MATEMATICKO-FYZIKALNI
FAKULTA

Univerzita Karlova

BAKALARSKA PRACE

Jan Hadrava

Vektorizace carové grafiky

Katedra softwaru a vyuky informatiky

Vedouci bakalaiské prace: RNDr. Josef Pelikan
Studijni program: Informatika

Studijni obor: Obecna informatika

Praha 2016

Prohlasuji, ze jsem tuto bakalaiskou praci vypracoval samostatné a vyhradné
s pouzitim citovanych prament, literatury a dalsich odbornych zdroji.

Beru na védomi, zZe se na moji praci vztahuji prava a povinnosti vyplyvajici ze
zékona ¢. 121/2000 Sb., autorského zdkona v platném znéni, zejména skutecnost,

ze Univerzita Karlova ma pravo na uzavieni licen¢ni smlouvy o uziti této prace
jako skolniho dila podle §60 odst. 1 autorského zakona.

V... dne Podpis autora

Rad bych podékoval vsem, ktefi mé pfi tvorbé prace podporovali. Predevsim
svému vedoucimu, RNDr. Josefu Pelikanovi, ktery to se mnou uspésné zvladl.
Dale pak dékuji rodiné a prateliim, specialné Péfe Pelikdnové za obrazky hrocht
a Kacce Zakravské za korektury a obrovskou podporu.

1

Nazev prace: Vektorizace ¢arové grafiky

Autor: Jan Hadrava

Katedra: Katedra softwaru a vyuky informatiky

Vedouci bakalafské prace: RNDr. Josef Pelikan, Katedra softwaru a vyuky informatiky

Abstrakt: I pti tvorbé grafiky se nékterym tvirctim lépe pracuje s tuzkou a papirem. Je
zéddouci vzniklou skicu zdigitalizovat (naskenovat, vyfotografovat) a nasledné upravovat
v pocitaci. K tomu je uziteéné prevést obrazek do vektorového formatu — zvektorizovat.

Vektorova reprezentace obrazkt poskytuje oproti rastrové mj. dobrou kvalitu i pfi li-
bovolném zvétSeni ¢i snazsi editaci. Kazdy element je reprezentovan bud jako kiivka,
¢i jako vyplnéna oblast definovana svym obvodem. U ¢arovych kreseb je pro naslednou
praci s obrazkem vhodnéjsi prvni z uvedenych.

Soucasné vektorizaéni nastroje nejcastéji hledaji pouze souvislé plochy. Nékteré z nich
jsou i volné dostupné. Programt reprezentujicich vystup pomoci ¢ar existuje podstatné
méneé a Casto jsou také velmi drahé.

e

razek reprezentuje pomoci ¢ar. Po predzpracovani rastrového obrazku je nalezena jeho
(stale rastrovd) morfologickd kostra, kterd je trasovédna a ptrevedena do vektorové po-
doby na Bézierovy kiivky. Nasledné je obrazek vyhlazen a vyexportovan do formatu
zvoleného uzivatelem. Kvalita vystupu je v mnohych ohledech srovnatelné s autorovi
dostupnymi vektoriza¢nimi nastroji.

Klicova slova: vektorizace, ¢arova grafika, analyza obrazu, morfologické operace, Bézie-
rovy kfivky

Title: Vectorization of line-based images
Author: Jan Hadrava
Department: Department of Software and Computer Science Education

Supervisor: RNDr. Josef Pelikan, Department of Software and Computer Science Edu-
cation

Abstract: Some creators prefer working with pen and paper while creating graphic
art. It is desirable to digitize a draft (scan it, photograph) and edit it on a computer
afterwards. It is useful to convert an image to a vector format — to vectorize it.

Vector representation of images gives us good quality in any zoom level and enables
easier editing compared to a raster workflow. Each element is represented as a curve, or
as a filled area defined by its outline. Line-based images may be edited very conveniently
and efficiently.

Contemporary vectorization tools usually search for connected areas. Some of them are
also freely available. There exist significantly fewer programs which represent output
graphics using lines, these programs are usually very expensive.

This work proposes a vectorization algorithm and implements freely distributable pro-
gram which represents vector image using lines. After initial pre-processing of input
raster image its morphological skeleton is found (still in raster). A skeleton is then
traced and converted into a vector form set of Bézier curves. An image is smoothed
and exported to a required vector graphics format. Quality of an outcome is in many
aspects comparable with quality of vectorization tools available to the author.

