
BAKALÁŘSKÁ PRÁCE

Jan Hadrava

Vektorizace čárové grafiky

Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: RNDr. Josef Pelikán

Studijní program: Informatika

Studijní obor: Obecná informatika

Praha 2016

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně a výhradně
s použitím citovaných pramenů, literatury a dalších odborných zdrojů.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze
zákona č. 121/2000 Sb., autorského zákona v platném znění, zejména skutečnost,
že Univerzita Karlova má právo na uzavření licenční smlouvy o užití této práce
jako školního díla podle §60 odst. 1 autorského zákona.

V dne Podpis autora

i

Rád bych poděkoval všem, kteří mě při tvorbě práce podporovali. Především
svému vedoucímu, RNDr. Josefu Pelikánovi, který to se mnou úspěšně zvládl.
Dále pak děkuji rodině a přátelům, speciálně Péťe Pelikánové za obrázky hrochů
a Kačce Zákravské za korektury a obrovskou podporu.

ii

Název práce: Vektorizace čárové grafiky

Autor: Jan Hadrava

Katedra: Katedra softwaru a výuky informatiky

Vedoucí bakalářské práce: RNDr. Josef Pelikán, Katedra softwaru a výuky informatiky

Abstrakt: I při tvorbě grafiky se některým tvůrcům lépe pracuje s tužkou a papírem. Je
žádoucí vzniklou skicu zdigitalizovat (naskenovat, vyfotografovat) a následně upravovat
v počítači. K tomu je užitečné převést obrázek do vektorového formátu – zvektorizovat.

Vektorová reprezentace obrázků poskytuje oproti rastrové mj. dobrou kvalitu i při li-
bovolném zvětšení či snazší editaci. Každý element je reprezentován buď jako křivka,
či jako vyplněná oblast definovaná svým obvodem. U čárových kreseb je pro následnou
práci s obrázkem vhodnější první z uvedených.

Současné vektorizační nástroje nejčastěji hledají pouze souvislé plochy. Některé z nich
jsou i volně dostupné. Programů reprezentujících výstup pomocí čar existuje podstatně
méně a často jsou také velmi drahé.

Práce navrhuje vektorizační algoritmus a volně šiřitelný program, jenž vektorový ob-
rázek reprezentuje pomocí čar. Po předzpracování rastrového obrázku je nalezena jeho
(stále rastrová) morfologická kostra, která je trasována a převedena do vektorové po-
doby na Bézierovy křivky. Následně je obrázek vyhlazen a vyexportován do formátu
zvoleného uživatelem. Kvalita výstupu je v mnohých ohledech srovnatelná s autorovi
dostupnými vektorizačními nástroji.

Klíčová slova: vektorizace, čárová grafika, analýza obrazu, morfologické operace, Bézie-
rovy křivky

Title: Vectorization of line-based images

Author: Jan Hadrava

Department: Department of Software and Computer Science Education

Supervisor: RNDr. Josef Pelikán, Department of Software and Computer Science Edu-
cation

Abstract: Some creators prefer working with pen and paper while creating graphic
art. It is desirable to digitize a draft (scan it, photograph) and edit it on a computer
afterwards. It is useful to convert an image to a vector format – to vectorize it.

Vector representation of images gives us good quality in any zoom level and enables
easier editing compared to a raster workflow. Each element is represented as a curve, or
as a filled area defined by its outline. Line-based images may be edited very conveniently
and efficiently.

Contemporary vectorization tools usually search for connected areas. Some of them are
also freely available. There exist significantly fewer programs which represent output
graphics using lines, these programs are usually very expensive.

This work proposes a vectorization algorithm and implements freely distributable pro-
gram which represents vector image using lines. After initial pre-processing of input
raster image its morphological skeleton is found (still in raster). A skeleton is then
traced and converted into a vector form set of Bézier curves. An image is smoothed
and exported to a required vector graphics format. Quality of an outcome is in many
aspects comparable with quality of vectorization tools available to the author.

Keywords: vectorization, line-based graphics, image analysis, morphological operations,
Bézier curves

iii

Obsah

Úvod 3

1 Reprezentace vektorových dat 5
1.1 Bézierovy křivky . 5

1.1.1 Vlastnosti . 6
1.1.2 Racionální Bézierovy křivky 7

1.2 Cesta . 8
1.3 Používané formáty . 8

1.3.1 Scalable Vector Graphics (SVG) 8
1.3.2 PostScript, PS . 9
1.3.3 Další formáty . 9

2 Metody vektorizace a existující nástroje 10
2.1 Trasování ploch . 10

2.1.1 Potrace . 10
2.1.2 Vector Magic . 11

2.2 Čárová vektorizace . 12
2.2.1 RasterVect . 12

3 Návrh algoritmu 13
3.1 Fáze 1: Prahování a filtrování . 13

3.1.1 Otsova metoda . 13
3.1.2 Adaptivní prahování . 14
3.1.3 Filtrování nedokonalostí 14

3.2 Fáze 2: Morfologická kostra . 16
3.2.1 Morfologické operace . 16
3.2.2 Výpočet morfologické kostry – skeletonizace 16
3.2.3 Zhangův-Suenův algoritmus 19

3.3 Fáze 3: Trasování . 20
3.3.1 Výběr počátečního bodu 20
3.3.2 Výběr následujícího bodu 20
3.3.3 Tipování a průchod do hloubky 22
3.3.4 Zajištění konečnosti . 22

3.4 Fáze 4: Vyhlazování . 22
3.5 Fáze 5: Export . 23

3.5.1 Průměrná šířka . 24
3.5.2 Rozdělení cest na úseky 24
3.5.3 Obvodová reprezentace . 24

4 Srovnání výsledků 26
4.1 Měřítka kvality . 26

4.1.1 Typ reprezentace . 26
4.2 Porovnání s existujícími nástroji 26

1

5 Uživatelská dokumentace 32
5.1 Instalace . 32
5.2 Ovládání programu . 33

5.2.1 Konfigurační soubor . 33
5.2.2 Grafické rozhraní . 34
5.2.3 Další důležité parametry 35

6 Vývojová dokumentace 37
6.1 Dělení na funkční bloky . 37

6.1.1 Datové struktury . 38
6.1.2 Vektorizace . 40

7 Rozšíření algoritmu 43
7.1 Barevné obrázky . 43
7.2 Nečárová grafika . 44
7.3 Uživatelské rozhraní . 44
7.4 Plugin do Inkscape . 44
7.5 Vylepšení skeletonizace . 44
7.6 Grafová interpretace kostry . 45

Závěr 46

Seznam použité literatury 47

Seznam obrázků 49

Přílohy 50
Příloha 1 – Přehled parametrů . 50

2

Úvod
V této práci se budeme zabývat vektorizací čárových kreseb, tedy převodem

černobílých kreslených rastrových obrázků (skládajících se převážně z čar) do
vektorového formátu. Příklad takového převodu vidíme na obrázku 1.

Opakem vektorizace je rastrování, které využíváme téměř vždy, když chceme
vektorová data zobrazit. Toto ovšem činíme se znalostí rozlišovacích schopností
výstupního zařízení (tiskárny, monitoru). U rastrových obrázků si pamatujeme in-
formace o barvě každého pixelu – políčku pravidelné, nejčastěji čtvercové, mřížky.
Jsou dobře známé, jelikož se s nimi běžně potkáváme třeba u fotografií. Mezi je-
jich formáty patří JPEG (Pennebaker a Mitchell, 1993), PNG (W3C, 2013), GIF
(CompuServe Inc., 1990).

Oproti tomu vektorové obrázky tvoříme z primitiv – základních geometrických
útvarů, jako jsou například úsečky, mnohoúhelníky, (Bézierovy) křivky a kružnice.
Díky tomu je lze libovolně škálovat, aniž bychom naráželi na limit jejich kvality.
Jsou proto vhodné i pro přípravu grafiky, kdy předem neznáme přesné cílové
rozlišení. Podrobněji se na ně podíváme v první kapitole.

Vektorové obrázky jsou čím dál populárnější na webových stránkách, kde je lze
dokonce s pomocí kaskádových stylů (CSS) animovat. Oproti rastrovým je také
snazší je editovat, primitiva lze totiž přebarvovat, deformovat, otáčet, škálovat
atp. V neposlední řadě může vektorová podoba sloužit i ke kompresi dat – pokud
je obrázek snadno popsatelný primitivy, může být při stejné kvalitě výrazně menší
než rastrový. Formátů existuje hned několik, například PostScript (PS)(Adobe
Systems Inc., 1999) či Scalable Vector Graphics (SVG)(Dahlström a kol., 2011).
Více si o nich povíme v podkapitole 1.3.

Při kreslení obrázků se někomu lépe kreslí tužkou na papír, než přímo do
počítače (grafický tablet není tak rozšířený jako papír). Ovšem úprava obrázku
už není na papíře tak jednoduchá. Využití vektorizece je tedy nasnadě. Máme
fotografii či sken původního obrázku a chceme jej dále upravovat na počítači.

Lze potkat tři způsoby vektorizace – ruční, poloautomatickou a automatickou.
Pro každý ze způsobů najdeme celou řadu nástrojů a služeb, které je nabízejí,
od ruční vektorizace on-line službou VectorizeNow, kdy obrázek zcela překreslí
zkušený grafik, po plně automatickou, zhotovenou kupříkladu nástrojem Vector
Magic (Cedar Lake Ventures Inc.). Drobný přehled existujících nástrojů se na-
chází ve druhé kapitole.

Obrázek 1: Příklad převodu navrženým algoritmem

3

Hlavní motivací této práce však byla absence kvalitních volně dostupných
vektorizačních nástrojů, které by se zaměřovaly na čárovou grafiku. Běžně se
lze setkat s vektorizačními programy jako Potrace (Selinger, 2015) či AutoTrace
(Weber, 2004), které nejsou takto specializované a převádí libovolné obrázky.
V jejich výstupu je pak každá čára reprezentovaná jako vyplněný mnohoúhelník
(přesněji jako oblast ohraničená různými křivkami, nikoli pouze úsečkami). I u čá-
rové grafiky tak používají k vektorizaci metodu trasování ploch, která nevyužije
vlastností těchto obrázků.

V této práci cílíme na návrh a implementaci (polo)automatické vektorizace
na principu trasování čar tak, aby zde zůstala možnost výstup nadále upravovat
příjemným způsobem ručně. Výstup je tedy reprezentován pomocí křivek s urči-
tou šířkou stopy. Algoritmus je popsán v kapitole 3. Zdrojové kódy vzniklého
programu Vectorix jsou volně dostupné na adrese: https://atrey.karlin.mff.
cuni.cz/~had/vectorix/.

Ve čtvrté kapitole porovnáme výsledky vektorizování našeho programu s ně-
kolika dalšími nástroji. Kvůli nedostupnosti jiných čárových vektorizátorů porov-
náváme převážně s těmi, které trasují plochy. Z důvodu odlišné reprezentace dat
se však kvalita výstupů srovnává obtížně.

Následující dvě kapitoly věnujeme uživatelské a vývojové dokumentaci. Po-
slední kapitola naváže s nápady na možná rozšíření programu.

4

https://atrey.karlin.mff.cuni.cz/~had/vectorix/
https://atrey.karlin.mff.cuni.cz/~had/vectorix/

1. Reprezentace vektorových dat
V závislosti na konkrétním formátu souboru a účelu vektorových dat se použí-

vají různá primitiva. Vektorová data totiž nemusí představovat pouze obrázky, ale
také technické výkresy, či přímo instrukce pro numericky řízené obráběcí stroje
(CNC, z anglického Computer Numeric Control).

Ty často využívají pouze úsečky, takže složitější útvary (například oblouk)
se pro ně musí aproximovat lomenou čarou. To je však vhodné dělat se znalostí
rozlišovacích schopností stroje, protože se tím zhoršuje podobnost s originálem.

Kromě úseček se také používají eliptické oblouky. Lze je například definovat
počátečním a koncovým bodem, délkou poloos a jejich otočením a dvěma jednobi-
tovými identifikátory: jeden určí, zda se jedná o větší nebo menší oblouk, a druhý
pravotočivost/levotočivost oblouku. Přesně takováto reprezentace se používá ve
formátu SVG (viz Dahlström a kol., 2011, sekce 8.3.8), který je také výchozím
výstupním formátem programu Vectorix. (Ten však oblouky nepoužívá.)

1.1 Bézierovy křivky

Složitější útvary lze reprezentovat pomocí navazujících Bézierových křivek,
tj. splinů na nich založených. Spliny Bézierových křivek jsou pro nás důležité,
protože právě jimi je reprezentovaný výstup programu Vectorix. Píší o nich ve
své knize pánové Piegl a Tiller (1997, kapitola 1). Ta je hlavní zdrojem informací
pro celou tuto kapitolu.

Definice 1. Bézierova křivka stupně n je parametrická křivka C(t), s parametrem
t ∈ [0, 1], taková že:

C(t) =
n∑
i=0

Bi,n(t) · Pi,

kde Pi jsou kontrolní body a Bi,n je i-tý Bernsteinův polynom stupně n. Všech
n+ 1 kontrolních bodů dohromady tvoří kontrolní polygon. Parametr t nazýváme
čas.

Definice 2. i-tý Bernsteinův polynom Bi,n stupně n je definován rekurentně:

Bi,0(t) =

{
1, pro i = 0,

0, pro i 6= 0,

Bi,n(t) = (1− t) ·Bi,n−1(t) + t ·Bi−1,n−1(t).

Speciálně tedy vychází, že Bézierova křivka prvního stupně odpovídá para-
metrické reprezentaci úsečky.

Pro vyšší stupně je pak možné hledat bod pro daný parametr t snadno pomocí
rekurzivního algoritmu de Casteljau. Ten v každém kroku zredukuje stupeň Bézie-
rovy křivky o jedna. Pro odvození redukce nejprve rozepíšeme hodnotu Bézierovy
křivky pro parametr t podle definic 1 a 2:

C(t) =
n∑
i=0

Bi,n(t)Pi =
n∑
i=0

(1− t) ·Bi,n−1(t) · Pi +
n∑
i=0

t ·Bi−1,n−1(t) · Pi.

5

Nyní si stačí uvědomit, že Bernsteinův polynom Bn,n−1 a B−1,n je vždy nulový.
Proto můžeme pokračovat:

C(t) =
n−1∑
i=0

(1−t)Bi,n−1(t)Pi+
n−1∑
i=0

tBi,n−1(t)Pi+1 =
n−1∑
i=0

((1−t)Pi+tPi+1)Bi,n−1(t).

Tím jsme zredukovali problém na vyhodnocení Bézierovy křivky stupně n− 1
s n kontrolními body P ′i = (1−t)·Pi+t·Pi+1. Algoritmus tak používá jednoduché
geometrické úkony, v každém kroku rozdělí úsečku mezi sousedními kontrolními
body v poměru t : 1− t. Toto dělení je dobře vidět na obrázku 1.1.

V našem případě se setkáme nejvýše s kubickými Bézierovými křivkami. To
je totiž nejvyšší stupeň, který je podporován v běžných formátch SVG a PS.
Kubické křivky mají 4 kontrolní body.

P0

P1

P2

P3

P
′

0

P
′

1

P
′

2

P
′′

0

P
′′

1

P
′′′

0

1− t

t

Obrázek 1.1: Postupná redukce Bézierovy křivky třetího stupně

1.1.1 Vlastnosti

• Protože pro Bernsteinovy polynomy platí rovnost

n∑
i=0

Bi,n(t) = 1, (∀t, 0 ≤ t ≤ 1)

libovolný bod Bézierovy křivky leží uvnitř konvexního obalu kontrolního
polygonu.

• Krajní kontrolní body P0 a Pn jsou také krajními body Bézierovy křivky.

• Libovolnou afinní trasnformaci křivky lze provést transformací kontrolních
bodů.

