
On the Hardness of Computing Intersection,

Union and Minkowski Sum of Polytopes

Hans Raj Tiwary

hansraj@cs.uni-sb.de

FR Informatik

Universität des Saarlandes

D-66123 Saarbrücken, Germany

Tel: +49 681 3023235

Fax: +49 681 3025576

Abstract

For polytopes P1, P2 ⊂ Rd we consider the intersection P1 ∩ P2, the

convex hull of the union CH(P1 ∪ P2), and the Minkowski sum P1 + P2.

For Minkowski sum we prove that enumerating the facets of P1+P2 is NP-

hard if P1 and P2 are specified by facets, or if P1 is specified by vertices and

P2 is a polyhedral cone specified by facets. For intersection we prove that

computing the facets or the vertices of the intersection of two polytopes

is NP-hard if one of them is given by vertices and the other by facets.

Also, computing the vertices of the intersection of two polytopes given

by vertices is shown to be NP-hard. Analogous results for computing the

convex hull of the union of two polytopes follow from polar duality. All

of the hardness results are established by showing that the appropriate

decision version, for each of these problems, is NP-complete .

1

1 Introduction

A convex polyhedron or simply polyhedron in the d-dimensional Euclidean space

Rd is the intersection of a finite number of halfspaces. A polyhedron is called

pointed if it does not contain any affine line in its interior and bounded if it

does not contain any ray. A bounded polyhedron is also called a polytope. A

very basic result in the theory of polyhedra states that a polyhedron can be

described both as the intersection of a finite number of halfspaces as well as

the Minkowski sum of a polytope and a polyhedral cone. In other words every

polyhedron can be represented as conv(V)+ cone(Y), where V and Y are finite

sets of points in Rd. The elements of V are called the vertices, and the elements

of Y are called the extreme rays of the polyhedron. For any pointed polyhedron

the minimal such representation is unique and we will always assume that V is

minimal. If V contains just one point then we call the polyhedron a polyhedral

cone or simply a cone. If Y = ∅, then the polyhedron is bounded and is a

polytope. For a thorough treatment of the subject Grünbaum [10] and Ziegler

[16] are excellent sources.

A polytope described by its vertices is called a V-polytope and a polytope

described by its facets is called an H-polytope. Accordingly, we refer to the

two equivalent representations as V-representation andH-representation respec-

tively. Many operations that are easy to perform starting with one description

become difficult if one starts with the other description. To give a simple ex-

ample, finding a point inside a polytope that maximizes the inner product with

a given vector can be done trivially if the polytope is in V-representation but

for the H-representation this amounts to Linear Programming for which only

weak polynomiality is known [13]. Weak polynomiality means that the number

of arithmetic operations performed by the algorithm at hand is a polynomial in

the number of bits needed to specify the input, as for example in Khachiyan’s

ellipsoid method for linear programming. In contrast, a strongly polynomial

algorithm for linear programming would require a number of arithmetic opera-

2

tions that is a polynomial only in the number of constraints and the dimension

of the linear program. For a formal definition of weak and strong polynomiality,

the reader is referred to [9].

In this paper, we study three fundamental operations on polytopes and pro-

vide hardness results for them. For polytopes P1, P2 ⊂ Rd, the Minkowski

addition P1 +P2, the convex hull of the union CH(P1∪P2) and the intersection

P1 ∩ P2 are defined as:

P1 + P2 = {x + y|x ∈ P1, y ∈ P2}

CH(P1 ∪ P2) = {λx + (1− λ)y|x ∈ P1, y ∈ P2, 0 ≤ λ ≤ 1}

P1 ∩ P2 = {x|x ∈ P1 ∧ x ∈ P2}

We are interested in the complexity of performing these operations and pro-

viding non-redundant description of the resulting polytope in appropriate rep-

resentation. Since the worst case size of the output for all the three operations

can be exponential in the size of input (see [7, 8]), it is natural to talk of output

sensitive algorithms. The complexity of an output-sensitive algorithm is mea-

sured in terms of the size of both the input and the output. Thus, a polynomial

output-sensitive algorithm is one whose running time is polynomial in the size

of the input and the output. In what follows, we will generally use the term

”output-sensitive“ to mean ”polynomial output-sensitive“.