Keywords: vectorization, line-based graphics, image analysis, morphological operations,
Bézier curves

111

Obsah

Uvod

[1 Reprezentace vektorovych dat|

(1.1 Beézierovy krivky]

(1.1 Vlastnostil
(1.1.2 Racionalni Bézierovy krivky]
M2 Cestal.
(1.3 Pouzivaneé formaty| oL
[L.3.1 Scalable Vector Graphics (SVG)|.
[1.3.2 PostScript, PS|.
(1.3.3 Dalsi formaty|

2 Metody vektorizace a existujici nastroje

[2.1 Trasovani ploch|

2.1.1 Potracel

[2.1.2 Vector Magic|,

2.2 Carova vektorizacel

(3 Navrh algoritmul

3.1 Faze 1: Prahovani a filtrovanil

[3.2 Faze 2: Mortologicka kostra]

[3.2.1 Mortologické operace|

[3.2.2 Vypocet mortologické kostry — skeletonizace|

[3.2.3 Zhanguv-Suenuv algoritmus| L.

[3.3.1 Vybeér pocatecniho bodul

[3.3.2 Vybér nasledujictho bodu|

[3.3.3 Tipovani a pruchod do hloubkyl

[3.3.4 Zajisténi konecnostyf.

[3.4 Faze 4: Vyhlagovani.

(3.5 Faze 5: Export|

I35] Eo < vv]l

[3.5.2 Rozdéleni cest nauiseky|

[3.5.3 Obvodova reprezentace|

[4 Srovnani vysledku|
[4.1 Meritka kvality|

[4.1.1 'lT'yp reprezentace|

[4.2 Porovnani s existujicimi nastroji|. L.

w

© © 0o 0o o ~J O Ut G

13
13
13
14
14
16
16
16
19
20
20
20
22
22
22
23
24
24
24

[5.2 Ovladani programul . . .

[p.2.1 Konfiguracni soubor|

0.2.2 Graficke rozhrani

[5.2.3 Dalsi dulezite parametry|

[6 Vyvojova dokumentace]
[6.1 Deéleni na tunkcéni bloky
[6.1.1 Datové struktury|

6.1.2 Vektorizacel
[7 Rozsireni algoritmu)

[7.1 Barevné obrazkyl
[7.2 Necarova graika]
(.3 Uzivatelské rozhranil
[7.4 Plugin do Inkscape| L0
(7.5 Vylepseni skeletonizace]
[7.6 Grafova interpretace kostry|

[Seznam pouzite literatury|

S brazkil
Prilohy

[Priloha 1 — Prehled parametru|

32
32
33
33
34
35

37
37
38
40

43
43
44
44
44
44
45

46

47

49

50

Uvod

V této praci se budeme zabyvat vektorizaci ¢arovych kreseb, tedy prevodem
Cernobilych kreslenych rastrovych obrazkt (skladajicich se prevazné z ¢ar) do
vektorového formatu. Ptiklad takového prevodu vidime na obréazku [I}

Opakem vektorizace je rastrovdni, které vyuzivame témér vzdy, kdyz chceme
vektorova data zobrazit. Toto ovSem c¢inime se znalosti rozliSovacich schopnosti
vystupniho zafizeni (tiskarny, monitoru). U rastrovych obrazku si pamatujeme in-
formace o barvé kazdého pixelu — policku pravidelné, nejcastéji ctvercové, miizky.
Jsou dobfe znamé, jelikoz se s nimi bézné potkavame tieba u fotografii. Mezi je-
jich forméty patii JPEG (Pennebaker a Mitchell, [1993), PNG (W3C| 2013)), GIF
(CompuServe Inc., [1990).

Oproti tomu vektorové obrazky tvorime z primitiv — zakladnich geometrickych
utvart, jako jsou napiiklad usecky, mnohouhelniky, (Bézierovy) kiivky a kruznice.
Diky tomu je Ize libovolné skalovat, aniz bychom narazeli na limit jejich kvality.
Jsou proto vhodné i pro pripravu grafiky, kdy predem nezname presné cilové
rozliseni. Podrobnéji se na né podivame v [prvni kapitole]

Vektorové obrazky jsou ¢im dal popularnéjsi na webovych strankach, kde je lze
dokonce s pomoci kaskddovych styli (CSS) animovat. Oproti rastrovym je také
snazsi je editovat, primitiva lze totiz pfebarvovat, deformovat, otacet, skalovat
atp. V neposledni radé muze vektorova podoba slouzit i ke kompresi dat — pokud
je obrazek snadno popsatelny primitivy, mtze byt pii stejné kvalité vyrazné mensi
nez rastrovy. Formati existuje hned nékolik, naptiklad PostScript (PS)(Adobe
Systems Inc., 1999) ¢ Scalable Vector Graphics (SVG)(Dahlstrom a kol., [2011)).
Vice si o nich povime v podkapitole

P1i kresleni obrazkt se nékomu lépe kresli tuzkou na papir, nez primo do
pocitace (graficky tablet neni tak rozsifeny jako papir). OvSem tprava obrazku
uz neni na papife tak jednoducha. Vyuziti vektorizece je tedy nasnadé. Mame
fotografii ¢i sken ptivodniho obrazku a chceme jej dale upravovat na pocitaci.