• Velmi důležitou, avšak nepříjemnou vlastností je, že offsetovou křivku nelze
přesně reprezentovat Bézierovou křivkou. Offsetová křivka je taková křivka,
která má od předlohy v každém bodě konstantní vzdálenost d. Důsledkem je,
že pokud máme grafický objekt reprezentovaný Bézierovou křivkou s danou
šířkou, nelze obvod tohoto objektu popsat Bézierovými křivkami přesně (viz
Hoschek, 1988). S tímto úkolem se potýká i Vectorix, takže možné způsoby
řešení jsou popsané v části 3.5.3.

6

• Délku Bézierovy křivky můžeme zdola odhadnout vzdáleností prvního a po-
sledního kontrolního bodu a zhora délkou lomené čáry kontrolního poly-
gonu.

• Bézierovu křivku stupně n je možné v libovolném bodě rozdělit a obě
vzniklé části přesně reprezentovat Bézierovými křivkami stejného stupně,
jako měla původní křivka. Použijeme k tomu mezivýsledky algoritmu de
Casteljau. Kontrolní body původní křivky označíme P0,i = Pi a mezivý-
sledky z k-tého kroku Pk,i. První Bézierova křivka pak bude mít kontrolní
body P0,0, P1,0, P2,0, . . . Pn,0 a druhá Pn,0, Pn−1,1, Pn−2,2, . . . P0,n.

Tato vlastnost nám umožňuje křivky snadno vykreslovat. Každý segment
budeme půlit do té doby, než jeho délka klesne pod námi definovanou mez.
Následně každou křivku nahradíme úsečkou mezi prvním a posledním kon-
trolním bodem. Tím umíme získat libovolně kvalitní aproximaci lomenou
čarou.

1.1.2 Racionální Bézierovy křivky

Někdy se Bézierovy křivky používají ve variantě rozšířené o váhové koeficienty.
Každý kontrolní bod Pi, resp. jemu odpovídající Bernsteinův polynom Bi,n, je
přenásobený váhovým koeficientem wi. Aby se stále jednalo o afinní kombinaci,
jsou výsledné koeficienty normovány:

C(t) =

∑n
i=0Bi,n(t) · wi · Pi∑n
j=0Bj,n(t) · wj

.

Intuitivně platí, že větší váha přidává bodu na „důležitostiÿ a křivka se tak
k danému bodu více přimyká. Dokud jsou všechny váhy kladné, leží celá křivka
v konvexním obalu kontrolních bodů. Se zápornými váhami to však již neplatí.
Oba tyto jevy jsou dobře pozorovatelné na obrázku 1.2.

Pokud jsou všechny váhy wi jednotkové, dostáváme předpis z definice 1, tedy
obyčejné Bézierovy křivky (občas se jim kvůli absenci vah říká neracionální Bé-
zierovy křivky).

P0

P1

P2

P3

w1 = 7

w1 = 2

w1 = 1

w1 = 0

w1 = −0,4

Obrázek 1.2: Racionální Bézierovy křivky se shodnými kontrolními body a vahami
w0 = w2 = w3 = 1 a proměnlivou váhou w1 ∈ {−0,4; 0; 1; 2; 7}

.

7

Racionální Bézierovy křivky dokáží přesně reprezentovat libovolné kuželo-
sečky. To neracionálními není možné. Pokud má neracionální Bézierova křivka
kreslit část kružnice/elipsy, vždy se jedná pouze o aproximaci.

1.2 Cesta

Jako cestu označujeme posloupnost na sebe postupně navazujících primitiv,
jako jsou úsečky, eliptické oblouky a Bézierovy křivky. U jednotlivych navázání
definujeme třídu geometrické spojitosti řádu k, značíme ji Gk, viz Hoschek (1988).

Parametrické křivky A(t), 0 ≤ t ≤ 1 a B(s), 0 ≤ s ≤ 1 splňují podmínky
spojitosti:

• třídy G0, pokud A(1) = B(0), tj. na sebe „navazujíÿ,

• třídy G1, pokud navíc A′(1) = l1 · B′(0), tj. křivky mají stejnou směrnici,
výsledný spline je hladký,

• třídy G2, pokud navíc A′′(1) = l21 ·B′′(0) + l2 ·B′(0), tj. křivky mají stejný
poloměr křivosti,

kde li jsou libovolné parametry. V tomto případě čárkou značíme derivaci. Tyto
parametry kompenzují skutečnost, že parametrizace křivek mohou být libovolné.
Při stejné změně parametrů t a s mohou křivky A a B urazit zcela odlišnou
vzdálenost.

U cesty vyžadujeme spojitost G0, spojitosti vyšších řádů jsou již volitelné.
Často se ještě setkáme se spojitostí G1, protože ta zaručuje, že na křivce nejsou
žádné ostré zlomy (rohy). Je samozřejmě možné definovat třídy i pro vyšší řády,
ale nejsou pro nás příliš zajímavé, protože nejsou pouhým okem rozpoznatelné.

1.3 Používané formáty

1.3.1 Scalable Vector Graphics (SVG)

Obdobně jako je tomu u rastrových obrázků, existuje řada různých formátů
i pro vektorové. Pro náš program je nejdůležitější formát Scalable Vector Graphics
(SVG) (Dahlström a kol., 2011). Je totiž jeho výchozím výstupním formátem.
SVG běžně používá například open-source editor vektorových obrázků Inkscape
a je také podporován všemi (s výjimkou jediného) vektorizačními nástroji uká-
zanými v následující kapitole. Jedná se o formát založený na XML (Extensible
Markup Language).

Formát umožňuje kromě všech základních primitiv popsaných výše (s výjim-
kou racionálních Bézierových křivek) také jednotlivé objekty slučovat do skupin,
transformovat je, nastavovat jim průhlednost či na ně kreslit barevné přechody.
Cesty pak lze například vykreslovat přerušovaně. Do obrázku je také možné vložit
rastrový obrázek, či text, který je následně stále reprezentován jako text. Nemá
smysl zde vyjmenovávat všechny možnosti formátu. My využíváme pouze cesty
složené z Bézierových křivek. Pro ladící účely program také umožňuje vložit na
pozadí vektorového obrázku libovolný jiný (třeba rastrový) obrázek. Můžeme si
tak snadno zobrazit v jednom souboru jak předlohu, tak výsledek vektorizace.

8

Za povšimnutí ještě stojí, že SVG je definováno konsorciem W3C (World
Wide Web Consortium), které vyvíjí standardy pro web. Formát SVG je totiž
běžně podoporván ve všech (grafických) webových prohlížečích. Obrázky v SVG je
dokonce možné na webu animovat pomocí kaskádových stylů, či je přímo vkládat
do kódu stránky. Lze tedy očekávat, že tento formát v blízké budoucnosti jen tak
nezmizí.

Pro nás je jedinou nevýhodou SVG (ale i ostatních formátů), že nepodpo-
ruje proměnlivou šířku čáry. Při vektorizaci však občas nacházíme čáry, jejichž
tloušťka stopy se v průběhu mění. Před ukládáním se musíme s tímto nedostat-
kem vypořádat. Detaily jsou popsané v kapitole 3.5.3. Je možné, že v příští verzi
formátu bude proměnlivá šířka již podporována – viz návrh (Birtles, 2014).

1.3.2 PostScript, PS

Druhý podporovaný formát je PostScript (PS) (Adobe Systems Inc., 1999),
který je výrazně starší. Ve skutečnosti se jedná o zásobníkový, turingovsky úplný
programovací jazyk. PostScript pomocí příkazů jako moveto (přemísti se na po-
zici) a curveto (nakresli kubickou Bézierovu křivku vedoucí ze současné pozice
na novou pozici s použitím dvou dalších kontrolních bodů) postupně vykresluje
výsledný vektorový obrázek.

Běžně se v PostScriptu popisuje vzhled jedné stránky. PS se totiž používá při
tisku, kdy tiskárny (případně tiskové servery) v sobě obsahují jeho interpret.

Ve skutečnosti je výstupem programu soubor typu EPS (Encapsulated Post-
Script). Ten se od obyčejného PS liší jen v drobnostech. Předně definuje obdél-
níkovou oblast, ve které se kreslený obrázek nachází (u PostcSriptu tato oblast
odpovídá jedné stránce). Na EPS jsou kladena další omezení – například musí
zachovat aktuální pozici. Protože náš export využívá jen zlomek z funkcionality,
na opravdové rozdíly nenarazíme.

1.3.3 Další formáty

Existuje mnoho dalších vektorových formátů. Některé z nich jsou dobře do-
kumentované, jiné jsou (neveřejně) definované výrobcem softwaru, který tento
formát používá. Mezi ty dokumentované spadá formát DXF (Drawing Exchange
Format) určený pro software CAD (Computer aided design, tj. programů na rý-
sování technických výkresů).

V tomto formátu (ale i v jiných) se hladké křivky reprezentují pomocí B-splinů
(či dalších variant jako třeba NURBS – Non-uniform rational Basis spline). Náš
nástroj však tuto reprezentaci nepoužívá, nebudeme ji proto ani definovat. Pří-
padné zájemce odkážeme na podrobnou knihu The NURBS Book (Piegl a Tiller,
1997).

9

2. Metody vektorizace a existující
nástroje

Vektorizace označuje celý proces převodu z rastrového obrázku na vektorový.
Skládá se zpravidla z předzpracování dat ještě v rastrové podobě, trasování linií
(sledování útvarů v rastru a jejich převod na vektorovou podobu) a volitelně
z dalších úprav již vektorové podoby.

Jednotlivé přístupy k trasování se liší podle toho, jak a k čemu chceme zvek-
torizovaná data používat. Vektorizace najde uplatnění například při automatické
digitalizaci map (Lána, 2001), kdy se snažíme správně rozpoznat mapové zna-
čky. V takovém případě je vektorizátor závislý na konkrétní úloze a pro dobré
výsledky by měl znát sémantiku dat.

Dále se vektorizace využívá v lékařství, např. při zpracování trojrozměrných
skenů. Tím, že se automaticky podaří najít středy cév či střev, se následně usnadní
práce lékařům. Blíže se tímto problémem zabývá článek Bittera a kol. (Bitter
a kol., 2000).

Hledání středů čar se také využívá při práci s technickými výkresy, protože
software pro CAD často umí pracovat pouze s vektorovými podklady. Jelikož
běžné výkresy jsou složené z úseček a kružnic, některé vektorizační nástroje,
například RasterVect, hledají pouze tato primitiva.

Jak jsme již nastínili v úvodu, je možné obrázek reprezentovat i pomocí ploch.
S tím se při vektorizaci setkáváme častěji, protože je jednak snazší a mnohdy
rychlejší najít hranice objektů než jejich středy, a jednak při trasování středů čar
potřebujeme vstupní obrázek složený právě z čar. Trasování ploch neklade tak
přísná omezení na vstup, protože pomocí ploch lze dobře reprezentovat libovolný
obrázek.

2.1 Trasování ploch

Obecně se snažíme sledovat a průběžně popisovat hranice souvislé (jedno-
barevné) plochy. Tuto metodu využívá například open-source nástroj Potrace
(Selinger, 2015) a v první fázi také komerční Vector Magic (Cedar Lake Ventures
Inc.; Diebel, 2008). Detaily metody si ukážeme na příkladu programu a knihovny
Potrace, protože k němu existuje velmi dobrá dokumentace (Selinger, 2003) a jsou
také veřejně dostupné zdrojové kódy.

2.1.1 Potrace

Potrace je primárně knihovna, nicméně je k ní dodáván i stejnojmenný kon-
zolový program. Jako knihovnu jej využívá třeba open-source vektorový editor
Inkscape.

Vstupní obrázek je nejprve převeden na binární, v případě knihovny tento
převod musí provést volající program. Z toho plyne, že Potrace sám od sebe
nepodporuje vícebarevné obrázky.

Funguje v několika krocích. Prvně obrázek rozloží na uzavřené oblasti. Sleduje
hranici mezi černou a bílou a jakmile se dostane zpět do počátečního bodu, nalezl

10

novou uzavřenou plochu. Hodnoty všech pixelů uvnitř této oblasti invertuje, díky
čemuž postupně najde kontury všech objektů v obrázku.

Následně nalezenou plochu aproximuje mnohoúhelníkem a v další fázi jej vy-
hladí pomocí hladkých Bézierových křivek. Zde se program snaží detekovat ostré
rohy, aby zůstaly zachovány. Křivky se pak volitelně ještě snaží zjednodušit tím,
že sousední úseky propojuje.

Vlastnosti

Například v programu Inkscape jsou po vektorizování knihovnou Potrace bílé
plochy chápany jako samostatné bílé objekty a nejsou odečteny od černé, na které
leží. Tím se zhoršuje editovatelnost obrázků.

Další nevýhodou je, že samotné trasování hranic ploch je čistě lokální záleži-
tost, tj. pracuje jen v malém okolí. Pokud je obrázek složený z relativně tenkých
čar, poznáme, že každý z okrajů čáry je trasován zcela nezávisle. Vytvoří se totiž
první vektorizační artefakty: úseky čáry s proměnlivou šířkou. Při trasování vzni-
kají drobné odchylky od ideálního směru. Tím, že se objevují nezávisle, se šířka
čáry ve výstupu mění, aniž by takováto změna byla na vstupu.

Další artefakty se objeví například při křížení dvou čar. Při trasování rastro-
vého obrázku po obvodu se nám nemusí podařit najít jeden konkrétní bod, ve
kterém se má okraj ostře zalomit. Místo toho může dojít ke slití (a tedy opět lo-
kálně k rozšíření čar na obrázku). Toto se Potrace snaží eliminovat detekcí rohů,
ale není to zcela spolehlivé.

2.1.2 Vector Magic

Komerční vektorizační program Vector Magic navazuje na na Diebelovu di-
sertační práci (Diebel, 2008) zabývající se pravděpodobnostní vektorizací. V ní
popisuje algoritmus, který je téměř jistě v programu Vector Magic stále použí-
vaný.

K vektorizaci přistupuje jakožto k inverznímu problému rasterizace pomocí ba-
yesovské statistiky. Hledá nejpravděpodobnější podobu vektorové předlohy, která
se vykreslením do rastru převede na vstupní obrázek. Při tomto vykreslování před-
pokládá zapnutý anti-aliasing. Problém vektorizace tedy převádí na optimalizační
problém.

Celou úlohu řeší tak, že nejprve nalezne přibližné pozice všech útvarů a ná-
sledně je upřesní metodou konjugovaných gradientů. Teprve poté jsou hranice
jednotlivých objektů převedeny na kubické Bézierovy křivky.

Vlastnosti

Vector Magic podporuje plně automatickou vektorizaci, kdy sám určí všechny
parametry a obrázek převede. V této konfiguraci pracuje s libovolným počtem
barev. Uživatel tedy přímo nemůže ovlivnit ani to, kolik barev se objeví na vý-
stupu.

V pokročilém režimu si uživatel může zvolit používanou paletu barev. Dalšími
parametry lze ladit složitost objektů, filtrování drobných chyb a míru odstraňo-
vání artefaktů vzniklých sléváním čar. Dále je možné obrázek ručně upravit ještě

11

v bitmapové podobě a opravit tak chyby při segmentaci – přidělení nejpravděpo-
dobnější barvy danému pixelu. V poslední části – zřejmě odpovídá převodu na
Bézierovy křivky z Diebelovy práce (Diebel, 2008) – je možné nastavit hladkost
a jednoduchost čar a případně zapnout detekci rohů.

Pro snazší nastavování parametrů má Vector Magic ještě zjednodušený režim,
ve kterém uživatel vybírá typ vstupu (fotografie, obrázek s ostrými hranami a an-
tialiasovaný), jeho přibližnou kvalitu a množství barev. Barevnou paletu je možné
libovolně upravit. Tím neupravujeme pouze mapování barev ve výstupu, ale rov-
nou vybereme, které barvy se má Vector Magic snažit hledat. Na konci má uživa-
tel možnost obrázek drobně ručně upravit (například smazat jednotlivé objekty
a odstranit tak pozadí).