It is easy to see that computing the non-redundant V-representation of

CH(P1 ∪P2) and P1 +P2 is easy if P1, P2 are V-polytopes, since redundancy in

the output can be removed by solving a polynomial number of linear programs.

Similarly, the non-redundant H-representation of P1 ∩ P2 can be computed via

linear programming if P1, P2 are H-polytopes. Therefore, we are interested in

other versions of these problems. In this paper, for Minkowski sum we con-

sider and prove hardness results for the version where P1, P2 are H-polytopes

or, where one is a V-polytope while the other is a polyhedral cone given by its

facets. In both cases we want to compute theH-representation of the Minkowski

3

sum P1 + P2.

For P1 ∩ P2 we consider and prove hardness results for the following three

variants:

• Given two V-polytopes P1 and P2, output the vertices of P1 ∩ P2.

• Given an H-polytope P1 and a V-polytope P2, output the vertices of

P1 ∩ P2.

• Given an H-polytope P1 and a V-polytope P2, output the facets of P1∩P2.

Intersection and convex hull of the union are operations dual to each other

and any statement about one can be translated into a similar statement about

the other, via polar duality, with points replacing hyperplanes and vice-versa.

Accordingly, for CH(P1 ∪ P2) we consider the versions analogous to that of the

intersection, with V-representation replaced by H-representation and vice-versa.

Before proceeding further we will describe the notion of polarity that relates

these two operations. We also describe the Cayley embedding of polytopes

which relates Minkowski addition with the convex hull of the union.

1.1 Polarity

Let P = {x|Ax ≤ 1} be a full dimensional polyhedron in Rd containing the

origin in its relative interior. Here A ∈ Rm×d is a matrix with m rows and d

columns, and 1 is an m × 1 column vector with all entries 1. The polar (also

dual) of P , denoted by P ∗, is obtained by treating the row vectors ai of A as

points in Rd and taking the convex hull of all these points together with the

origin. If P is bounded then the origin lies in the relative interior of the polar.

For a detailed treatment of this operation the reader is again referred to [10]

and [16]. One interesting property of the polar operation is that a point α in the

relative interior of P is mapped to the hyperplane {x|α · x = 1} that does not

intersect P ∗. Similarly a point on the boundary of P is mapped to a hyperplane

that touches P ∗ and a point outside P is mapped to a hyperplane that intersects

the interior of P ∗.

4

The convex hull of the union and the intersection operations are related via

polar duality. More precisely, if P1, P2 are two full dimensional polytopes (or

polyhedra) in Rd both containing origin in the interior, then P1∩P2 is the polar

dual of CH(P ∗1 ∪ P ∗2).

1.2 The Cayley trick

The Cayley trick ([11, 14]) allows us to represent the Minkowski sum P1 + P2

of two polytopes as the intersection of a (d + 1)-polytope with a hyperplane.

Consider two d-dimensional polytopes P1 and P2. Embed the two polytopes in

Rd+1 by putting a copy of P1 in the hyperplane {xd+1 = −1} and a copy of P2 in

the hyperplane {xd+1 = 1}. Let P be the (d+1)-dimensional polytope obtained

by taking the convex hull of both embedded polytopes. Then the Minkowski

sum (scaled by a factor half) of P1 and P2 is the intersection of P with the

hyperplane {xd+1 = 0}.

1.3 Model of Computation and Complexity Notions

We will use a bit model of computation where the input is comprised of n rational

numbers each requiring at most L bits in its binary representation. Thus, for

the problems considered in this paper, we assume that the polytope is described

by rational numbers encoding the dimension, the number of vertices (or facets)

and a sequence of rational numbers encoding the coordinates of vertices, or

the facet normals in case the polytope is given by H-representation. The total

number of bits required is called the size of the input polytope.

We will only count the number of arithmetic operations as the measure of

the running time of an algorithm and accordingly, we will call an algorithm

polynomial if the number of arithmetic operations performed by the algorithm

is a polynomial in n and L. For all our reductions, the number of bits L in

the binary representation of input polytopes is a polynomial in the number of

vertices and the ambient dimension of the polytope. Hence, our hardness results

5

imply that all the problems shown to be NP-hard in this paper are strongly NP-

hard.

