma 2.1. [Winternitz [Bla23]] Every line through the centroid of a convex object has at most 5
9 of

the total area on either side.

Lemma 2.2. [CDI+10] Let P be a convex object with unit area and let c be its center of mass. Then
every simplex inside P which has c as a vertex has area at most 1

3 .

To simplify matters, we will use the following proposition.

Proposition 1. If we project an interior point p ∈ P radially outwards from the centroid c to the bound-
ary of the convex hull, the Oja-depth of the point c does not decrease.

Proof. First, observe that the center of mass does not change. It suffices to show that every triangle that
has p as one of its vertices increases its area. Let T := ∆(c, p, q) be any triangle. The area of T is
1
2‖c− p‖ · h, where h is the height of T with respect to p− c. If we move p radially outwards to a point
p′, h does not change, but ‖c− p′‖ > ‖c− p‖. See Fig. 2.

hp

c

q

p′

Figure 2: Moving points to the boundary increases the Oja-depth

This implies that in order to prove an upper bound, we can assume that all points lie on the convex hull.

Let us introduce some simple notation. From now on, let P be a set of points, and let c := c(ch(P ))
denote its center of mass as defined above. Further, let p1, . . . , pn denote the points sorted clockwise by
angle from c. We define the distance of two points pi, pj as

dist(pi, pj) := min{j − i mod n, i− j mod n} ⊆ {1, . . . , bn/2c}.

A triangle that is formed by c and two points at distance i is called an i-triangle, or triangle of type i.
Observe that for each i, 1 ≤ i < bn/2c, there are exactly n triangles of type i. Further, if n is even, then
there are n/2 triangles of type bn/2c, otherwise there are n. These constitute all possible triangles.

Let C ⊆ P , and let C be the unique convex polygon inscribed in P that consists of the points of C. This
will be called a cycle, and the length of the cycle is simply the number of elements in C. A cycle C of
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Figure 3: A cycle and its induced triangles

length k induces k triangles that arise by taking all the triangle formed by an edge in C and the center of
mass c. The area induced by C is the sum of areas of these k triangles. See Fig. 3.

We now come to prove some basic facts about cycles. Because of Lemma 1, we get the following.

Corollary 2.1. The total area of all triangles of type 1 is exactly 1.

Note that this is the area of all triangles induced by the cycle arising from the entire set, P .

That we can bound the total area induced by any cycle is expressed in the next lemma.

Lemma 2.3. Let C be a cycle. Then C induces a total area of at most 1.

Proof. We distinguish two cases.

Case 1: The centroid lies in the convex hull of C. In this case, all triangles are disjoint, so the area is at
most one. See Fig. 4(a).

Case 2: The centroid does not lie in the convex hull of C. By the Separation Theorem [Mat02], there is
a line through c that contains all the triangles. Then we can remove one triangle to get a set of disjoint
triangles, namely the one induces by the pair {pij , pij+1} that has c on the left side. By Lemma 2.1, the
area of the remaining triangles can thus be at most 5/9. By Lemma 2.2, the removed triangle has an area
of at most 1/3. Thus, the total area is at most 8/9. See Fig. 4(b). Here, the gray triangle can be removed
to get a set of disjoint triangles.

We now prove the general version of Corollary 2.1.

Lemma 2.4. The total area of all triangles of type i is at most i.

Proof. To prove this, we will proceed as follows. We will first create n cycles. Each cycle will consist
of one triangle of type i, and n − i triangles of type 1. We then determine the total area of these cycles
and subtract the area of all 1-triangles. This will give the desired result.
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c

(a) Case 1: c lies inside convex-hull of C

c

(b) Case 2: c lies outside convex-hull of C

Figure 4: The two cases

Let p1, . . . , pn be the points ordered by angles from the centroid c. Let Cj be the cycle consisting of the
n− i + 1 points P − {pi+1 mod n, . . . , pi+j−1 mod n}. This is a cycle that consists of 1 triangle of type
i, namely the one starting a pj , and n− i triangles of type 1.

By Lemma 2.3, every cycle Cj induces an area of at most 1. If we sum up the areas of all cycles Cj ,
1 ≤ j ≤ n, we thus get an area of at most n.

We now determine how often we have counted each triangle. Each i-triangle is counted exactly once.
Further, for every cycle we count n − i triangles of type 1. For reasons of symmetry, each 1-triangle is
counted equally often. Thus, each is counted exactly n − i times over all the cycles. By Corollary 2.1,
their area is exactly n− i, which we can subtract from n to get the total area of the i-triangles:

∑
i-triangle T

area(T ) ≤ n− (n− i) ·

 ∑
1-triangle T

area(T )

 = n− (n− i) = i.

This completes the proof.

Theorem 2.5. Let P be any set of points in the plane and c be the centroid of its convex hull. Then the
Oja-depth of c is at most n2

9 .

Proof. We will bound the area of the triangles depending on their type. For i-triangles with 1 ≤ i ≤
bn/3c, we will use Lemma 2.4. For i-triangles with bn/3c < i ≤ bn/2c, this would give us a bound
worse than n/3, so we will use Lemma 2.2 for each of these.