2.2 Čárová vektorizace

Alternativou k trasování ploch je vektorizace obrázků sledováním středů jed-
notlivých objektů (centerline-tracing). Algoritmy používající tuto metodu by
v ideálním případě měly být schopné se výše popsaným vektorizačním artefaktům
vyhnout.

Při vektorizaci totiž nepracují jen s jednou hranicí, ale předpokládají, že celý
obrázek je složen z čar. Ty se následně snaží vyhledat. Protože obrázek repre-
zentují pomocí čar a nikoli ploch, mohou snadno zabránit nežádoucím výkyvům
v jejich šířce. Teoreticky nemusí ani docházet k problémům se sléváním čar sví-
rajících ostré úhly, protože dvě křížící se čáry jsou vektorově reprezentované jako
dvě samostatné s pevnou šířkou.

Libovolnou čáru pak ve vektorové podobě můžeme snadněji upravovat. Při
jejím otáčení, ohýbání a prodlužování se rovnou zachovává její šířka.

Čárová vektorizace však nemusí dobře fungovat, pokud vstup není složený
z čar. Můžeme si položit otázku, jak bychom správně měli pomocí čar reprezen-
tovat jeden plný čtverec?

Jelikož problém čárové vektorizace není snadný a výhody se projeví jen na
určitém typu vstupu, přirozeně neexistuje ani tolik nástrojů.

2.2.1 RasterVect

RasterVect je komerční nástroj, který nabízí čtyři typy reprezentace – obdél-
níky (Solids), obrysy (Outlines), vyplněné obrysy (Filled outlines), čáry (Center-
lines). První je sice dostupná i v bezplatné verzi, ale neudělá nic víc, než převe-
dení každého pixelu na čáru o šířce jednoho pixelu. To sice působí jako zbytečná
funkce, ale může to být praktické pro uživatele CAD softwaru, který nepodporuje
bitmapové formáty. Třetí reprezentace jsou již zmíněné plochy. Druhá se oproti
tomu liší jen v tom, že u nalezeného obvodu plochy není ve výstupu nastavena
barva výplně. Pro nás nejzajímavější je však poslední z variant, protože se našeho
tématu týká nejúžeji.

Program RasterVect poskytuje také editační nástroje jak pro rastrové obrázky,
tak po natrasování pro vektorové. Protože program je cílený právě na technické
výkresy, používá při metodě centerline pouze úsečky a oblouky.

Výstupy porovnáme s našimi v kapitole 4.

12

3. Návrh algoritmu
Náš vektorizační algoritmus pracuje v několika krocích. Nejprve dojde k před-

zpracování v rastrové podobě. Obrázek převedeme na binární – černobílý. Aby
názvy operací ve druhé fázi odpovídaly svému intuitivnímu významu, budeme
pracovat s černým pozadím (hodnota 0) a objekty v popředí budou bílé (hod-
nota 1). Protože lze předpokládat častěji vstupní obrázky s bílým podkladem,
barvy jsou v implementovaném programu na začátku invertovány. Toto nasta-
vení lze snadno zrušit.

Druhým krokem je hledání morfologické kostry (v tuto chvíli již vždy bílých)
objektů. Kostra odpovídá v rastrové podobě středům hledaných čar. V této fázi
(během hledání) také předpočítáme šířky čar. To vše stále v rastrové podobě.

Teprve poté dojde k samotné vektorizaci. Metoda se snaží trasovat (stopo-
vat) jednotlivé čáry. Vyjdeme z jednoho bodu kostry a snažíme se pokračovat
po čáře tím, že sledujeme její kostru. Použité pixely z kostry si průběžně zna-
číme, abychom zabránili opakovanému průchodu stejnými místy. Pokud nemáme
kam pokračovat, nalezli jsme konec jedné čáry. Tento postup opakujeme, dokud
v kostře zbývají nějaké body. Tím dostaneme první hrubou vektorovou podobu
linií.

Nyní přijde na řadu čtvrtý krok, ve kterém se pracuje již s vektorovou repre-
zentací. Navazující úseky můžeme spojit, pokud jsou dostatečně monotónní. Tím
snížíme velikost výstupu, aniž bychom se odklonili od podoby originálu. (Vypus-
tíme ty kontrolní body, které nepřinášejí novou informaci.) Původní křivku tedy
aproximujeme s pomocí jiné s nižším počtem úseků, tedy i kontrolních bodů.

Poslední fází je samotný export dat do zvoleného formátu. Ani jeden z použí-
vaných (SVG a PS) totiž neumí přímo reprezentovat cesty s proměnlivou šířkou.
Vectorix však v průběhu trasování počítá s tím, že se šířka může měnit. Algorit-
mus se snaží sám rozhodnout, jaká reprezentace je vhodná pro danou čáru a šířky
buď zprůměruje, nebo křivku převede na její obvod.

3.1 Fáze 1: Prahování a filtrování

Pro hledání morfologické kostry potřebujeme, podobně jako knihovna Potrace,
čistě bitonální (dvoubarevný) obrázek. K jeho získání se zpravidla používá praho-
vání (thresholding) obrázku, který je v odstínech šedi. Pixely s jasem nad danou
hodnotu prahu označíme za bílé a ostatní za černé. Potřebujeme k tomu jen
znát vhodné nastavení prahu. Ten samozřejmě může být pro různé obrázky různě
velký.

3.1.1 Otsova metoda

Velikost optimálního prahu lze pro daný obrázek vypočítat například pomocí
Otsovy metody (Otsu, 1979). Ta přepokládá, že hodnota každého pixelu má od-
povídat jedné ze dvou barev a jenom je navíc zatížena šumem. Hledáme práh –
hodnotu jasu, která pixely rozděluje na dvě třídy.

Otsova metoda nejprve pro obrázek určí jeho histogram1. Následně vyzkouší

1Histogram obrázku udává četnosti pixelů s jednotlivými úrovněmi jasu.

13

všechny možné hodnoty prahu tj. rozdělení histogramu na dvě třídy. Třídy ozna-
číme čísly 0 (pixely s jasem menším nebo rovným prahu) a 1 (jas větší než práh).
Protože jsme u obrázků limitování zpravidla 256 možnými jasy a celý výpočet
můžeme provádět na histogramu, není toto zkoušení príliš náročné.

Otsu ve zmíněné práci ukazuje, že optimální hodnota prahu je ta, pro kterou
vychází nejmenší vážený součet rozptylů v rámci každé z tříd (každý rozptyl je
přenásobený vahou odpovídající velikosti dané třídy):

σ2
w(t) = ω0(t) · σ2

0(t) + ω1(t) · σ2
1(t),

kde ω0(t) a ω1(t) jsou postupně četnosti pixelů z tříd 0 a 1; σ2
0(t) a σ2

1(t) jsou
rozptyly jednotlivých tříd.

Ty se na obrázku s jasy z množiny {0, 1, . . . L} definují následovně:

σ2
0(t) =

t∑
i=0

(
i− µ0(t)

)2 p(i)
ω0(t)

, σ2
1(t) =

L∑
i=t+1

(
i− µ1(t)

)2 p(i)
ω1(t)

,

kde µ0(t) a µ1(t) značí střední hodnotu jasu piexlů v dané třídě a p(i) je četnost
pixelů s jasem i. (Je-li některá z četností ωk(t) nulová, zadefinujeme odpovídající
rozptyl jako σ2

k(t) = 0.) Příklad histogramu a jemu odpovídajících rozptylů vidíme
na obrázku 3.1.

3.1.2 Adaptivní prahování

Ani Otsova metoda si však neporadí s obrázky, které jsou v různých částech
osvětlené odlišně, a s jedním nastavením prahu nedostaneme nikdy dobrý vý-
sledek. Příkladem může být nekvalitně vyfotografovaný a proměnlivě osvětlený
papír. Pro takové vstupní obrázky potřebujeme zařídit, aby hodnota prahu zá-
visela na průměrném jasu v dané oblasti. Toho lze docílit s pomocí adaptivního
prahování.

Funguje tak, že v každém pixelu vybereme jako práh průměrnou hodnotu
z okolních pixelů posunutou o určitou konstantu. Velikost okolí přitom potřebu-
jeme dobře zvolit. Pokud je příliš malé (celé se vejde do objektu na obrázku),
může se nám stát, že některé pixely z vnitřku bílého objektu označíme jako černé
(případně naopak černé označíme jako objekt). Proti tomu velké okolí způsobí,
že pro určení prahu se průměruje velká část obrázku a tedy se práh nezmění při
vyhodnocování pixelů v tmavších a světlejších částech.

V programu si požadovaný typ prahování vybírá uživatel. Pokud neurčí jinak,
použije se fixní práh spočtený Otsovou metodou. Pro méně kvalitní vstupy ale
může být potřeba zvolit právě adaptivní prahování.

3.1.3 Filtrování nedokonalostí

Protože vstupní obrázek může být zašumělý, je možné, že bílé objekty v sobě
obsahují malé černé tečky. V další fázi však potřebujeme, aby objekty žádné
nedokonalosti neobsahovaly. Zacelíme proto všechny díry, které jsou menší než
dvojnásobek zadané konstanty, která určuje jak vzdálené pixely považujeme za
sousední. Toho docílíme morfologickou operací uzavření. Abychom se také zba-
vili šumu opačného typu (bílé tečky), provedeme následně ještě operaci otevření.
Podrobněji si obě popíšeme hned v následující fázi.

14

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 50 100 150 200 250

Č
e
tn

o
st

 j
a
su

Jas

Histogram

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250

R
o
zp

ty
l

Práh (t)

Rozptyly

Třída 0 (jas ≤ t)
Třída 1 (jas > t)
Vážený součet

Obrázek 3.1: Histogram a jemu odpovídající rozptyly tříd používané Otsovou
metodou pro výpočet prahu. Jeho optimální hodnota je v tomto případě t = 126

.

15

3.2 Fáze 2: Morfologická kostra

U černobílých obrázků můžeme hovořit o takzvané morfologické kostře. Jedná
se o množinu středů vepsaných kružnic, případně jiných geometrických objektů.
Protože v této fázi ještě nevíme, kterým směrem křivka vede, je pro nás vhodné
vepisovat kružnice, jelikož jsou invariantní vzhledem k rotaci. Z toho důvodu
také ve výstupu vykreslujeme čáry s kulatými konci. Nemusíme tak konce nijak
speciálně řešit, protože jsou vždy správně orientované.

Vepisování kružnic by tedy bylo pro další zpracování ideální. Díky čtvrté
fázi (post-processing) však nepotřebujeme najít kostru zcela přesně. Vystačíme
si většinou s vepisováním osmiúhelníku, čtverce, či diamantu – čtverce otočeného
o úhel π/4, tedy postaveného na špičku. Toto zjednodušení nám přinese hlavně
zrychlení celého výpočtu.

3.2.1 Morfologické operace

Nejprve si zavedeme používané obrazové operace na binárním obrázku. První
z nich je eroze (erosion). Při erozi změníme všechny bílé pixely, které mají alespoň
jednoho černého souseda, na černé. Tím bílé objekty obereme o jejich krajní
pixely.

Opačným způsobem se chová dilatace (dilation): všechny sousední pixely bí-
lých obarvíme také na bílo. Dilatace tedy změní ty stejné pixely, které by změnila
eroze na invertovaném obrázku. Příklad obou operací vidíme na obrázku 3.2.

Běžně se za sousedy považují všechny pixely, které s daným sousedí hranou
či rohem. Jedná se o takzvané osmiokolí – každý pixel s výjimkou krajních sou-
sedí s osmi pixely. Druhou nejčastější variantou je čtyřokolí, kdy sousední pixely
musí mít společnou hranu. Podle toho, jak přesně definujeme sousední pixely pro
tyto dvě operace, dostaneme nakonec buď kostru vzniklou vepisováním čtverců
(osmiokolí), nebo diamantů (čtyřokolí).

Dalšími operacemi jsou otevření (open) a uzavření (close). Podíváme se, co
se s obrázkem na vstupu stane při operaci otevření, což je ekvivalentní s prove-
dením eroze a následně dilatace. Otevřením smažeme ty bílé pixely, které byly
osamocené, tedy zmizely při erozi a dilatace je již neměla jak obnovit. Uzavření
je naopak nejprve dilatace a poté eroze, tj. „zacelímeÿ hranice objektů a odstra-
níme vnitřní díry. Pro filtrování nedokonalostí v předchozí fázi používáme pro
tyto operace jako sousední pixely všechny, které jsou vzdálené maximálně zada-
nou konstantu.

3.2.2 Výpočet morfologické kostry – skeletonizace

Před vypočtením morfologické kostry (skeletonizací) již máme z předchozí fáze
binární rastrový obraz, tedy vstup po prahování a filtrování. Výstup skeletonizace
budeme uchovávat také v rastrovém obrázku, který bude na začátku prázdný
(tj. černý).

V každém kroku skeletonizace provedeme otevření, které některé pixely smaže.
Tyto pak tvoří kostru tenkých objektů, například v prvním kroku to budou jed-
nopixelové čáry. Proto je přidáme do výstupního obrázku s kostrou. Nyní vstup
zerodujeme, čímž všechny bílé objekty ztenčíme, a celý postup opakujeme.

16

(a) Eroze (b) Dilatace

Obrázek 3.2: Příklad eroze a dilatace na čtyřokolí, vstupní obrázek je zobrazen
bíle, výstup operace poloprůhlednou červenou. Pro určení sousednosti pixelů zde
používáme čtyřokolí

Pokud ve vstupním obrázku není žádný bílý pixel, jsme hotovi a na výstupu
máme celou morfologickou kostru.

Algoritmus tedy vypadá následovně:

• In← Vstup // 0 - černý pixel, 1 - bílý pixel (objekt)

• Vynuluj Out

• Opakuj, dokud In obsahuje bílý pixel:

– T ← dilate(erode(In)) // operace open

– D ← and(In, not(T)) // smazané pixely (∈ In ∧ /∈ T)
– Out← or(Out,D) // přidání do kostry

– In← erode(In) // zmenšení bílých objektů

• Vrať Out

Zde také poznamenejme, že ve výstupním obrázku můžeme rovnou zazname-
návat informaci o tom, v kolikáté iteraci jsme daný bod do kostry přidali. Tím
máme uloženou informaci o vzdálenosti daného bodu od nejbližšího okraje, a tedy
i polovinu šířky čáry, která tímto bodem vede.

Aby byl algoritmus konečný, potřebujeme mít na vstupu alespoň jeden černý
pixel. Ten snadno získáme tak, že kolem celého vstupu přidáme jednopixelový
černý rámeček. Zároveň tím také zařídíme, že kostra čáry vedoucí podél okraje
bude opravdu v jejím středu, protože tuto čáru budeme ztenčovat z obou stran
stejně. Kdybychom rámeček nepřidali, tak pixely na hranici nebudou mít černé
sousedy, a eroze s nimi nic neudělá.

Pokud jako sousední pixely označíme ty, které mají společnou jednu hranu
(čtyřokolí), dostaneme kostru po vepisování diamatů. Alternativním pohledem
tuto kostru tvoří body, které jsou od hranice nejvzdálenější (tj. středy vepsa-
ných kružnic) v manhattanské metrice L1. Pokud jako sousedy označíme i pixely
sousedící rohem (osmiokolí), budeme vkládat čtverce – kružnice v metrice L∞.

17

Obrázek 3.3: Kostra po odprahovaní Obrázek 3.4: Vzdálenostní mapa

Klasické eukleidovské metrice L2 se můžeme o trochu přiblížit tím, že budeme
obě dvě varianty pravidelně střídat. Tím efektivně dosáhneme vkládání osmiúhel-
níků. Tento způsob výpočtu kostry byl inspirován algoritmem Diamond-Square
(Fournier a kol., 1982) na generování náhodného terénu. Ukázka skeletonizace je
na obrázku 3.3.