The rest of the paper is organized as follows. In the next section, we describe

prior work related to performing these operations in appropriate representations

and in Section 3 we describe the hardness results for computing the Minkowski

sum of two polytopes. In Section 4 we establish hardness results for computing

the intersection of two polytopes in various representations.

2 Related Work

The problem of enumerating the facets of CH(P1 ∪ P2), when both P1 and P2

are given by their facets, has been studied in [2] and [5]. Balas [2] constructs

polynomial algorithm for a special class of polytopes arising in 0-1 Mixed Integer

programming, while Fukuda, Liebling and Lütolf [5] present an algorithm that

has polynomial complexity if the input polytopes satisfy certain general position

assumptions. It is not clear if arbitrary polytopes can be made to satisfy the

general position assumption as described in [5]. The NP-hardness of computing

the convex hull of the union of polytopes, as proved in this paper, suggests that

these assumptions are probably unrealistic for general polytopes.

Minkowski sums have been studied much more compared to the convex hull

of the union. They frequently come up in computational algebra [8], robotics

and motion planning, geometric convexity, computer graphics and many other

areas. Gritzmann and Sturmfels [8] studied Minkowski sum in the context of

computational algebra and gave (exponential) bounds on the number of faces

of the Minkowski sum. They also gave examples of cases where the bounds are

tight.

As noted before, exponential lower bounds motivate one to look for output

sensitive algorithms so that cases where the output is far from worst case can be

handled efficiently. Komei Fukuda [4] proposed a polynomial algorithm for enu-

merating all vertices of the Minkowski sum of k V-polytopes. In a subsequent

6

paper Fukuda and Weibel [6] gave a polynomial algorithm for enumerating all

faces of k V-polytopes. They do not consider the case when the input polytopes

are described by facets and the facets of Minkowski sum are to be enumerated,

and note this version of the problem to be open. Fukuda and Weibel, in an-

other work (see [7]), study Minkowski sums of special polytopes that are “well

centered” and also provide better bounds on the number of faces for this special

case.

Our main results state that the following decision problems are NP-complete

and thus there is no output-sensitive algorithm for the corresponding enumera-

tion problems unless P = NP :

• Given an H-polytope P1, an H-polytope P2, and an H-polytope Q, is P1 +P2 6=
Q?

• Given an H-cone P1, a V-polytope P2, and an H-polyhedron Q, is P1 +P2 6= Q?

• Given a V-polytope P1, a V-polytope P2, and a V-polytope Q, is P1 ∩ P2 6= Q?

• Given an H-polytope P1, a V-polytope P2, and a V-polytope Q, is P1∩P2 6= Q?

• Given anH-polytope P1, a V-polytope P2, and anH-polytope Q, is P1∩P2 6= Q?

For the first decision problem we provide a Turing reduction from another

NP-complete problem. Usually reductions for proving NP-completeness employ

Karp reduction. A problem A is said to be polynomial-time Turing reducible

to problem B if one can construct a polynomial time algorithm for problem A
using an oracle for B. The more common Karp reduction allows only one call to

the oracle and that too at the end. For all other decision problems we provide

the standard Karp reduction from some other NP-complete problem.

3 Hardness of Minkowski Addition

In this section we establish two hardness results about computing the facets

of the Minkowski sum of two polytopes. We begin by proving the hardness of

enumerating the facets of the Minkowski sum of two H-polytopes. Consider the

following decision version of the enumeration problem:

7

Problem IncompleteMinkowski

Input: H-Polytopes P1, P2, Q.

Output: Yes, if Q 6= P1 + P2. No, otherwise.

Theorem 1 IncompleteMinkowski is NP-complete.

It was shown by Khachiyan et. al [12] that it is NP-Hard to enumerate all

vertices of a polyhedron given by its facets. The following theorem restates the

result of [12].

Theorem 2 Given a polyhedron P in H-representation and a set V of vertices

of P , it is NP -complete to determine if P has some vertex not in V .

Now, we prove that if we have an algorithm for deciding Incomplete-

Minkowski for arbitrary input polytopes, then we can invoke this oracle a

polynomial number of times and decide for some set of vertices V and an H-

polyhedron P , whether V ⊂ vert(P).

Let P = {x|Ax ≤ b} be a polyhedron in Rd and V ⊆ vert(P) with |V | = n.