Lze potkat tii zplisoby vektorizace — ru¢ni, poloautomatickou a automatickou.
Pro kazdy ze zptisobti najdeme celou fadu néstroji a sluzeb, které je nabizeji,
od ru¢ni vektorizace on-line sluzbou kdy obréazek zcela prekresli
zkuseny grafik, po plné automatickou, zhotovenou kupiikladu nastrojem Vector
Magic (Cedar Lake Ventures Inc.). Drobny piehled existujicich néstroji se na-
chazi ve |[druhé kapitolel

Whias

Obrazek 1: Piiklad pfevodu navrzenym algoritmem

Hlavni motivaci této prace vSak byla absence kvalitnich volné dostupnych
vektorizaCnich nastroji, které by se zamétovaly na ¢arovou grafiku. Bézné se
lze setkat s vektoriza¢nimi programy jako Potrace (Selinger, [2015)) ¢i AutoTrace
(Weber, [2004), které nejsou takto specializované a prevadi libovolné obréazky.
V jejich vystupu je pak kazda c¢ara reprezentovana jako vyplnény mnohothelnik
(presnéji jako oblast ohrani¢end rtiznymi k¥ivkami, nikoli pouze tiseckami). I u ¢a-
rové grafiky tak pouzivaji k vektorizaci metodu trasovdni ploch, ktera nevyuzije
vlastnosti téchto obrazk.

V této praci cilime na navrh a implementaci (polo)automatické vektorizace
na principu trasovani car tak, aby zde zustala moznost vystup nadale upravovat
prijemnym zplisobem ru¢né. Vystup je tedy reprezentovan pomoci kiivek s urci-
tou Sitkou stopy. Algoritmus je popsan v kapitole [8| Zdrojové kédy vzniklého
programu Vectorix jsou volné dostupné na adrese: https://atrey.karlin.mff.
cuni.cz/ had/vectorix/.

Ve [ctvrte kapitole| porovname vysledky vektorizovani naseho programu s né-
kolika dalsimi néastroji. Kvili nedostupnosti jinych ¢arovych vektorizatort porov-
navame prevazné s témi, které trasuji plochy. Z divodu odlisné reprezentace dat
se vsak kvalita vystupt srovnava obtizné.

Nésledujici dvé kapitoly vénujeme [uzivatelské] a [vyvojové] dokumentaci. Po-
sledni navaze s napady na mozné rozsifeni programu.

https://atrey.karlin.mff.cuni.cz/~had/vectorix/
https://atrey.karlin.mff.cuni.cz/~had/vectorix/

1. Reprezentace vektorovych dat

V zéavislosti na konkrétnim forméatu souboru a tucelu vektorovych dat se pouzi-
vaji rtizna primitiva. Vektorova data totiz nemusi predstavovat pouze obrazky, ale
také technické vykresy, ¢i pfimo instrukce pro numericky fizené obrabéci stroje
(CNC, z anglického Computer Numeric Control).

Ty ¢asto vyuzivaji pouze tsecky, takze slozitéjsi utvary (napiiklad oblouk)
se pro né musi aproximovat lomenou c¢arou. To je vSak vhodné délat se znalosti
rozliSovacich schopnosti stroje, protoze se tim zhorsuje podobnost s originalem.

Kromé tsecek se také pouzivaji eliptické oblouky. Lze je naptiklad definovat
pocatecnim a koncovym bodem, délkou poloos a jejich oto¢enim a dvéma jednobi-
tovymi identifikatory: jeden urci, zda se jedna o vétsi nebo mensi oblouk, a druhy
pravotocivost /levotocivost oblouku. Presné takovato reprezentace se pouziva ve
formatu SVG (viz Dahlstrom a kol 2011, sekce 8.3.8), ktery je také vychozim
vystupnim formétem programu Vectorix. (Ten v8ak oblouky nepouziva.)

1.1 Bézierovy krivky

Slozitéjsi utvary lze reprezentovat pomoci navazujicich Bézierovych kiivek,
tj. splinti na nich zalozenych. Spliny Bézierovych kfivek jsou pro nas dtlezité,
protoze pravé jimi je reprezentovany vystup programu Vectorix. Pisi o nich ve
své knize panové Piegl a Tiller (1997, kapitola 1). Ta je hlavni zdrojem informaci
pro celou tuto kapitolu.

Definice 1. Bézierova kiivka stupné n je parametrickd krivka C(t), s parametrem
t € 10,1}, takovd Ze:

C(t) = Z Bin(t) - P,

kde P; jsou kontrolni body a B;, je i-ty Bernsteiniv polynom stupné n. Vsech
n + 1 kontrolnich bodid dohromady tvori kontrolni polygon. Parametr t nazyvame
cas.