Složitost výpočtu

Označme rozměry obrázku, r výšku a s šířku. Po přidání rámečku proběhne
maximálně min(r, s)/2 iterací, protože nejpozději v i-té umažeme řádky i a r− i
a sloupce i a s− i. V každé iteraci provedeme nejvýše konstantní počet operací na
jedno políčko. V případě zcela bílého vstupního obrázku (pouze s černými okraji)
na tento limit narazíme. Celková časová složitost tedy je O(r · s ·min(r, s)).

Teoreticky by bylo možné algoritmus zrychlit až na složitost Θ(r · s), protože
morfologické operace mění pouze ty pixely, které jsou na hranici černých a bílých
objektů. Není proto potřeba v každém kroku procházet celý obrázek, ale stačí
pracovat na bílých pixelech, které mají černého souseda. Takovéto pixely nikdy
nebudeme zpracovávat ve více iteracích, protože jsou na konci aplikováním eroze
smazány. Toto zrychlení můžeme implementovat pomocí fronty.

Vepisování euklidovských kružnic

Pokud bychom chtěli do obrázku vepisovat opravdové kružnice, algoritmus
musíme drobně upravit. Erozi nebudeme aplikovat na zerodovaný obrázek z před-
chozí iterace, ale vždy vezmeme počáteční vstup a zerodujeme jej tak, že za sou-
sední pixely považujeme všechny ve vzdálenosti rovnající se počtu již proběhlých
iterací. V k-té iteraci (číslováno od 0) tedy nejprve „oloupemeÿ k vrstev a poté
do kostry přidáme ty pixely, které jsou osamělé – zmizí operací open na čtyřokolí.

Problém je, že tato varianta algoritmu je pomalá. Jen samotná eroze v k-té
iteraci trvá Θ(r · s · k2) operací, protože pro každý pixel musíme překontrolo-
vat řádově k2 sousedních pixelů. Všechny kroky dohromady mají proto časovou
složitost O(r · s ·min(r, s)3), protože omezení na počet iterací je opět stejné jako
v předchozím případě, nejvýše min(r,s).

18

Vzdálenostní mapa

Podobně jako počítáme šířku čáry pro body kostry, tedy jako číslo iterace,
ve které jsme bod přidali do kostry, můžeme vzdálenost od okraje počítat pro
všechny body. Stačí si pro každý zapamatovat, v kolikáté iteraci jsme jej ode-
brali ze vstupu pomocí eroze. (V případě vepisování kružnic jde pouze o první
odebrání.) Ukázka vzdálenostní mapy je na obrázku 3.4.

3.2.3 Zhangův-Suenův algoritmus

Výstup výše uvedeného algoritmu na hledání kostry nezaručuje, že je výsledná
kostra souvislého úseku také souvislá. Souvislost kostry nám však pomůže v další
fázi vektorizace. Ukážeme proto ještě Zhangův-Suenův algoritmus (Zhang a Suen,
1984), který souvislost zachovává.

Zhangův-Suenův algoritmus obdobně jako předchozí popsaný v jednotlivých
krocích odebírá z okraje objektu pixely. Odmítne však odstranit ty pixely, které by
kostru mohly rozdělit (artikulace). Jakmile jeden krok nezmění obrázek, zůstala
algoritmu kostra obrázku.

Sousední pixely pixelu P1 si pojmenujeme podle následující tabulky:

P9 P2 P3

P8 P1 P4

P7 P6 P5

Odstranění pixelů v každém kroku probíhá paralelně. Nejprve si tedy všechny
pixely k odstranění označíme a teprve poté je smažeme. Jsou dva typy kroků,
které se pravidelně střídají. Pixel P1 označíme v lichém kroku ke smazání, pokud
platí následující podmínky:

(a) P1 je bílý, (černé pixely nemusíme mazat vícekrát)

(b) 2 ≤ B(P1), (pixel není součástí kostry)

(c) B(P1) ≤ 6, (pixel je na okraji objektu)

(d) A(P1) = 1, (pixel není artikulace)

(e) alespoň jeden z pixelů {P2, P4, P6} je černý,

(f) alespoň jeden z pixelů {P4, P6, P8} je černý,

kde B(P1) je počet bílých pixelů v množině {P2, P3, . . . P9} a A(P1) je počet vzorů
černá, bílá v cyklické posloupnosti P2, P3, . . . P9, P2. Sudý krok je stejný, jenom
se změní podmínky (e) a (f) na následující:

(e’) alespoň jeden z pixelů {P2, P4, P8} je černý,

(f’) alespoň jeden z pixelů {P2, P6, P8} je černý.

U Zhangova-Suenova alogritmu si sice také můžeme pamatovat číslo kroku, ale
neodpovídá zde jako u předchozího algoritmu poloměru nějakého vloženého ob-
jektu. Z toho důvodu jsou v programu implementovány oba algoritmy. Zhangův-
Suenův se používá na nalezení kostry a pro výpočet vzdálenostní mapy se využívá
vkládání osmiúhelníků střídáním diamantu a čtverce.

19

3.3 Fáze 3: Trasování

Třetím krokem je samotný převod z rastrové podoby morfologické kostry
na vektorovou. Většina pixelů na kostře sice odpovídá středům hledaných čar,
ale občas z kostry vybočují výběžky k hranicím bílého objektu. Tyto výběžky
můžeme od běžného středu čáry odlišit tím, že pixely na výběžcích mají menší
a postupně klesající vzdálenosti od okrajů. Vzdálenostní mapu i kostru máme již
spočítanou z předchozího kroku.

Abychom nejprve zpracovali delší úseky a nezabývali se takovýmito odboč-
kami, začneme s trasováním v těch bodech kostry, které mají největší vzdálenost
od okrajů. Při samotném trasování si pak průběžně udržujeme směr, ve kterém
by čára měla pravděpodobně pokračovat. Tuto informaci získáváme z toho, kudy
vedla v naposledy vektorizované části křivky. Na počátku trasování jedné čáry
žádný směr nemáme a všem možným směrům dáváme stejnou pravděpodobnost.
Všechny použité body kostry si označujeme, abychom stejné části netrasovali
vícekrát.

3.3.1 Výběr počátečního bodu

Každou cestu začínáme trasovat v bodě kostry, který je ze všech neoznačených
nejvzdálenější od okraje objektu. Souřadnice ještě upřesníme tím, že se podíváme
i na okolní pixely. Zadefinujeme si k tomu míru vhodnosti . Čím je vyšší, tím je
bod více uprostřed objektu, a tedy je vhodnější jako střed čáry. Pro konkrétní
(neceločíselný) bod C určíme míru vhodnosti jako

f(C) :=
∑
P∈Q

dist(P) · e
−||C−P ||2

2σ2 ,

kde Q je množina pixelů v okolí bodu C, dist(P) je vzdálenost pixelu P od
okraje objektu (vyčtená ze vzdálenostní mapy) a σ2 je parametr funkce. Určuje
rozptyl odpovídajícího normálního rozdělení. Díky vlastnostem tohoto rozdělení
nám stačí pro dostatečně přesnou míru vhodnosti započítat pouze pixely do vzdá-
lenosti 3σ od bodu C. Jako startovní bod použijeme takový, který míru vhodnosti
maximalizuje.

Ze startovního bodu následně hledáme cestu. Jakmile ji najdeme, otočíme ji
a pokračujeme v hledání. Tím zařídíme, že cesta startovním bodem prochází,
takže čáry nemáme zbytečně rozseknuté v jejich nejširších místech.

Aby startovní bod z čáry nikterak nevybočoval, po otočení čáry jej nejprve
smažeme. Zaručíme tím lepší hladkost hledané křivky a také nepotřebujeme počá-
teční bod hledat dokonale přesně. Při hledání maxima zkoušíme jen některé mož-
nosti.

3.3.2 Výběr následujícího bodu

V každém okamžiku trasování máme nalezený souvislý úsek čáry (posloupnost
bodů) a snažíme se najít následující nový bod. Vybíráme z několika možností,
kudy by čára mohla vést. Varianty nacházejí dva různé prediktory, které si záhy
popíšeme. Pro každou z variant spočteme její fitness a vybereme tu nejlepší,
tj. maximalizující ohodnocující fitness funkci.

20

Tímto způsobem bychom však ohodnocení počítali pouze lokálně pro nový
segment. Bylo by tak možné, že přestože vybereme lokálně nejvhodnější variantu,
nebude možné na daný úsek rozumným způsobem navázat. Přitom alternativní
bod mohl být pro další pokračování čáry výhodnější. Abychom tento problém
omezili, vyzkoušíme pro každou variantu provést vždy několik kroků dopředu
a ohodnocujeme až celé delší úseky. Tímto způsobem se program brání přednost-
nímu trasování popsaných výběžků.

Hladké sledování a rohy

Nejčastěji se snažíme vybrat bod tak, aby nový úsek co nejpřesněji pokrýval
všechny mezilehlé pixely ležící v kostře a zároveň byla čára co nejhladší.

Začneme tak, že si vybereme stejný směr, jaký měla čára v předchozím úseku.
V tomto směru nakreslíme úsečku s délkou určenou parametrem nearby limit.
Pro ni spočítáme její míru vhodnosti podobně, jako jsme počítali míru vhodnosti
při hledání počátečního bodu. Jediný rozdíl je, že započítáváme druhou moc-
ninu vzdálenosti pixelu od úsečky (místo od bodu). Nyní vybraný směr postupně
upravujeme, abychom míru vhodnosti maximalizovali.

Tento prediktor se sám podle nastavení parametru smoothness (maximální
povolený rozdíl mezi úhly) rozhodne, jestli nově nalezený úsek navazuje dosta-
tečně hladce, nebo má raději vygenerovat ostré zalomení čáry (roh). Pokud je
odchylka předchozího a nového směru menší než tento parametr, považuje se
úsek za hladký. Pokud jsme však úpravami směru úsečky tento limit překročili,
považujeme místo za roh.

Pokud je úsek hladký, obdobně najdeme také kontrolní body pro Bézierovu
křivku. Hledáme ve vzdálenosti nearby limit - nearby control smooth.

V případě detekovaného rohu jej ještě musíme přesně najít. Víme jen, že se
nachází někde mezi posledním bodem a tím nově vzniklým. Stejným způsobem,
jakým hledáme vhodný úhel k pokračování, určíme v nově vzniklém bodě směrnici
kostry. Za roh pak považujeme průsečík této nalezené směrnice se směrnicí čáry
v předchozím natrasovaném úseku.

Pokračování z rohu a prvního bodu

Pokud vycházíme z rohu či prvního bodu čáry, nemáme zatím určenou žádnou
směrnici. V takovém případě zkoušíme hledat ve všech možných směrech. Úhel
2π rovnoměrně rozdělíme na angle steps dílů. V každém směru pak zkoušíme
pokračovat stejným způsobem, jako v předchozím případě.

Detekce konců

Prediktory výše se snaží vybrat nejlepší varianty. Pokud však čára končí, je
možné, že prediktor vybere sice správný směr, ale neodhadne vzdálenost a kostra
skončí dříve, než je prediktorem nalezený nový bod. V tom případě bychom jej
chtěli posunout blíže ke kraji kostry a označit jako koncový. Z koncového bodu
již nehledáme další pokračování.

21

3.3.3 Tipování a průchod do hloubky

Jak již bylo naznačeno, samotné prediktory fungují lokálně a mohlo by se nám
stát, že se na křižovatce kostry vydáme nevhodným směrem a čára záhy skončí.
Abychom tento případ minimalizovali, algoritmus provede až allowed depth
kroků dopředu, než daný směr označí za finální.

Pokud by některý z kroků nebyl dostatečně věrohodný (porovnávání s para-
metrem depth auto choose), je to pravděpodobně způsobeno tím, že z něj není
jak pokračovat dál. Algoritmus se proto vrátí zpět a vybere další lokálně nejle-
pší směr, který už globálně může mít větší věrohodnost. Ze všech otestovaných
možností si pak pamatujeme nejlepší možnou.

Když najdeme dostatečně věrohodnou posloupnost kroků, dále již zbylé mož-
nosti neprohledáváme a rovnou se v daném směru posuneme o jeden krok a celý
proces hledání opakujeme.

Tím se dokážeme vyhnout slepým cestám na křižovatkách v případě, že exis-
tuje lepší varianta. Na druhou stranu častější tipování dokáže vektorizaci velmi
zpomalit.

Při použití Zhangova-Suenova algoritmu na hledání kostry tipování nepotře-
bujeme zapínat. Kostra je dostatečně jednoduchá na to, abychom si vystačili
s výsledkem prvního použitého prediktoru.

3.3.4 Zajištění konečnosti

Snaha o dodržení směru sice zabraňuje tomu, abychom se v jednom bodě
otočili a vyrazili zpět po stejné části kostry, po které jsme přišli, ale nezabrání
cyklení. Potřebujeme zařídit, abychom jednu čáru netrasovali vícekrát.

Po natrasování čáry bychom mohli použité pixely vyřadit z kostry. Tím však
nevyřešíme zacyklení v rámci trasování jedné čáry (představme si obrázek s kru-
žnicí, tu by bylo možné neustále obcházet dokola). Proto pixely kostry označu-
jeme za použité ve chvíli, kdy je využijeme pro nějakou část čáry. Pokud jsme
pixely označili v rámci tipování, musíme je zase při návratu odoznačit. Abychom
správné pixely poznali, budeme jim přiřazovat číselné popisky s aktuální hloubkou
zanoření.

Tím zabráníme cyklení, ale zároveň umožníme plynulé trasování křížících se
čar, které mají část kostry společnou. Nezakážeme tedy použití označených pixelů,
ale pouze vynutíme, aby vždy alespoň jeden použitý pixel kostry byl neoznačený.

3.4 Fáze 4: Vyhlazování

Po natrasování máme sice již vektorovou podobu obrázku, ale každá jeho
cesta je složena z velkého množství bodů. Takový obrázek pak při uložení zabírá
zbytečně mnoho místa a ani se s ním v editoru nepracuje snadno. Cesty proto
zjednodušíme a tím i vyhladíme drobné nedokonalosti.

V programu před tímto krokem ještě převádíme čáry s proměnlivou šířkou
stopy na obvodovou reprezentaci, protože při zjednodušování šířku nejprve zprů-
měrujeme. Pokud bychom ji neprůměrovali, stejně by k tomu došlo při exporto-
vání. Tímto si však zjednoduššíme kód.

22

Algoritmus vyhlazování je popsán v článku Approximate conversion of spline
curves (Hoschek, 1987). My jej používáme v lehce upravené podobě. Původní
algoritmus nejprve každou Bézierovu křivku rozdělí v několika bodech. Vznikne
tím lomená čára, kterou následně aproximuje pomocí jedné křivky. Pokud se
aproximace nepodaří, resp. aproximační křivka je příliš vzdálená od těchto bodů,
rozdělí ji v bodě s největší chybou a na obě části se zavolá rekurzivně.

V našem programu postupujeme obráceně. Začneme se dvěma segmenty a po-
kusíme se je aproximovat jedním. Pokud se to podaří, přidáme další segment
a zkusíme aproximovat všechny dohromady. Jakmile jednou selžeme, vrátíme se
o jeden krok zpět.

Tento způsob sice není tak efektivní, ale je mnohem snazší na implementaci.
Výstupem původního algoritmu je totiž hladká cesta (spojitost třídy G1). My
jsme však při trasování mohli nalézt rohy, které vyhladit nechceme. Náš způsob
je tak může snadno rozpoznat a v přidávání dalších segmentů se zastaví.