We want to determine whether V ⊂ vert(P) using a polynomial number of

calls to an oracle for IncompleteMinkowski. For this we pick some direction

and order the vertices of V in that direction. We assume that this direction

is aligned with the xd coordinate axis (after possibly applying a suitable affine

transform). That is, if ed is the unit vector (0, · · · , 0, 1) in Rd and ed is thought

to be the upward direction, then the vertices are considered in the order of

increasing height, i.e. v1 is the lowest vertex and vn is the highest vertex. We

also assume that any horizontal slice of P i.e. P ∩ {x|xd = c} is a bounded

polytope for any c ∈ R. We justify this assumption later.

Now, consider vertices vi and vi+1 for some fixed vertex subscript i and

define three polytopes in the following way:

P−1 = P ∩ {xd = vi · ed}

P1 = P ∩ {xd = vi+1 · ed}

P0 = P ∩
{

xd =
vi · ed + vi+1 · ed

2

}

8

where the dot product vi · ed is nothing but the xd-coordinate (height) of vi.

Informally speaking, we are interested in three slices of the polyhedron: a top

slice at the height of vi+1, a bottom slice at the height of vi and a slice at an

intermediate height.

We claim that the middle slice is the Minkowski sum of the top and the

bottom slices (with a scaling of half) if and only if there is no other (missing)

vertex of P lying at an intermediate height between vi and vi+1. The following

lemma states this formally.

Lemma 1 2P0 6= P−1 + P1 if and only if there exists some v ∈ vert(P) that is

not in V and vi · ed < v · ed < vi+1.ed.

Proof: We prove the non-trivial direction only. Suppose some vertex v ∈
vert(P) is not in V and vi · ed < v · ed < vi+1.ed for the vertex subscript i under

consideration. Without loss of generality we can assume that v lies above the

hyperplane containing P0. If so, there is an u ∈ vert(P−1) such that −→uv lies

on some edge of P . Clearly, −→uv intersects P0, say at w. We claim that 2w /∈
P−1 + P1.

Assume for the sake of contradiction that 2w ∈ P−1 + P1. Then there are

x ∈ P−1 and y ∈ P1 such that 2w = x + y. Since, any point on an edge of a

polytope can be uniquely represented as the convex combination of the vertices

defining the edge, it follows that x = u and y is a vertex of P1. This implies

that v is a convex combination of x, y as well and hence, v can not be a vertex

of P , a contradiction. ¤

To complete our algorithm for determining whether a given set V of vertices

of an H-polyhedron P is the complete vertex set of P , we also need to check

the region below the lowest known vertex and above the highest known vertex.

Thus, to complete the proof of Theorem 1 we need to be able to pick the direction

“up” satisfying the following requirements:

(i) Every slice of P orthogonal to this direction is a polytope, i.e it is bounded.

9

(ii) Vertices of P have a unique ordering according to their heights in the

“upward” direction. In other words, no two vertices of P have the same

height.

(iii) We can find an upper bound on the height of all vertices of the polyhedron

P . Furthermore, we require that this height be represented using a number

of bits that is polynomial in the size of the input.

Note that for a direction satisfying requirements (i) and (ii), we can assume

that the lowest vertex in the known set of V is also the lowest vertex of the

polyhedron P . Also such a vertex can be found by solving a linear program

and if V does not contain this vertex then clearly V ⊂ vert(P). Furthermore,

requirement (iii) allows us to check the region above the highest known vertex

of P . We would also like that the direction satisfying the above requirements

be represented using number of bits q that is polynomial in the number of bits

used in the description of P and V .

3.1 Finding the sweep direction

To satisfy the first requirement, recall that a pointed polyhedron has a unique

minimal representation as the Minkowski sum of a polytope and a cone. Also,

the cone of the polyhedron P = {x|Ax ≤ 1} is just cone(P) = {x|Ax ≤ 0} with

some inequalities possibly redundant. So a vector α such that cone(P)∩{α ·x ≤
1} is bounded, satisfies the first requirement. Any vector picked from the interior

cone(A) does the trick, where every row of A is interpreted as a vector in Rd.

In particular the average of the row vectors of A satisfies requirement (i) and

requires a number of bits that is polynomial in the size of A.