By Lemma 2.4, the sum of the areas of all triangles of type at most bn/3c is at most

bn/3c∑
i=1

i =
bn/3c (bn/3c+ 1)

2
≤ n2

18
+

1

2
bn/3c .
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There are n (bn/2c − bn/3c) triangles remaining, n for each type j, bn/2c < j ≤ bn/3c. For these we
use Lemma 2.2 to bound the size of each by 1/3. This gives an area of n(bn/2c−bn/3c)

3 .

So the Oja-depth is at most
n2

18
+

n (bn/2c − bn/3c)
3

+
n

6
.

This completes the proof, almost. It looks like there is an additional lower order term n/6. To argue that
this disappears, we have to distinguish two cases. If n is even, there are only n/2 triangles induced by
n/2 points, but we have counted n. Thus, we can subtract n/2 · 1/3 = n/6 from the total area. If n is
odd, then bn/2c = (n− 1)/2. In either case, the term n/6 cancels out.

Thus, the Oja-depth of the centroid is at most n2/9.

This completes the proof of Theorem 1.1.

3 Higher Dimensions

We now present improved bounds for the Oja-depth problem in dimensions greater than two. Before the
main theorem, we need the following two lemmas.

Lemma 3.1. Given any set P of n points in Rd and any point q ∈ Rd, any line through q intersects at
most f(n, d) (d− 1)-simplices spanned by P , where f(n, d) = 2nd

2dd!
+ O(nd−1).

Proof. Given P , and the point q, let l be any line through q. Project P onto the hyperplane H orthogonal
to l to get the pointset P ′ in Rd−1. The line l becomes a point on H , say point l∗. Then l intersects
the (d − 1)-simplex spanned by {p1, . . . , pd} if and only if the corresponding points in P ′ contain the
point l∗. By Barany [Bar82], given n points in Rd, any point in Rd is contained in at most these many
d-simplices:

2n

n + d + 1
·
(

(n + d + 1)/2

d + 1

)
if n− d is odd

2(n− d)

n + d + 2
·
(

(n + d + 2)/2

d + 1

)
if n− d is even

Note that both the bounds above are equal within additive factor of O(nd), and simplifying the first, we
get:

2n

n + d + 1
·
(

(n + d + 1)/2

d + 1

)
≤ 2 ·

(
(n + d + 1)/2

d + 1

)
≤ 2(n + d + 1)d+1

2d+1(d + 1)!
≤ 2nd+1

2d+1(d + 1)!
+ O(nd)

We apply this to P ′ in Rd−1 to get the desired result.

Lemma 3.2. Given any set P of n points in Rd, there exists a point q such that any half-infinite ray from
q intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d− 1)-simplices spanned by P .

7



Proof. This follows directly from a recent result of Gromov [Gro10], who showed that given any set P ,
there exists a point q contained in at least 2d

(d+1)(d+1)!

(
n

d+1

)
simplices spanned by P . Now note that any

half-infinite ray from q must intersect exactly one (d − 1)-dimensional face of each simplex containing
q and each such (d − 1)-simplex can be counted at most n − d times. Simplifying, we get the desired
result.

Given a set P and a point q, call a simplex a q-simplex if it is spanned by q and d other points of P .

Theorem 3.3. Given any set P of n points in Rd, there exists a point q with Oja-depth at most 2nd

2dd!
−

2d
(d+1)2(d+1)!

(
n
d

)
+ O(nd−1).

Proof. Let q be the point from Lemma 3.2. Assign a weight function, w(r), to each point r ∈ conv(P ),
where w(r) is the number of q-simplices spanned by P and q that contain r. Then note that if r is
contained in a q-simplex, say spanned by {q, pi1 , . . . , pid}, then the half-infinite ray −→qr intersects the
(d− 1)-simplex spanned by {pi1 , . . . , pid}. Therefore w(r) is upper-bounded by the number of (d− 1)-
simplices intersected by the ray −→qr. To upper-bound this, note that the ray starting from q but in the
opposite direction to the ray−→qr, intersects at least 2d

(d+1)2(d+1)!

(
n
d

)
(d−1)-simplices (by Lemma 3.2). On

the other hand, by Lemma 3.1, the entire line passing through q and r intersects at most 2nd

2dd!
+ O(nd−1)

(d − 1)-simplices spanned by P . These two together imply that the ray −→qr intersects at most 2nd

2dd!
−

2d
(d+1)2(d+1)!

(
n
d

)
+ O(nd−1) (d − 1)-simplices spanned by P , and this is also an upper-bound on w(r).

Finally, we have∑
|P ′|=d

vol(conv({q} ∪ P ′)) =

∫
x∈conv(P )

w(x) dx

≤
(

2nd

2dd!
− 2d

(d + 1)2(d + 1)!

(
n

d

)
+ O(nd−1)

)∫
x∈conv(P )

dx

=
2nd

2dd!
− 2d

(d + 1)2(d + 1)!

(
n

d

)
+ O(nd−1),

finishing the proof.
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