Zbývá popsat, jak se hledá aproximační křivka, máme-li již množinu bodů.
Krajní body by měly být shodné s krajními body lomené čáry, nemusíme je
tedy hledat. Stejně tak pro zachování spojitosti máme v těchto krajních bodech
určené směrnice. Zbývají nám dva volné parametry – vzdálenosti kontrolních
bodů Bézierovy křivky (podle značení z kapitoly 1.1 to jsou vzdálenosti |P0−P1|
a |P2 − P3|.)

Ty můžeme určit metodou nejmenších čtverců, pokud známe správné časy
bodů, které jsou na hledané křivce nejbližší k bodům lomené čáry. Na začátku
však časy neznáme. Odhadneme je proto ze vzdálenosti jim odpovídajících bodů
na lomené čáře (tj. součtem délek všech úseků před bodem vydělený délkou celé
lomené čáry). Pro tyto časy spočítáme nové vzdálenosti kontrolních bodů.

Nyní můžeme definovat chybové vektory:

δi = A(ti)− Pi,

kde A je nalezená Bézierova křivka, Pi body na lomené čáře a ti časy odpoví-
dající jednotlivým bodům. Správnou parametrizaci máme pouze tehdy, kdy jsou
chybové vektory kolmé na tečny ke křivce.

Časy proto posuneme ve správném směru a tím parametrizaci vylepšíme. Poté
znovu metodou nejmenších čtverců nalezneme vzdálenosti kontrolních bodů a celé
to několikrát zopakujeme.

Algoritmus se zastaví ve chvíli, kdy je velikost největšího chybového vektoru
menší než konstanta daná parametrem approximation error. (Případně se za-
stavi s neúspěchem, pokud je překročen maximální povolený počet iterací).

3.5 Fáze 5: Export

Po celou dobu vektorizační algoritmus počítá s tím, že čára může mít proměnli-
vou šířku. To ovšem není možné přímo zapsat do výstupních formátů. Proměnlivá
šířka Bézierovy křivky není podporována ani v SVG, ani v PS.

Máme několik možností, jak se s problémem vypořádat. Každá z následujících
metod je vhodná v jiné situaci. Nejúčinnější tedy je výstupní metody zkombinovat
a každou čáru vypisovat pro ni nejlepším způsobem. Není však snadné strojově
poznat, která z variant je pro danou čáru nejvhodnější. Program se toto snaží

23

odhadnout spočítáním rozptylu šířky každé čáry. Pokud překročí mez určenou
parametrem auto contour variance, použije se raději obvodová reprezentace.
Nastavením extrémně velké / záporné hodnoty můžeme vynutit danou reprezen-
taci u všech čar.

3.5.1 Průměrná šířka

První možností je šířku jednotlivých segmentů čar zprůměrovat a poté už
exportovat celou čáru s jednotnou šířkou. Tím v některých případech ztratíme
důležitou část informace. Zabráníme ale prvním vektorizační artefaktům – bez-
důvodně se měnící šířce. Tento druh exportu je však vhodný pro obrázky, které
obsahují pouze čáry s konstantní šírkou.

3.5.2 Rozdělení cest na úseky

Druhou variantou je čáry rozdělit po jednotlivých segmentech na samostatné
objekty. U formátu SVG si můžeme pomoci tím, že objekty vzniklé z jedné čáry
vložíme do společné skupiny. Rozdělením se však následná práce s výstupem stane
náročnější. Stále tímto způsobem nedokážeme dokonale reprezentovat libovolná
data, například jednu obyčejnou rozšiřující se úsečku. I proto se tento druh ex-
portu nepoužívá, přestože je v programu implementovaný. Můžeme jej vynutit
pro všechny čáry nastavením parametru export type na 1.

3.5.3 Obvodová reprezentace

Třetí variantou je převedení čar na plochy. Editovatelnost dané čáry pak bude
obdobná jako u algoritmů hledajících plochy. Při správném nastavení parametru
však tímto způsobem budou reprezentovány pouze ty čáry, u kterých je to nutné.

Samotný převod ovšem není zcela jednoduchý problém. Obvod Bézierovy
křivky (dvě offsetové2 křivky a zakončení na obou koncích) nelze přesně repre-
zentovat Bézierovými křivkami. Je tedy nutné najít vhodnou aproximaci.

V našem případě je problém ještě komplikovanější, protože se šířka křivky
mění. Musíme si dát také pozor na přesný význam šířky v daném bodě. Běžná
interpretace je, že pokud má křivka v daném bodě X šířku w, potom existuje
obvodový bod, který leží na normále procházející bodem X a zároveň je od něj
vzdálený w/2.

V naší interpretaci však šířka odpovídá průměru vložené kružnice (osmiúhel-
níku) se středem v daném bodě. Při měnící se šířce se tento průměr kružnice
nerovná kolmé vzdálenosti k okraji. Rozdíly mezi oběma významy šířky jsou pa-
trné z obrázku 3.5.

Offsetování Bézierovy křivky

Jednu z možných metod offsetování popisuje článek Spline Approximation of
Offset Curves (Hoschek, 1988). Ta je v mnohém podobná aproximování, které
používáme v předchozí fázi. Liší se tím, že před samotnou aproximací body, ve
kterých počítáme chyby, posuneme ve směru kolmém k offsetované křivce. Tuto

2Offsetovou křivkou rozumíme křivku, která je od původní v každém bodě stejně vzdálená.

24

Obrázek 3.5: Úsečka s proměnlivou šířkou stopy: modře je zakreslen obvod úsečky
v případě, že šířka určuje průměr kružnice; oranžový obvod odpovídá častější
kolmé vzdálenosti

úlohu však nepotřebujeme řešit, protože čáry s konstantní šířkou nemusíme pře-
vádět na obvodovou reprezentaci.

Zajímá nás však převod čar s proměnlivou šířkou. Začátek algoritmu k tomu
drobně upravíme. Nemůžeme pouze posunovat každý bod X po normálovém vek-
toru o vzdálenost odpovídající příslušné šířce – vzhledem k naší interpretaci šířky
musíme normálu nejprve správně natočit.

Natočení (a tedy i správnou polohu posunutého bodu X ′) můžeme spočítat
přesně. Při (nekonečně) malé změně času δt se bod X = C(t) po křivce C lehce
posune a drobně se změní jemu odpovídající šířka w(t). Hledaný offsetový bod X ′

pak leží na společné tečně kružnic o průměrech w(t) a w(t+ δt) se středy v C(t)
a C(t+ δt).

Aby byl výpočet numericky stabilnější, řešení si zjednodušíme. Do každého
z aproximovaných bodů na původní (neoffsetové) křivce si umístíme kružnici se
správným průměrem a následně najdeme společné tečny pro každé dvě sousední
kružnice. Z každé tečny použijeme bod, který leží na větší z kružnic.

25

4. Srovnání výsledků
Zhodnocení navrženého algoritmu a porovnání jeho kvality s jinými není u vek-

torizace snadná úloha, obzvlášť pokud bychom toto chtěli vyjádřit číselně.

4.1 Měřítka kvality

Můžeme třeba pro každý testovací obrázek určit počet pixelů, v nichž se vek-
torová podoba liší od originálu. S takovýmto měřítkem kvality by ale vyhrával
vektorizér, který každý pixel na vstupu vektorově reprezentuje jako čtverec stejné
barvy o rozměrech 1 × 1. Celý obrázek by pak byl složen právě z takovýchto
čtverců.

Výstup můžeme také hodnotit podle toho, z kolika primitiv se skládá. Počet
objektů přímo souvisí s velikostí výstupního souboru, takže pro nás toto kritérium
může být důležité. V nástrojích však zjednodušování a vyhlazování křivek často
bývá jako jedna z posledních fází vektorizace, navíc ovlivnitelná parametrem.
Například u programu Potrace se odpovídající parametr nazývá opttolerance.
V našem programu máme tomu podobný approximation error. Nelze tedy jed-
noduše říct, že program A vytváří meší výstup než program B a je proto lepší.

Dvě popsané metriky bychom mohli spojit do jedné: určíme odchylku od před-
lohy pro takové nastavení parametrů, kdy oba porovnávané programy produkují
stejné množství bodů. Potom si musíme položit otázku, zda tímto způsobem
opravdu hodnotíme celý program, nebo pouze část starající se o vyhlazování.

4.1.1 Typ reprezentace

Pro nás je mnohem důležitější ještě jeden faktor. Tím je zcela odlišná repre-
zentace čárové a plošné grafiky. Čárové vektorizéry nejsou příliš obvyklé. Mnohem
častější je reprezentace objektů plochami.

4.2 Porovnání s existujícími nástroji

Porovnávat budeme výsledek naimplementovaného programu Vectorix s exis-
tujícím volně dostupným programem Potrace (Selinger, 2015) a komerčními ná-
stroji Vector magic (Cedar Lake Ventures Inc.) a RasterVect. U posledních dvou
se ještě musíme vypořádat s tím, že k dispozici máme pouze zkušební verze pro-
gramů, které oproti plným neumožňují výsledek ukládat.

Nebudeme porovnávat výsledky s dalším volně dostupným nástrojem Auto-
trace (Weber, 2004). Protože má podle nás znatelně horší výsledky než Potrace.

Nesmíme zapomenout, že celou dobu pracujeme s obrzovými daty a že i vý-
sledný vektorový obrázek je určen k tomu, aby se na něj dívali lidé. Kvalita
vektorizace nemusí být ani nijak matematicky popsatelná. Můžeme se rozhodo-
vat subjektivně podle toho, který obrázek je „hezčíÿ. (Případně který obrázek se
„snázeÿ upravuje.)

Nástroje tedy necháme zvektorizovat stejný obrázek a následně popíšeme, čím
se výsledky kterého od sebe liší.

26

Na následujících stránkách vidíme výsledky jednotlivých vektorizátorů. Pro-
gram Vectorix si neporadí dobře s očima hrocha, protože se již jedná o plochu.
Oproti výstupu z Potrace se však celý obrázek skládá z výrazně méně uzlů. Ve
Vectorixu totiž bylo nastaveno poměrně silné zjednodušování, i proto jsou čáry
kostrbatější.

Výstup z Vector Magicu na první pohled vypadá velmi podobně originálu. Při
bližším pohledu si všimneme nedostatků jako překrývající se čar (šedá a černá)
a jejich proměnlivé šířky.

Potrace zvládá oproti Vector Magicu lépe detaily očí, ale naopak má kostr-
batější čáry.

Metodou vektorizace jsou však Potrace a Vector Magic od zbylých dvou pro-
gramů odlišné. Pouze Vectorix a RasterVect reprezentují objekty pomocí čar.
Barevné obrázky RasterVect nezvládá čárově trasovat vůbec. Pokud z něj nej-
prve uděláme černobílý, objekty již kreslí lépe. Skládají se však pouze z mnoha
malých úseček. Počty úseček/uzlů u RasterVectu a Vector Magicu jsou bohužel
neznámé, protože tuto hodnotu programy neuvádí.

Rychlost jednotlivých vektorizátorů je srovnatelná. Probíhá řádově do minuty.

Obrázek 4.1: Vyfotografovaný vstupní obrázek

27

Obrázek 4.2: Výstup z programu Vectorix: Je složený ze 173 objektů a dohromady
obsahuje 1 007 uzlů

Obrázek 4.3: Detail výstupu z programu Vectorix: Z obrázku jsou patrné nedo-
statky na ostrých rozích čar a u vyplněných oblastí

28

Obrázek 4.4: Vektorizace nástrojem Vector Magic: Obrázek byl rozpoznán jako
fotografie

Obrázek 4.5: Detail výstupu z programu Vector Magic

29

Obrázek 4.6: Vektorizace programem Potrace: Obrázek obsahuje 6590 uzlů

Obrázek 4.7: Detail výstupu z programu Potrace

30

Obrázek 4.8: Barevná vektorizace nástrojem RasterVect: S barevnými obrázky si
program při metodě centerline příliš nerozumí

Obrázek 4.9: Vektorizace nástrojem RasterVect: Úspěšná vektorizace černobílého
obrázku, modré čáry jsou nalezená vektorová reprezentace

31

5. Uživatelská dokumentace
V této kapitole se s jednotlivými částmi programu seznámíme v pořadí, které

odpovídá předpokládanému běžnému používání.

5.1 Instalace

Program Vectorix je psaný v jazyce C++11, je tedy nezbytné mít překladač,
který tento dialekt podporuje. Nejsou však využívány všechny nové funkce, takže
by měl posloužit kterýkoli dnes běžný. Vývoj probíhal s překladačem GCC (Stall-
man a kol., 2014) ve verzi 4.9.2.

Dále program vyžaduje knihovnu na zpracování obrazu OpenCV (2015, Open
Source Computer Vision). Je možné využít jak řadu 2.4.x, tak 3.0.x. Pokud
knihovna není nainstalována v systému, je možné si ji stáhnout a nainstalo-
vat lokálně do podadresáře programu Vectorix. Zdrojový balíček verze 3.0.0 pro
Linux/Mac je rovnou přiložen.

Volitelně je možné použít také vektorizaci pomocí knihovny Potrace. V tako-
vém případě je nutná i její instalace. Při běžném používání programu není potřeba
a ani se v současnosti nevyužívají všechny její možnosti. Její přítomnost je spíše
příprava do budoucna na možné rozšíření (viz kapitola 7.2).

Zdrojový balíček nejprve rozbalíme:

> tar -xzf vectorix.tar.gz

Před instalací knihovny OpenCV je vhodné se přesvědčit, že máme vše po-
třebné pro její kompilaci. Zde je nejvhodnější odkázat na podrobné návody na
webových stránkách knihovny1. Na Linuxu (Debian a Ubuntu) by měly být po-
třeba následující balíčky:

build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev

libavformat-dev libswscale-dev libjpeg-dev libpng-dev libtiff-dev

libjasper-dev

Nyní již knihovnu nainstalujeme. Abychom ji nemuseli stahovat, pouze její
zdrojový balíček překopírujeme k programu. Tento krok (první řádek) můžeme
přeskočit, knihovna se pak stáhne v následujícím kroku sama.

> cp opencv-3.0.0.zip vectorix/opencv/

> cd vectorix/opencv

> make opencv-3.0.0.zip include-3.0.0 lib-3.0.0

(případně)

> make opencv-2.4.11.zip include-2.4.11 lib-2.4.11

Používáme-li OpenCV ve verzi 3.0.0 (tj. přiloženou), můžeme rovnou zkom-
pilovat program:

> cd ..

> make

1http://opencv.org/quickstart.html

32

http://opencv.org/quickstart.html

Ostatní verze OpenCV

Chceme-li použít jinou verzi OpenCV, stačí upravit dva řádky v souboru
vectorix/Makefile. Druhá varianta předpokládá, že OpenCV je nainstalována
v systému.

select OpenCV library version

L_OPENCV=${L_OPENCV_2.4.11}

C_OPENCV=${C_OPENCV_2.4.11}

(nebo)

L_OPENCV=${L_OPENCV_SYSTEM}

C_OPENCV=${C_OPENCV_SYSTEM}

Použití knihovny Potrace

Pro kompilaci knihovny Potrace stačí spustit v adresáři vectorix/potrace
příkaz make. Knihovna se sama stáhne.

> cd vectorix/potrace

> make

Aby se knihovna Potrace v programu použila, je po jejím nainstalování potřeba
odkomentovat následující dva řádky v souboru vectorix/Makefile:

L_FLAGS+=-L potrace/lib/ -lpotrace

C_FLAGS+=-D VECTORIX_USE_POTRACE

5.2 Ovládání programu

Vektorizaci je možné přizpůsobovat parametry, které lze specifikovat v konfi-
guračním souboru a některé i v grafickém rozhraní. Pokud program spustíme bez
parametrů, zeptá se nás na název konfiguračního souboru a uloží do něj výchozí
hodnoty parametrů.