Let N be the set of the facet normals of cone(A). Computing N is not an

easy task but for our purposes we only need an upper bound on the size of the

coefficients of these facet normals. It is known that the number of bits required

to represent N is a polynomial in the number of bits required to represent A (See

[9] Page 164, Lemma 6.2.4). An immediate consequence of the same Lemma

10

is that for any polyhedron P = {x|Ax ≤ 1}, the number of bits required to

represent the vertices of P is a polynomial in A, and hence a polynomial upper

bound on the height of the topmost vertex can be computed. Thus assumption

(iii) can be satisfied as long as the sweep direction needs a polynomial number

of bits in its representation.

The first two conditions, for any possible sweep direction a, can be rewritten

as:

〈a, η〉 < 0, ∀η ∈ N (1)

〈a, u− v〉 6= 0, ∀u, v ∈ vert(P), u 6= v (2)

where 〈x, y〉 is the inner product of the vectors x and y.

We already have a direction α satisfying (1). Now, consider the directions

β =




1

x

...

xd−1




γ = xdα + β

We show that for large enough x, the direction γ satisfies both the require-

ments (1) and (2), and that the number of bits needed for x, and hence for γ,

is a polynomial in the size of the polyhedron P . We want that for γ

〈γ, η〉 = xd 〈α, η〉+ 〈β, η〉 < 0, ∀η ∈ N (3)

〈γ, u− v〉 = xd 〈α, u− v〉+ 〈β, u− v〉 6= 0, ∀u, v ∈ vert(P), u 6= v (4)

Notice that equations (3) and (4) involve polynomials in x whose coefficients

depend only on α,N and vert(P). Also, recall that the sizes of α,N and vert(P)

are each a polynomial in the size of the input polytope, i.e. the size of A, and

11

so the size of the coefficients in the polynomials involved in equation (3) and

(4) is a polynomial in the size of the input polyhedron. For large enough x the

sign of the polynomial in equation (3) is the same as the sign of 〈α, η〉. Since α

satisfies (1), γ satisfies (1) as well for large enough x. It is also clear that the

size of such an x need only be a polynomial in the size of the coefficients of the

polynomial in (3).

Also, any polynomial in x evaluates to a non-zero value if x is larger than the

largest possible root of the polynomial. Since the largest root of a polynomial

has size polynomial in the size of its coefficients (See [15], page 148, Lemma

6.7), the size of x required to satisfy equation 4 and hence condition (2) is a

polynomial in the size of the coefficients involved in 4. This proves that we can

pick a direction γ satisfying all the necessary conditions and requiring a number

of bits that is polynomial in the size of P .

Thus, the polyhedron P and the vertex list V can be preprocessed so that

their sizes remain polynomial, and so that if V ⊂ vert(P) then Lemma 1 can

be used to find a missing vertex by checking the space between vi and vi+1 for

each i, and checking the space above the highest vertex. As stated before, any

vertex of P requires a number of bits that is bounded by a polynomial in the

size of P and so we can check the region above the highest vertex as well.

The above reduction proves that IncompleteMinkowski is NP-hard. To prove

that IncompleteMinkowski is in NP as well, notice that given a hyperplane

h : {a · x = 1} one can easily check whether it defines a facet of the Minkowski

sum P1 + P2. To see this, let us consider the Cayley embedding of the two

polytopes. If this hyperplane defines a facet of the Minkowski sum P1 + P2,

then in the Cayley embedding as well, it corresponds to a facet of the convex

hull of the union of the two polytopes. Given a hyperplane h one can find the

faces of P1 and P2 that (possibly) define the corresponding facet of the Cayley

embedding. For each Pi this can be done by simply translating the hyperplane

away from the origin until it becomes a supporting hyperplane for Pi and taking

the face of Pi contained in the hyperplane at this point. Whether these two faces

12

define a facet of the Cayley embedding or not can be checked by just checking

the dimension of the convex hull of the union of these two faces. This completes

the proof of Theorem 1.

Following is an immediate corollary of Theorem 1:

Corollary 1 Given two H-polytopes P1, P2 ∈ Rd, there is no output-sensitive

algorithm that enumerates the facets of P1 + P2 unless P = NP .

Since for anH-polyhedron P and a subset of its vertices V , it is NP-complete

to decide whether V ⊂ vert(P), we also have the following theorem:

Theorem 3 Given an H-cone P1, a V-polytope P2, and an H-polyhedron Q, it

is NP-complete to determine whether P1 + P2 6= Q.

Proof: Any pointed polyhedron P has a unique minimal representation as the

Minkowski sum of the polytope defined by its vertices and the cone of its extreme

rays. Also, the cone of the extreme rays of the polyhedron P = {x|Ax ≤ b} is

just cone(P) = {x|Ax ≤ 0}. Redundant inequalities of cone(P) can be removed

using linear programming and hence conv(V) + cone(P) = P if and only if

V = vert(P). Thus, an algorithm for enumerating the facets of the Minkowski

sum of a V-polytope and an H-cone can be used to determine whether a given

list of vertices of a polyhedron P is complete or not.

As noted earlier, given a hyperplane it can be easily checked whether it

defines a facet of the Minkowski sum of P1 and P2. Thus, if P1 + P2 6= Q then

there is a facet defining hyperplane for P1 + P2 that does not define a facet of

Q. This proves that this decision problem is in NP as well. ¤

It should be remarked that if the cone P1 in Theorem 3 is represented by

it’s extreme rays then the problem of determining whether P1 + P2 = Q or

not, is equivalent to the problem of computing the V -representation of a poly-

tope from the H-representation and vice-versa. The complexity status of the

representation conversion problem remains open despite years of research [1].

13

4 Hardness of Computing Intersection

Recall that the Minkowski sum of two polytopes can be computed via computing

the convex hull of two polytopes using the Cayley embedding. To compute the

Minkowski sum of polytopes P and Q in Rd, we embed the polytopes in Rd+1

by putting a copy of P in the hyperplane defined by {xd+1 = −1} and a copy of

Q in the parallel hyperplane {xd+1 = 1}. If P−1 and Q1 are the copies of P and

Q respectively, then P + Q is obtained (upto a scaling factor 1
2) by taking the

convex hull CH(P−1 ∪Q1) and intersecting it with the hyperplane {xd+1 = 0}.
Note that, the operand polytopes P−1 and Q1 here are not full dimensional

i.e. even though they are embedded in Rd+1, neither of them has dimension

d + 1. However, one can easily ensure that these polytopes are full dimensional

and both contain the origin in their relative interiors. To do this, we pick a

point p in the relative interior of CH(P−1 ∪Q1) and construct a pyramid with

base P−1 and p as the apex. It is easy to see that this can be done in polynomial

time. Now we can pick another point q in the relative interior of this pyramid

and create a pyramid with Q1 as the base and q as the apex. Since the convex

hull of the union of these two pyramids is the same as that of P−1 and Q1

and their intersection is a full dimensional polytope, we can move origin in this

common region. This together with Theorem 3 gives us the following theorem:

Theorem 4 Given H-polytopes P1, P2, Q ∈ Rd, it is NP-complete to decide

whether CH(P1 ∪ P2) 6= Q.

This can be dualized since each of the polytopes is full dimensional and

contains origin in the relative interior. By considering the polar duals of P1, P2

and Q, each of which is a full dimensional V-polytope containing the origin in

the relative interior, we have the following theorem:

Theorem 5 Given V-polytopes P1, P2, Q ∈ Rd, it is NP-complete to decide

whether P1 ∩ P2 6= Q.

Now we prove that the problem of computing either the facets or the ver-

14

tices of the intersection of two polytopes is hard for the case where one of the

polytopes is given by H-representation and the other by V-representation.

Theorem 6 Given an H-polytope P1, a V-polytope P2, and an H-polytope Q,

it is NP-complete to decide whether P1 ∩ P2 6= Q.

Proof: It is known ([3]) that given an H-polytope P1 and a V-polytope P2,

it is NP-complete to decide whether P1 * P2. Clearly, P1 ⊆ P2 if and only if

P1∩P2 = P1. This implies that checking whether a given list of facets completely

defines the intersection of an H-polytope and a V-polytope, is NP-hard.

The problem is also in NP because for given polytopes P1, P2 and Q, if

P1 ∩ P2 6= Q then Q has a vertex that does not lie in the intersection P1 ∩ P2.

A point lies in P1 ∩ P2 if and only if it satisfies all the facet inequalities of P1

and can be represented as the convex combination of the vertices of P2. Both

the tests can be performed in polynomial time for rational polytopes. ¤

As it turns out computing the vertices of the intersection of an H-polytope

and a V-polytope is hard as well.