> ./vectorix

No config file given, new will be created, please enter name:

5.2.1 Konfigurační soubor

Konfigurační soubor má velmi jednoduchou strukturu. Každý řádek je buď
komentář (začíná znakem #), nebo obsahuje dvojici <klíč> <hodnota> oddělenou
mezerou. Hodnota je buď číslo (celé / desetinné s tečkou), nebo řetězec. Pokud
se některý klíč vyskytuje v konfiguračním souboru vícekrát, vždy se použije jeho
poslední výskyt.

Při ukončení programu je konfigurační soubor uložen do souboru určeného
parametrem file parameters, pokud je specifikovaný. Ukládají se pouze para-
metry relevantní pro daný běh programu. To například znamená, že pokud vek-
torizujeme pomocí knihovny Potrace, neuloží se parametry týkající se vektorizace

33

naším algoritmem. Toto lze obejít tak, že parametry necháme připisovat na konec
souboru (parameters append 1).

Pro začátek však potřebujeme nastavit jen jméno souboru se vstupním rastro-
vým obrázkem a souboru s výstupním vektorovým. Vstupní obrázek je určen pa-
rametrem file input a může být v libovolném formátu podporovaném OpenCV
(z nejznámějších BMP, PNM, JPEG, TIFF a PNG). Výstupní obrázek je uložen
do souboru dle parametru file vector output. Standardně se výstup ukládá ve
formátu SVG. Pro PostScriptový výstup je třeba nastavit output engine 1.

Čtení obrázku pomocí knihovny OpenCV je možné obejít. Náš program imple-
mentuje načítání obrázků ve formátu PNM (Henderson, 2013). K tomu se pou-
žívá parametr file pnm input. Tento parametr je důležitý pro experimentální
vektorizační metody (např. knihovnou Potrace), protože ty knihovnu OpenCV
nepoužívají.

5.2.2 Grafické rozhraní

Máme-li v konfiguračním souboru specifikovaný vstupní soubor, můžeme pro-
gram spustit znovu. Tentokrát mu jako parametr dáme připravený konfigurační
soubor.

> ./vectorix konfigurace.conf

Program se spustí v interaktivním grafickém režimu. K dispozici máme 4 okna.
První je nazvané Original . V něm vidíme (zmenšený) původní obrázek s červe-
ným rámečkem označujícím viditelnou oblast obrázku ve všech ostatních oknech.
Pomocí posuvníku Zoom pak můžeme obrázek přiblížit, či oddálit, myší vybíráme
pozici zobrazeného výřezu.

Pří největším přiblížení (100) odpovídá přiblížení původní velikosti obrázku –
jeden pixel na obrazovce je tedy jeden pixel obrázku. Z toho plyne, že posuvník
Zoom nemá žádný vliv při zobrazení obrázku menšího, než je velikost oken.

Prahování

Jako druhé nás bude zajímat okno Grayscale. V něm je možné invertovat
vstupní barvy. V další fázi potřebujeme, aby čáry byly bílé a pozadí černé. Protože
očekávaný běžný obrázek má bílé pozadí a tmavé linie, je inverze ve výchozím
nastavení zapnutá.

Třetí okno Threshold umožňuje ladit parametry prahování. Při nastavení typu
prahu (Threshold type) na 0 se používá Otsova metoda (kap. 3.1.1) pro určení
efektivního prahu a zbylé dva posuvníky tak nemají žádný vliv na výsledek.
Chceme-li zvolit fixní práh (posuvníkem Threshold), musíme nastavit Threshold
type na 1.

Zbylé dva typy prahování využijeme při nerovnoměrném rozložení jasu v ob-
rázku. Typicky to potřebujeme u fotografií (nikoli však skenů) obrázků nakresle-
ných na papír. Většinou chceme použít typ 3, který odpovídá adaptivnímu pra-
hování, kde hodnota prahu je pro každý pixel spočtena z průměrné hodnoty na
okolí o poloměru Adaptive threshold pixelů (s přičteným offsetem podle posuvníku
Threshold).

34

Zbývající typ 2 funguje obdobně, jenom okolní pixely započítává s vahou podle
normálního rozdělení. Pozor na to, že tato varianta je pro větší okolí pomalá.
Pro obrázky s rozměry kolem tisíců pixelů je vhodné udržet posuvník Adaptive
threshold pod hodnotou 100. Tato varianta však neposkytuje výrazně kvalitnější
výsledky než typ 3, takže ji většinou nevyužijeme.

Obecně při prahování chceme vybrat takové parametry, aby všechny linie byly
co nejzřetelnější. Měly by pokud možno obsahovat co nejméně „děrÿ. Zároveň je
vhodné minimalizovat množství šumu, „bílých tečekÿ, v obrázku.

Filtrování šumu

V posledním ze čtyř oken (Filled) můžeme čáry zacelit posuvníkem Filling
size. Pozor na to, že při vyšších hodnotách se mohou začít slévat blízké čáry.
Míru odstranění bílých teček lze ovlivnit pomocí Dust removal size. Zde si naopak
musíme dát pozor, abychom neodstranili i nějakou čáru.

Jakmile jsme s výsledkem spokojeni, můžeme stisknutím klávesy Enter přejít
do další fáze vektorizace.

Kontrola skeletonizace

Objeví se nám dvě nová okna, jedno s kostrou (Skeleton) a jedno se vzdále-
nostní mapou (Distance). Jediným posuvníkem Skeletonization si můžeme vybrat
z pěti variant algoritmů hledání kostry. Typ 0 vkládá střídavě diamant a čtverec,
typ 1 čtverec, typ 2 diamant. Následující typ číslo 3 je nejpomalejší, protože do-
chází k vkládání kruhů. V praxi se od typu 0 kvalitou výstupu téměř neliší, ale je
výrazně pomalejší. Této variantě je dobré se vyvarovat, pokud obrázek obsahuje
širší čáry (či vyplněné objekty).

Ve většině případů používáme výchozí hodnotu (4), která odpovídá Zhangovu-
Suenovu algoritmu a vzdálenostní mapě počítané vkládáním střídavě diamantu
a čtverce.

Každou změnu parametrů je potřeba potvrdit stiskem klávesy Enter, jinak se
kostra nepřepočítá. Dalším stisknutím přejdeme do fáze trasování. Parametry této
fáze jsou většinou neceločíselné. Grafické rozhraní tvořené knihovnou OpenCV
bohužel neumožňuje jejich nastavování. Naštěstí tyto parametry není pro většinu
obrázků potřeba nijak přenastavovat.

5.2.3 Další důležité parametry

Přehled všech existujících parametrů s jejich stručným vysvětlením se nachází
v příloze 1. Zde následuje popis šesti parametrů, u kterých je nejpravděpodobnější,
že je potřebuje uživatel měnit.

• interactive: Nastavením hodnoty 0 se vypne interaktivní režim a nebudou
zobrazena žádná okna. Program je následně použitelný pro spouštění ze
skriptů a vektorizuje zcela bez dalších zásahů uživatele.

• max window size: Nastavuje maximální rozměry oken (počítáno bez posuv-
níků). Výchozí hodnotu (640 pixelů) může být vhodné na menších monito-
rech snížit. Ze všech obrázků je následně zobrazen výřez nebo zmenšenina.

35

• force black: Pokud je tento parametr nenulový, všechny čáry jsou obar-
veny na černo. Ve výchozím nastavení je tento parametr zapnut, protože
předpokládáme černobílé obrázky.

• auto contour variance: Parametr upravuje typ exportování. S nižší hod-
notou parametru je více čar ve výstupu reprezentováno pomocí jejich ob-
vodu.

• approximation error: Hodnota tohoto parametru určuje maximální povo-
lenou chybu při zjednodušování čar, větší číslo znamená větší míru zjedno-
dušování, a tedy čáry složené z menšího počtu úseků.

• approximation preserve corners: Pokud je parametr nenulový, jsou při
vyhlazování všechny rohové body zachovány.

36

6. Vývojová dokumentace
Program Vectorix, jehož zdrojový kód se nachází v elektronické příloze této

práce, je psán v jazyce C++ a využívá některé novinky z verze C++11. Pro práci
s obrazovými daty je použita knihovna OpenCV (2015). Vše z knihovny OpenCV
se nachází v namespace cv. Kromě standardní knihovny jazyka již program není
závislý na žádných dalších. (S výjimkou volitelného rozšíření o Potrace.)

OpenCV poskytuje velké množství různých obrazových operací a algoritmů,
takže s její pomocí si lze ušetřit spoustu práce při zpracování rastrových obrázků
a zejména při implementování a zkoušení nových algoritmů. Občas je však výhod-
nější nepoužít knihovní funkci a naimplementovat si vlastní, protože můžeme těžit
z dalších předpokladů, které v našem případě platí. Příkladem je skeletonizace
(kap. 3.2.2), kde přímá implementace algoritmu může využivat operace dilatace
a eroze z knihovny. Nebo můžeme celý proces zrychlit, omezíme-li operace jen na
některé pixely (optimalizace pomocí fronty).

6.1 Dělení na funkční bloky

Algoritmický návrh je popsán v kapitole 3, nebudeme jej tedy zbytečně opa-
kovat. Zaměříme se místo toho na zajímavé „implementační detailyÿ a celkové
členění kódu na jednotlivé funkční bloky. Ty zároveň korespondují s rozdělením
kódu do zdrojových souborů.

Parametry (parameters.cpp)

Jednotlivé části jsou často parametrizovatelné uživatelem. Ten parametry za-
dává do jednoho společného konfiguračního souboru. O jeho správu se stará třída
parameters, kterou si objekty mezi sebou předávají. (Je tedy možné mít více
různých instancí, nicméně v praxi se to neděje.) Tato třída přitom sama žádné
konkrétní parametry nedefinuje; ostatní části programu si je u ní postupně re-
gistrují za běhu. Pokud si řekneme (například z dvou různých míst) o stejně
pojmenovaný parametr, dostaneme vždy ukazatel na stejnou proměnnou.

Díky tomu je velmi snadné přidat kdekoli v kódu nový parametr. Stačí zavo-
lat funkci bind param(ukazatel, název, defaultní hodnota), která do uka-
zatele uloží odkaz na proměnnou s hodnotou parametru odpovídajícího názvu.
Pokud jsme první, kdo si řekl o proměnnou s tím to názvem a tato není v konfi-
guračním souboru specifikována, je do proměnné uložena defaultní hodnota.

Konfiguraci můžeme kdykoli načíst ze souboru nebo do něj naopak uložit
(funkce load params a save params). Při načtení se zaktualizují všechny již za-
registrované parametry. Doposud neregistrované se pak samy načtou až s první
registrací. Ukládání parametrů probíhá v tom pořadí, v jakém byly (poprvé) regis-
trovány. Díky tomu je možné přidávat do konfiguračního souboru k jednotlivým
parametrům také komentáře (v souboru začínají znakem #). Přidáme je funkcí
add comment(komentář).

37

Grafické rozhraní (zoom window.cpp)

Program využívá pouze funkcionalitu knihovny OpenCV, která v tomto směru
nenabízí příliš. Funkcí imshow(jméno okna, obrázek) vytvoříme okno a zobra-
zíme v něm daný obrázek. Do oken lze dále přidávat posuvníky. Okna však nelze
rozumným způsobem zmenšovat. Větší obrázky se tak vůbec nemusí vejít na
monitor, obzvlášť, pokud chceme mít otevřených několik oken současně.

Nedostatek řešíme funkcí zoom imshow(jméno okna, obrázek, přehled =
false), která zobrazí jeho výřez, jenž následně dle potřeby zmenší. Aby se dalo
v rámci obrázku navigovat, potřebujeme jedno speciální okno s přehledem celého
obrázku a se zakresleným umístěním výřezu. To také obsahuje posuvník nasta-
vující úroveň přiblížení. Přehledové okno lze vytvořit zavoláním zoom imshow
s třetím parametrem nastaveným na true.

O vše potřebné se stará třída zoom window, která je singletonem a její instanci
zbylé části programu nikdy nezískají. Protože velikost okna lze určit parametrem,
je potřeba před prvním vytvořením okna předat třídu s parametry (zavoláním
funkce zoom set params).

Textové hlášky (logger.h)

S výpisem různých typů hlášek pomáhá třída logger s metodou log<typ
hlášky> fungující ve stylu klasického printf. Vypisují se však pouze hlášky,
které mají dostatečnou závažnost. Před vypsáním se překontroluje, že hláška je
vzhledem k aktuálnímu nastavení upovídanosti dostatečně důležitá. Aby nás při
normálním běhu programu nezdržovaly ladící hlášky (a ani jejich kontrola důleži-
tosti), je v souboru config.h definována konstanta VECTORIX MAX VERBOSITY
udávající nejvyšší povolenou třídu hlášek. Pokud ji nastavíme například na úro-
veň warning, může kompilátor rovnou všechny výpisy typu info a debug zahodit
při překladu.

6.1.1 Datové struktury

Program parcuje jak s rastrovými, tak vektorovými daty. Rastrové obrázky se
vyskytují ve dvou základních podobách. Buď jsou uložené ve třídě cv::Mat, nebo
pnm image. První je třída z knihovny OpenCV, která umí reprezentovat libovolná
maticová data. V tomto formátu jsou ukládána data uvnitř vektorizéru.

Rastrové obrázky (pnm image.cpp)

Druhá třída pnm image slouží pro práci s obrázky typu Netpbm (Henderson,
2013). Jedná se již o vlastní implementaci. Protože obrazový formát je velmi
jednoduchý, není ani tato implementace složitá. Obrázky se rozlišují na barevné,
v odstínech šedi a černobílé bitmapy. Každá z těchto varinat může být uložena
binárně, či textově.

Zajímavostí je, že v černobílé podobě reprezentuje hodnota 0 bílé pixely a 1
černé. Při binárním uložení černobílých obrázků se jeden byte skládá z osmi po
sobě jdoucích pixelů.

Obrázky ve třídě pnm image lze načítat ze souboru (funkce read), zapisovat
(write) či mezi sebou převádět (convert). Není implementován pouze převod

38

z binární černobílé bitmapy. Tento formát však stejně není příliš častý. Většinou
máme obrázky barevné.

Vektorové obrázky (v image.cpp)

Vektorové obrázky vyžadují neceločíselné hodnoty. Je pro ně zadefinovaný
datový typ p, který ve skutečnosti odpovídá typu double. Teoreticky je tak možné
přesnost reprezentace snadno změnit. (V praxi to však asi nijak nevyužijeme.)

Samotné vektorové obrázky se v programu reprezentují pouze pomocí kubic-
kých Bézierových křivek. Jednomu obrázku odpovídá třída v image. Každý obrá-
zek má svou šířku a výšku (width a height) a seznam (std::list) cest (line).
Pro ladící účely si u obrázku ještě pamatujeme cestu k souboru, který může být
zobrazený na pozadí (underlay path) a seznam cest, které byly do obrázku při-
dány při ladění (debug line). Tento seznam lze připodobnit ke grafickým ladícím
výpisům.

Každá cesta (datový typ v line) pak obsahuje seznam jednotlivých úseků,
resp. kontrolních bodů (segment), typ (type) určující, zda se jedná o čáru či
vyplněnou plochu a typ skupiny (group). Nastavením typu skupiny lze několik
po sobě jdoucích čar v SVG výstupu sloučit do jedné skupiny. U obvodové re-
prezentace mají skupiny speciální význam. První cesta odpovídá tmavé oblasti
a všechny následující dírám v ní.

Kontrolní body (třída v point) odpovídají jednotlivým předělům mezi seg-
menty Bézierových křivek. Ty se setkávají v bodě main, který je zároveň pro
první křivku čtvrtým, tj. posledním kontrolním bodem a pro druhou křivku prv-
ním kontrolním bodem. Druhý, resp. třetí kontrolní bod každého segmentu je
uložený v control next, resp. control prev. Pokud se na data podíváme z po-
hledu jednoho segmentu, jsou jeho první dva kontrolní body uloženy v jednom
objektu třídy v point (jako main a control next) a další dva ve druhém objektu
(control prev a main). Třída v point v sobě dále uchovává informaci o barvě,
šířce čáry a průhlednosti (color, width a opacity).