We know from Theorem 3 that it is NP-complete to decide whether a given

list of facets of the Minkowski sum of an H-cone P1 and a V-polytope P2 in Rd,

is complete or not. As stated in the beginning of this section, we can embed P1

and P2 in Rd+1 in two parallel hyperplanes and the Minkowski sum P1 + P2 is

the intersection of the convex hull of P1 and P2 with an appropriate hyperplane.

Also, we can pick points p and q in the convex hull of P1 and P2 such that the

pyramids P ′1 and P ′2 obtained from P1 with apex p and P2 with apex q are full

dimensional and have a full dimensional intersection. Thus,

Theorem 7 Given an H-polyhedron P1 and a V-polytope P2, it is NP-hard to

compute the facets of the polyhedron CH(P1 ∪ P2).

Consider the polar duals of P1 and P2. Since both P1 and P2 are full di-

mensional and contain the origin in their relative interiors, the polar dual of P2

is bounded i.e. an H-polytope, and the polar dual of P1 is a V-polytopes with

15

vertices A ∪ {0} if P1 is represented as Ax ≤ 1. The vertices of P ∗1 ∩ P ∗2 are in

one-to-one correspondence with the facets of CH(P1 ∪ P2) and so we have the

following theorem:

Theorem 8 Given an H-polytope P1, a V-polytope P2 and a V-polytope Q, it

is NP-complete to decide whether P1 ∩ P2 6= Q.

5 Acknowledgements

The author was supported by Graduiertenkolleg fellowship for PhD studies pro-

vided by Deutsche Forschungsgemeinschaft when some of this research was done.

The author would also like to thank Günter Rote for helpful discussions re-

lating to Subsection 3.1, and Raimund Seidel for extremely helpful comments

regarding the content and the structure of this paper, and also for suggesting

simplifications to the discussions in Subsection 3.1.

References

[1] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?

Comput. Geom., 7:265–301, 1997.

[2] E. Balas. On the convex hull of the union of certain polyhedra. Operations

Research Letters, 7:279–283, 1988.

[3] R. M. Freund and J. B. Orlin. On the complexity of four polyhedral set contain-

ment problems. Mathematical Programming, 33(2):139–145, 1985.

[4] K. Fukuda. From the zonotope construction to the minkowski addition of convex

polytopes. J. Symb. Comput., 38(4):1261–1272, 2004.

[5] K. Fukuda, T. M. Liebling, and C. Lutolf. Extended convex hull. Computational

Geometry, 20(1-2):13–23, 2001.

[6] K. Fukuda and C. Weibel. Computing all faces of the minkowski sum of V-

polytopes. In Proceedings of the 17th Canadian Conference on Computational

Geometry, 2005.

16

[7] K. Fukuda and C. Weibel. f -vectors of Minkowski additions of convex polytopes.

Discrete Comput. Geom., 37:503–516, 2007.

[8] Gritzmann and Sturmfels. Minkowski addition of polytopes: Computational com-

plexity and applications to grobner bases. SIJDM: SIAM Journal on Discrete

Mathematics, 6, 1993.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combina-

torial Optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag,

1993.

[10] B. Grünbaum. Convex Polytopes, Second Edition prepared by V. Kaibel, V. L.

Klee and G. M. Ziegler, volume 221 of Graduate Texts in Mathematics. Springer,

2003.

[11] B. Huber, J. Rambau, and F. Santos. The cayley trick, lifting subdivisions and the

bohne-dress theorem on zonotopal tilings. Journal of the European Mathematical

Society, 2(2):179–198, 2000.

[12] L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, and V. Gurvich. Generating

all vertices of a polyhedron is hard. In SODA, pages 758–765. ACM Press, 2006.

[13] L. G. Khachiyan. A polynomial algorithm in linear programming. Soviet Mathe-

matics Doklady, 20:191–194, 1979.

[14] B. Strumfels. On the newton polytope of the resultant. Journal of Algebraic

Combinatorics, 3(2):207–236, 1994.

[15] C. K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford University

Press, New York, 2000.

[16] G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics, No. 152.

Springer-Verlag, Berlin, 1995.

17