Jednotlivé body v prostoru pak jsou reprezentovány typem v pt, který má
souřadnice x a y. Barvy si pamatujeme třísložkově ve třídě v co.

Manipulace s vektorovými daty (geom.cpp)

Některé geometrické operace tematicky nespadají pod žádnou konkrétní třídu.
(Například protože pracují s jedním segmentem Bézierovy křivky, který je repre-
zentován dvěma objekty v point.) Tyto operace jsou proto ve vlastním name-
space geom. Mezi nejdůležitější patří funkce:

• bezier chop in t: Tato funkce rozpůlí Bézierovu křivku v bodě určeném
parameterem t.

• bezier maximal length, bezier minimal length: Funkce odhadují délku
Bézierovy křivky délkou kontrolního polygonu, resp. vzdáleností prvního
a posledního kontrolního bodu.

• bezier intersection: Jako vstup bere dvě Bézierovy křivky a vrátí true,
pokud mezi nimi existuje průsečík. Ten se nachází na pozici určitelné podle
nalezených parametrů t.

39

• auto smooth: Nastaví všechny body control prev a control next na cestě
tak, aby výsledná křivka byla hladká.

6.1.2 Vektorizace

V práci je implementována vektorizace pomocí popsaného vektorizačního al-
goritmu. Mimo to je také možné použít knihovnu Potrace (pokud ji máme na-
instalovanou a povolíme její používání při překladu). V současnosti se však ne-
dají nijak ladit její parametry, takže možnosti jsou značně omezené. Přítomnost
knihovny je příprava na jedno z možných rozšíření programu, kde by se mohla
použít na vektorizaci některých objektů.

Aby se jednotlivé vektorizéry příliš nelišily a byly použitelné ve stejných pří-
padech, byl zde (a na dalších podobných místech) použit návrhový vzor Template
method. Existuje proto abstraktní třída vectorizer (vectorizer.cpp) definující
rozhraní vektorizérů (metoda vectorize).

V práci navržený postup je použit ve vektorizátoru vectorizer vectorix.
Ten postupně provádí jednotlivé fáze algoritmu. Pokud pracuje v interaktivním
režimu, stará se také o návrat na správné místo v případě změny parametru
některé dřívější fáze.

Jednotlivé fáze pak mají velmi podobná rozhraní. Pro samotný výpočet slouží
funkce run s argumenty odpovídajícími potřebám daného kroku. Používá-li daná
fáze ladění parametrů v grafickém rozhraní, má také metodu interactive. Ta
přijímá jako parametr funkci, která je zavolána při změně libovolného parametru.
Jedná se o stejný způsob, jaký používá knihovna OpenCV pro oznámení o změně
hodnoty posuvníku. To není náhoda, v současnosti se předávaná funkce volá právě
pouze přes posuvníky OpenCV.

Prahování (thresholder.cpp)

Prahování je velmi jednoduché, protože na všechny operace tohoto kroku se
přímo používají funkce z OpenCV.

Skeletonizace (skeletonizer.cpp a zhang suen.cpp)

Pro hledání morfologické kostry je potřeba nejprve obrázek doplnit o černý
rámeček, následně provést vybraný algoritmus a na závěr můžeme rámeček ode-
brat. Algoritmus vkládání čtverce a/nebo diamantu je implementovaný s pomocí
fronty pixelů ležících na hranici. Ve frontě jsou ty pixely, které jsou bílé a mají
černého souseda. Protože se střídáním kroků definice sousednosti mění, jsou ve
frontě ty pixely, které mají černého souseda podle osmiokolí (čtverec).

V případě vkládání diamantu tedy ještě nejprve znovu kontrolujeme barvu
sousedů. Pixel se tak ve frontě nemusí objevit pouze jednou, ale maximálně dva-
krát.

U Zhangova-Suenova algoritmu se používá obdobná fronta. Její význam se
však maličko liší. Pixel je zde ve frontě, pokud je bílý a v jedné ze dvou předchozích
iterací se mu změnil soused (v prvním kroku: alespoň jeden z jeho sousedů je
černý). Abychom jeden pixel nepřidávali do fronty vícekrát, značíme si navíc
pixely v pomocné matici inq (in queue).

40

Značení pixelů při trasování (tracer helper.cpp)

V průběhu trasování si potřebujeme jednotlivé pixely kostry značit. Aby se
nám se značkami a kostrou lépe pracovalo, používáme třídu labeled Mat ze sou-
boru tracer helper.cpp. Té na začátku funkcí init přiřadíme obrázek s kostrou.

Na čtení pixelů pak používáme funkce safeat a apxat. Obě funkce mohou
dostat libovolné souřadnice a vrací hodnotu odpovídajícího pixelu. Pokud čteme z
oblasti mimo obrázek, dostaneme nuly. Dále také přijímají parametr unlabeled,
pokud je nastaven na true, jsou u označených pixelů místo jejich původních hod-
not vráceny nuly. Funkce se liší v tom, že safeat pracuje výhradně s celočíselnými
souřadnicemi, ale apxat přijímá i neceločíselné. Neceločíselné souřadnice jsou pak
počítány z okolních celočíselných bilineární interpolací.

Pixely lze označovat funkcemi (label near pixels a label pix) a případně
podle potřeby můžeme značky zase zahazovat (drop smaller or equal labels,
drop smaller labels equal or higher make permanent). Druhá funkce přena-
staví všechny značky větší nebo rovné zadané hodnotě na 255. Touto hodnotou
značíme ty pixely, které jsme se už při trasování rozhodli definitivně použít. In-
terně si za účelem značení třída udržuje obdélník, ve kterém se nacházejí všechny
označené pixely. Při zahazování značek pak používáme funkce OpenCV určené
k prahování.

Poslední důležitou vlastností je, že třída umožňuje efektivně získat pozici ne-
označeného pixelu s nejvyšší hodnotou (get max unlabeled).

Trasování (tracer.cpp)

Na trasování není mnoho zvláštností. K provedení jednoho kroku se používá
funkce do prediction. Ta vyzkouší podle povoleného počtu zanoření několik vari-
ant a vrátí tu nejlepší z nich. Funkce je volaná z trace part, která je zodpovědná
za natrasování jedné cesty, otočení, smzání prvního bodu a dotrasování zbytku.
První bod značíme v labeled Mat číslem 254.

Vyhlazování a zjednodušování (approximation.cpp)

Zde je nejdůležitější funkce approximate with one segment, která zadaný
std::list segmentů cesty zkusí nahradit jednou Bézierovou křivkou.

Pro použití stejného kódu při hledání obvodové reprezentace se používá funkce
optimize control point lengths. Ta dostane kontrolní body Bézierovy křivky
a seznam bodů, které má touto křivkou aproximovat. Pokud se jí to povede,
upraví podle toho vzdálenosti kontrolních bodů.

Metoda nejmenších čtverců (least squares {simple,opencv}.cpp)

V programu je možné použít jednak vlastní implementaci metody nejmenších
čtverců a jednak implementaci využívající knihovnu OpenCV. Protože metodu
nejmenších čtverců používáme jen pro dvě neznáme, na rozdíly většinou nena-
rážíme. Vlastní implementace však není tolik odladěná jako knihovní a může zde
častěji docházet k zaokrouhlovacím chybám.

41

Vykreslování Bézierových křivek ({opencv ,}render.cpp)

Volitelně je možné natrasovaný obrázek opět vykreslit do rastrového. Verze
nevyužívající OpenCV použivá fixní šířku čáry a je také poněkud nepřesná. Druhá
varianta nejprve každý segment rozseká na dostatečně krátké části, které pak
vykreslí jako úsečky.

Export (exporter{, ps, svg}.cpp)

V současnosti je export možný do dvou formátů. Každý je implementovaný
zvlášť, přitom však používají jednotné rozhraní exporter. To předpokládá, že se
výstup skládá z hlavičky, následně jednotlivých cest a na závěr patičky. Konkrétní
třída tedy nemusí procházet přes všechny cesty sama. Toto procházení je však
možné v případě potřeby nového exportéru možno nevyužít a celý export provést
třeba už ve funkci vypisujíci hlavičku.

Přestože je SVG formát založený na XML, nevyužíváme k jeho ukládání žád-
nou speciální knihovnu a konstruujeme si celý výstup sami. Knihovnou pro práci
s XML bychom si totiž ani příliš nepomohli, protože nejvíce práce máme s kon-
strukcí řetězce reprezentujícího jednu cestu a nepotřebujeme načítat žádný vek-
torový vstup.

42

7. Rozšíření algoritmu
V následující kapitole rozebereme několik možných doporučených rozšíření,

která však v práci nebyla implementována.

7.1 Barevné obrázky

Ačkoli byl vektorizační algoritmus navržený na nebarevné obrázky, dokáže
si do určité míry poradit i s barevnými. Problém však nastává již při prahování
a hledání morfologické kostry. Morfologickou kostru lze hledat jen pokud o každém
pixelu umíme určit binární informaci, zda je součástí objektu, či nikoli. To je
nejsnazší s binárním obrázkem.

Náš program v této části předpokládá, že obrázek je skutečně černobílý a vek-
torizované čáry jsou vůči pozadí dostatečně kontrastní i po převedení obrázku do
odstínů šedi, jinak o ně přijdeme již při prahování.

Na barvy se dostává až při trasování. Každému kontrolnímu bodu je přiřa-
zena barva odpovídající barvě pixelů původního obrázku, které jsou na stejném
místě jako odpovídající část morfologické kostry. Tento způsob získávání barvy
má výhodu, že barvu vzorkuje v místech, která nebývají příliš rušena okolím –
středy objektů vs. okraje objektů.

Další problém je, že výstupní formáty nepodporují přímo proměnlivou barvu
(obdobně jako u šířky). Proto nedokážeme dokonale podchytit jakékoli změny
barvy uvnitř objektu a barva celé cesty je tedy v současnosti před exportem
průměrována. Pokud jsou barevné čáry odděleny, dokážeme obrázek vektorizovat
věrně.

Alternativní přístup, který však nebyl implementován kvůli netriviálnosti prv-
ního kroku, by prahování nahradil segmentací na omezený počet barev. Hledání
kostry by potom bylo možné zobecnit tím, že eroze by nahrazovala všechny pixely
sousedící s pixely s odlišnou barvou za černé a dilatace by barvu rozšiřovala pouze
na dříve černé pixely. Při nekvalitním osvětlení je však občas i u jinak černobílých
obrázků problém se správným prahováním.

Případně je možné inspirovat se tím, jak funguje barevné trasování pomocí
Potrace v programu Inkscape. Barevný obrázek je nejprve rozdělen na b binár-
ních. Následně je každý z nich vektorizován samostatně. Výsledek pak vznikne
složením jednotlivých rozdílně obarvených vrstev přes sebe. Stačilo by tedy vždy
vybrat jednu konkrétní barvu a všechny ostatní ztotožnit s pozadím. Stále však
potřebujeme spolehlivě vyřešit problém segmentace na barevné plochy.

Nelze obecně určit, který z přístupů je lepší. V případě, že je ve vstupním
obrázku malý počet dostatečně odlišitelných barev, vyplatí se pro každou z nich
počítat kostru zvlášť. Pokud však barvy přecházejí plynuleji, vznikly by nám
rozdělením falešné hranice mezi kostrami.

Nicméně problém barevných přechodů je opět samostatná úloha, která se týká
především barevných ploch, a tedy u čárové grafiky nemá takové využití.

43

7.2 Nečárová grafika

Pokud obrázek obsahuje i nečárové objekty, jsou stále převáděny na svou
morfologickou kostru a následně reprezentovány pomocí širokých čar. Ty navíc
velmi často mění svoji šířku, protože u krajů objektu nelze vepsat větší kružnice
se středem v kostře. Příkladem nečárového objektu je obyčejný vyplněný čtverec.
Jeho kostru tvoří dvě úhlopříčky s průběžně se měnící šířkou stopy. Na jejich
krajích je tato šířka nulová, rovnoměrně se rozšiřuje až do prostřed, kde odpovídá
velikosti hrany čtverce. Následně se opět symetricky zužuje.

Výsledný obraz tak sice bude v mnohém odpovídat našim původním poža-
davkům (věrná podoba vektorové verze s originálem, středová reprezentace čar,
dostatečně malý výstup), ale velmi se bude lišit od reprezentace, kterou bychom
očekávali na první pohled či vytvořili ručně. Nutno podoktnout, že kostra čtverce
je složena z úhlopříček pouze za předpokladu, že používáme skeletonizaci vkláda-
jící diamanty, osmiúhelníky, nebo kružnice. Zhangův-Suenův algoritmus i vklá-
dání čtverců označí za kostru pouze jeden prostřední pixel.

Vhodným rozšířením by tedy bylo naimplementovat také trasování ploch a au-
tomaticky mezi oběma způsoby přepínat dle potřeb objektů. Chystané vylepšení
může využívat knihovnu Potrace.

7.3 Uživatelské rozhraní

Chování jednotlivých kroků vektorizátoru lze ovlivňovat pomocí parametrů.
Ty nejdůležitější lze ladit z grafického rozhraní, avšak ne všechny. Toto je dáno
omezením použíté knihovny OpenCV, která na uživatelské rozhraní není za-
měřená. Bylo proto zvoleno jednodušší uživatelské rozhraní, díky kterému ale
program není závislý na dalších knihovnách. Na lepší návrh uživatelského rozhraní
je vhodné nejprve nasbírat zkušenosti s používáním čárového vektorizátoru.

7.4 Plugin do Inkscape

Pokud se program Vectorix v praxi osvědčí, bylo by praktické, aby jej mohlo
snadno používat více lidí. Protože cílem bylo vytvořit open-source vektorizační
nástroj, chtěli bychom o něj rozšířit funkcionalitu open-source vektorového editoru
Inksapce. Inkscape již používá vektorizaci pomoci knihovny Potrace, ale čárovou
dosud nenabízí.

7.5 Vylepšení skeletonizace

Většina v současnosti používaných metod skeletonizace je poměrně rychlá.
Pouze Zhangův-Suenův algoritmus produkuje souvislou a jeden pixel širokou
kostru. Pokud kostra není široká jeden pixel, klademe tím větší nároky na traso-
vání, které si musí umět z více pixelů správně vybrat a všechny je označit jako
použité. V opačném případě by totiž hrozilo, že se dva pixely široký úsek natra-
suje dvakrát. Pokud kostra není souvislá, může se snadno stát, že si ji trasování
nespojí v jednu a čára je potom ve vektorovém výstupu zbytečně rozdělena na
dvě (či více).

44

Obrázek 7.1: Nedostatek Zhangova-Suenova algoritmu: na tomto obrázku algorit-
mus najde pouze prázdnou kostru, červené pixely algoritmus označil ke smazání
v dalším průchodu

Zhangův-Suenův algoritmus však má jinou nevýhodu. U objektů ve tvaru di-
amantu se sudým rozměrem žádnou kostru nenajde (viz obrázek 7.1). V každé
iteraci totiž odebere všechny pixely, které sousedí s některým černým hranou.
Libovolně velký objekt tak může při vektorizaci zcela zmizet. V praxi tato situ-
ace nenastává, protože nemáme takto pravidelné obrázky. Při změně libovolného
pixelu již dostáváme neprázdnou kostru.

7.6 Grafová interpretace kostry

Pokud by kostra byla kvalitnější, bylo by možné na ni nahlížet jako na kom-
binatorický graf. Jednotlivé pixely by byly vrcholy a hrana by vedla mezi těmi
sousedními. Tím bychom mohli trasování zjednodušit na procházení grafu.

Pokud by to podporoval výstupní formát, mohli bychom do něj přidat infor-
mace o křižovatkách čar. Tyto informace by pak mohl využívat vektorový editor
a mohl tak umožnit pohybování s celou křižovatkou naráz.

45

Závěr
Jako součást práce vznikl program Vectorix, ve kterém jsou v práci popsané

metody implementovány a demonstruje tím jejich použitelnost. Prokazujeme tím,
že současný nedostatek volně dostupných čárových vektorizátorů není způsoben
neřešitelností úlohy.

Kvalita výstupu našeho programu je srovnatelná s běžně dostupnými vekto-
rizátory. Náš vektorizátor si poradí i s trasováním čárového obrázku, který byl
pořízen nekvalitně (např. fotoaparátem).

Protože naším cílem byla vektorizace čárové grafiky, není překvapivé, že pro-
gram nezvládá tak dobře části s většími vyplněnými objekty. Jelikož předpo-
kládáme, že obrázek bude nadále upravován ručně v počítači, nepovažujeme za
zásadní nedostatek, že některé detaily obrázku bude nutné po vektorizaci opravit.

46

Seznam použité literatury
Adobe Systems Inc. (1999). PostScript Language Reference (3rd Edi-

tion). Addison-Wesley. ISBN 0-201-37922-8. URL http://www.adobe.com/
products/postscript/pdfs/PLRM.pdf.

Birtles, B. (2014). SVG Proposals: Variable width stroke. URL https://www.
w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke.

Bitter, I., Sato, M., Bender, M., McDonnell, K. T., Kaufman, A. a
Wan, M. (2000). Ceasar: A smooth, accurate and robust centerline extraction
algorithm. pages 45–52, Salt Lake City, 2000.

Cedar Lake Ventures Inc. Vector magic. URL http://www.vectormagic.
com/. Software.

CompuServe Inc. (1990). Graphics Interchange Format, Programming Refe-
rence. URL https://www.w3.org/Graphics/GIF/spec-gif89a.txt.

Dahlström, E. a kol. (2011). Scalable Vector Graphics (SVG) 1.1 (Second
Edition). World Wide Web Consortium. URL https://www.w3.org/TR/SVG/.

Diebel, J. R. (2008). Bayesian Image Vectorization: The Probabilistic Inver-
sion of Vector Image Rasterization. Disertační práce, Stanford, CA, USA.
AAI3332816.

Fournier, A., Fussell, D. a Carpenter, L. (1982). Computer rendering of
stochastic models. Commun. ACM, 25(6), 371–384. ISSN 0001-0782. doi: 10.
1145/358523.358553. URL http://doi.acm.org/10.1145/358523.358553.

Henderson, B. (2013). Portable Any Map. San Jose. URL http://netpbm.
sourceforge.net/doc/pnm.html.

Hoschek, J. (1987). Approximate conversion of spline curves. Computer Aided
Geometric Design, 4(1-2), 59–66. ISSN 0167-8396. doi: 10.1016/0167-8396(87)
90024-0. URL http://www.sciencedirect.com/science/article/pii/
0167839687900240.

Hoschek, J. (1988). Spline approximation of offset curves. Computer Aided
Geometric Design, 5(1), 33–40. ISSN 0167-8396. doi: 10.1016/0167-8396(88)
90018-0. URL http://www.sciencedirect.com/science/article/pii/
0167839688900180.

Inkscape. URL https://inkscape.org/. Software.

Lána, J. (2001). Digitalizace mapy. Diplomová práce, Univerzita Karlova v
Praze, Matematicko-fyzikální fakulta.

OpenCV (2015). The OpenCV Reference Manual. Itseez. URL http://opencv.
org/.

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1), 62–66.

47

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke
https://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke
http://www.vectormagic.com/
http://www.vectormagic.com/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/TR/SVG/
http://doi.acm.org/10.1145/358523.358553
http://netpbm.sourceforge.net/doc/pnm.html
http://netpbm.sourceforge.net/doc/pnm.html
http://www.sciencedirect.com/science/article/pii/0167839687900240
http://www.sciencedirect.com/science/article/pii/0167839687900240
http://www.sciencedirect.com/science/article/pii/0167839688900180
http://www.sciencedirect.com/science/article/pii/0167839688900180
https://inkscape.org/
http://opencv.org/
http://opencv.org/

Pennebaker, W. B. a Mitchell, J. L. (1993). JPEG: Still Image Data
Compression Standard. Springer-Verlag, US. ISBN 0-442-01272-4.

Piegl, L. a Tiller, W. (1997). The NURBS Book. Second Edition. Springer-
Verlag, Berlin. ISBN 3-540-61545-3.

RasterVect. URL http://www.rastervect.com/. Software.

Selinger, P. (2003). Potrace: a polygon-based tracing algorithm. URL http:
//potrace.sourceforge.net/potrace.pdf.

Selinger, P. (2015). Potrace. URL http://potrace.sourceforge.net/. Soft-
ware.

Stallman, R. M. a kol. (2014). Using the GNU Compiler Collection. Boston.
URL https://gcc.gnu.org/.

VectorizeNow. URL http://www.vectorizenow.com/. On-line služba.

W3C (2013). Portable Network Graphics (PNG) Specification (Second Edition).
World Wide Web Consortium. URL https://www.w3.org/TR/PNG/.

Weber, M. (2004). Autotrace. URL http://autotrace.sourceforge.net/.
Software.

Zhang, T. Y. a Suen, C. Y. (1984). A fast parallel algorithm for thinning
digital patterns. Commun. ACM, 27(3), 236–239. ISSN 0001-0782. doi: 10.
1145/357994.358023. URL http://doi.acm.org/10.1145/357994.358023.

48

http://www.rastervect.com/
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/
https://gcc.gnu.org/
http://www.vectorizenow.com/
https://www.w3.org/TR/PNG/
http://autotrace.sourceforge.net/
http://doi.acm.org/10.1145/357994.358023

Seznam obrázků
1 Příklad převodu navrženým algoritmem 3

1.1 Postupná redukce Bézierovy křivky třetího stupně 6
1.2 Racionální Bézierovy křivky . 7

3.1 Histogram s rozptyly tříd . 15
3.2 Příklad eroze a dilatace na čtyřokolí 17
3.3 Kostra po odprahovaní . 18
3.4 Vzdálenostní mapa . 18
3.5 Úsečka s proměnlivou šířkou stopy 25

4.1 Vyfotografovaný vstupní obrázek 27
4.2 Výstup z programu Vectorix . 28
4.3 Detail výstupu z programu Vectorix 28
4.4 Vektorizace nástrojem Vector Magic 29
4.5 Detail výstupu z programu Vector Magic 29
4.6 Vektorizace programem Potrace 30
4.7 Detail výstupu z programu Potrace 30
4.8 Barevná vektorizace nástrojem RasterVect 31
4.9 Vektorizace nástrojem RasterVect 31

7.1 Nedostatek Zhangova-Suenova algoritmu 45

49

Přílohy

Příloha 1 – Přehled parametrů

Základní nastavení

• vectorization method: Použitá vektorizační metoda, 0: navržený algorit-
mus, 1: Potrace, 2: ladící vektorový obrázek.

• parameters append: Pokud je nenulový, parametry se při ukládání přidá-
vají na konec souboru.

• file parameters: Název souboru, do kterého se budou ukládat parametry.

• file pnm input: Specifikuje název vstupního PNM souboru.

• file input: Vstupní soubor v libovolném formátu podporovaném OpenCV
(lze použít pouze pro vectorization method 0).

• show rendered window: Pokud je parametr nenulový, zobrazí se okno s vy-
renderovaným vektorovým výstupem.

• output engine: Formát vektorového výstupu, 0: SVG, 1: PostScript.

• file vector output: Název výstupního souboru s vektorovým obrázkem.

• file pnm output: PNM soubor, do kterého bude výstupní vektorový obrá-
zek vyrenderován (pomalou a nepřesnou metodou).

• file opencv output: Libovolný rastrový soubor, do kterého bude výstupní
vektorový obrázek vyrenderován (rychlejší a přesnější metoda).

Grafické rozhraní

• interactive: Pokud je parametr nenulový, bude zapnut grafický interak-
tivní režim.

• max window size: Maximální rozměry obrázku v okně, větší obrázky budou
oříznuty/zmenšeny.

• zoom level: Úroveň přiblížení obrázků v okně, 0: zmenšené obrázky, 100:
skutečná velikost, obrázky jsou před zobrazením oříznuty dle limitů velikosti
okna.

Prahování

• invert colors: Invertování barev na vstupu (shodné s posuvníkem Invert
input).

• threshold type: Typ prahování (posuvník Threshold type), 0: Otsova me-
toda, 1: binární práh se zadanou hodnotou, 2: adaptivní práh s váhami dle
normálního rozdělení, 3: adaptivní práh s průměrem okolí.

50

• threshold: (Posuvník Threshold) hodnota prahu. Pro adaptivní prahování
určuje posun prahu o threshold - 128.

• adaptive threshold size: Velikost okolí pro adaptivní prahování (posuv-
ník Adaptive threshold).

• file threshold output: Soubor pro uložení mezivýsledku po prahování.

• fill holes: Míra zaplnění děr (posuvník Filled).

• dust size: Míra odstranění bílých teček (posuvník Filling size).

• file filled output: Soubor pro uložení mezivýsledku po filtrování odpra-
hovaného obrázku.

Skeletonizace

• skeletonization type: Parametr udává typ skeletonizace (stejně jako po-
suvník Skeletonization), 0: diamant-čtverec, 1: čtverec, 2: diamant, 3: vklá-
dání kružnic, 4: Zhangův-Suenův algoritmus.

• files steps output: Soubory, do kterých budou uloženy jednotlivé kroky
skeletonizace. Znak # bude nahrazen pořadovým číslem iterace.

• file skeleton: Soubor pro uložení kostry.

• file distance: Soubor pro uložení vzdálenostní mapy (hodnota pixelu
přímo odpovídá vzdálenosti od okraje objektu).

• file skeleton norm: Soubor s kostrou normalizovanou pro zobrazení.

• file distance norm: Soubor se vzdálenostní mapou normalizovanou pro
zobrazení.

Trasování

• max dfs depth: Počet trasovacích kroků, které program zkouší před vybrá-
ním finální varianty.

• depth auto choose: Maximální počet nepovedených trasovacích kroků, při
kterých je varianta vybrána bez zkoušení dalších možností.

• distance coef: Parametr 2σ2 definující velikost okolí při hledání středu
čar.

• nearby limit gauss: Vzdálenost v pixelech, ve které se započítávají pixely
při hledání středu čar.

• gauss precision: Přesnost v pixelech, se kterou se hledá bod určující střed
čáry.

51

• angle steps: Počet směrů, ve kterých se hledá další pokračování segmentu
z rohového bodu.

• param min nearby straight: Body ve vzdálenosti do této konstanty se ne-
započítávají do ohodnocení rovného úseku.

• nearby limit: Výchozí vzdálenost v pixelech, ve které je hledán následující
trasovací bod.

• angular precision: Přesnost se kterou se dourčí úhel k následujícímu seg-
mentu.

• size nearby smooth: Výchozí vzdálenost, ve které se započítávají body při
hledání hladkých úseků. Je vhodné, aby tento parametr odpovídal přibližně
třetině parametru nearby limit.

• max angle search smooth: Úhel v radiánech určující maximální odchylku,
ve které se hledá hladce navazující čára.

• nearby control smooth: Výchozí vzdálenost, ve které je hledán první kont-
rolní bod hladce navazující čáry. Vhodná nastavení se pohybují okolo třetiny
až poloviny hodnoty parametru nearby limit.

• smoothness: Maximální úhel v radiánech, o který může křivka během jed-
noho segmentu změnit směr, aniž by byla označena za roh.

Závěrečné vektorové úpravy

• false colors: Obarvení jednotlivých čar v obrázku posloupností barev pro
snazší rozpoznání nespojitostí čar. Parametr udává rozdíl tónu barev ve
stupních mezi následujícími barvami (dle barevného modelu HSV).

• force black: Pokud je nenulový, všechny čáry jsou obarveny na černo.

• force width: Všechny čáry budou exportovány s touto šířkou (pokud je
nenulová).

• force opacity: Všechny čáry budou exportovány s touto průhledností (po-
kud je nenulová).

• underlay image: Cesta k obrázku, který bude vložen na pozadí výstupu,
vhodné pro ladění. Tato volba má význam pouze při vykreslování do for-
mátu SVG.

• debug lines: Přidání ladících (červených) čar do vektorového výstupu.
V současnosti tyto čáry znázorňují chybové vektory při převodu na ob-
vodovou reprezentaci.

52

Převody reprezentací a aproximace

• offset error: Maximální povolená chyba aproximace pro obvodovou re-
prezentaci.

• offset iterations: Maximální počet iterací pro fitování segmentu Bézie-
rovou křivkou.

• render max distance: Přesnost renderování v pixelech.

• export type: Způsob reprezentace dat ve výstupu, 0: průměrování šířky,
1: rozdělení na krátké segmenty, 2: obvodová reprezentace, 3: automatická
detekce dle rozptylu.

• auto contour variance: Čáry s rozptylem šířky větším než tento parametr
budou převedeny na obvodovou reprezentaci.

• lsq method: Výběr implementace metody nejmenších čtverců, 0: OpenCV,
1: vlastní.

• approximation error: Maximální chyba povolená při zjednodušování čar,
větší číslo znamená větší míru zjednodušování.

• approximation iterations: Maximální počet iterací algoritmu na aproxi-
maci úseku.

• approximation preserve corners: Vynucení zachování rohových bodů.
Aproximace tyto body nikdy nezahodí.

Textové výpisy

Program produkuje na standardní chybový výstup informační hlášky čtyř ka-
tegorií: chyby (0), upozornění (1), informace (2), ladící hlášky (3). Následujícími
parametry se určuje upovídanost jednotlivých částí programu. Jsou vypisovány
všechny hlášky ze stejné a nižší kategorie.

• pnm verbosity: načítání, ukládání a konverze obrázků ve formátu PNM

• vectorizer verbosity: vektorizér

• approximation verbosity: aproximace čar

• lsq verbosity: metoda nejmenších čtverců

• offset verbosity: převod čar na obvodovou reprezentaci

53

	Úvod
	Reprezentace vektorových dat
	Bézierovy křivky
	Vlastnosti
	Racionální Bézierovy křivky

	Cesta
	Používané formáty
	Scalable Vector Graphics (SVG)
	PostScript, PS
	Další formáty

	Metody vektorizace a existující nástroje
	Trasování ploch
	Potrace
	Vector Magic

	Čárová vektorizace
	RasterVect

	Návrh algoritmu
	Fáze 1: Prahování a filtrování
	Otsova metoda
	Adaptivní prahování
	Filtrování nedokonalostí

	Fáze 2: Morfologická kostra
	Morfologické operace
	Výpočet morfologické kostry – skeletonizace
	Zhangův-Suenův algoritmus

	Fáze 3: Trasování
	Výběr počátečního bodu
	Výběr následujícího bodu
	Tipování a průchod do hloubky
	Zajištění konečnosti

	Fáze 4: Vyhlazování
	Fáze 5: Export
	Průměrná šířka
	Rozdělení cest na úseky
	Obvodová reprezentace

	Srovnání výsledků
	Měřítka kvality
	Typ reprezentace

	Porovnání s existujícími nástroji

	Uživatelská dokumentace
	Instalace
	Ovládání programu
	Konfigurační soubor
	Grafické rozhraní
	Další důležité parametry

	Vývojová dokumentace
	Dělení na funkční bloky
	Datové struktury
	Vektorizace

	Rozšíření algoritmu
	Barevné obrázky
	Nečárová grafika
	Uživatelské rozhraní
	Plugin do Inkscape
	Vylepšení skeletonizace
	Grafová interpretace kostry

	Závěr
	Seznam použité literatury
	Seznam obrázků
	Přílohy
	Příloha 1 – Přehled parametrů