Definice 2. i-ty Bernsteiniv polynom B, ,, stupné n je definovdn rekurentné:

Biolt) = 1, proi1 =20,
“0 0, proi#0,

Bin(t) = (1 —1t) - Bipr(t) +t- Bi_yn(t).

Specialné tedy vychazi, ze Bézierova kiivka prvniho stupné odpovida para-
metrické reprezentaci tisecky.

Pro vyssi stupné je pak mozné hledat bod pro dany parametr ¢ snadno pomoci
rekurzivniho algoritmu de Casteljau. Ten v kazdém kroku zredukuje stupen Bézie-
rovy kiivky o jedna. Pro odvozeni redukce nejprve rozepiseme hodnotu Bézierovy
kiivky pro parametr ¢ podle definic [1] a [2}

n

C(t) = i B n(t)P; = 2(1 —t)- Bin-1(t) - P+ it - Bi_i1n-1(t) - P

=0

Nyni si staci uvédomit, Ze Bernsteintiv polynom B,, ,_; a B_; ,, je vzdy nulovy.
Proto mtuzeme pokracovat:

n—1 n—1 n—1
Ct)=)> (1-t)Bin1(t)P+ Z tBin1(t)Piy1 = Z((l —t) P +1tP41) Bina ().
i=0 i=0 i=0

Tim jsme zredukovali problém na vyhodnoceni Bézierovy kiivky stupné n —1
s n kontrolnimi body P/ = (1—t)-P,+t- P,;;. Algoritmus tak pouziva jednoduché
geometrické tkony, v kazdém kroku rozdéli tsecku mezi sousednimi kontrolnimi
body v poméru ¢ : 1 — ¢. Toto déleni je dobfe vidét na obrazku [I.1]

V nasem pripadé se setkdme nejvyse s kubickymi Bézierovymi kiivkami. To
je totiz nejvyssi stupen, ktery je podporovan v béznych formatch SVG a PS.
Kubické kiivky maji 4 kontrolni body.

Obrazek 1.1: Postupna redukce Bézierovy kiivky tfetiho stupné

1.1.1 Vldastnosti

e Protoze pro Bernsteinovy polynomy plati rovnost
Y Bia(t)=1, (v,0<t<1)
i=0

libovolny bod Bézierovy krivky lezi uvniti konvexniho obalu kontrolniho
polygonu.

e Krajni kontrolni body Fy a P, jsou také krajnimi body Bézierovy ktivky.

e Libovolnou afinni trasnformaci kfivky lze provést transformaci kontrolnich
bodt.

e Velmi dilezitou, avsak nepfijemnou vlastnosti je, ze offsetovou krivku nelze
presné reprezentovat Bézierovou kiivkou. Offsetova kiivka je takova krivka,
ktera ma od predlohy v kazdém bodé konstantni vzdalenost d. Disledkem je,
ze pokud mame graficky objekt reprezentovany Bézierovou kiivkou s danou
sitkou, nelze obvod tohoto objektu popsat Bézierovymi kiivkami pfesné (viz
Hoschek, 1988)). S timto tikolem se potyka i Vectorix, takze mozné zpusoby
fFeSeni jsou popsané v ¢asti[3.5.3

e Délku Bézierovy kiivky mizeme zdola odhadnout vzdalenosti prvniho a po-
sledniho kontrolniho bodu a zhora délkou lomené ¢ary kontrolniho poly-
gonu.

e Bézierovu kfivku stupné n je mozné v libovolném bodé rozdélit a obé
vzniklé Casti presné reprezentovat Bézierovymi kiivkami stejného stupné,
jako meéla ptvodni kiivka. Pouzijeme k tomu mezivysledky algoritmu de
Casteljau. Kontrolni body ptvodni kifivky oznacime Fy; = P, a mezivy-
sledky z k-tého kroku Py ;. Prvni Bézierova kfivka pak bude mit kontrolni
bOdy P(),(), PLO? P270, Ce P’V%O a druha PTMO? Pn_1717 Pn_272, c. PO,n-

Tato vlastnost nam umoznuje kiivky snadno vykreslovat. Kazdy segment
budeme ptlit do té doby, nez jeho délka klesne pod nami definovanou mez.
Nésledné kazdou krivku nahradime tseckou mezi prvnim a poslednim kon-
trolnim bodem. Tim umime ziskat libovolné kvalitni aproximaci lomenou
carou.

1.1.2 Racionalni Bézierovy krivky

Nekdy se Bézierovy kiivky pouzivaji ve varianté rozsifené o vahové koeficienty.
Kazdy kontrolni bod P;, resp. jemu odpovidajici Bernsteiniv polynom B;,, je
prenasobeny vahovym koeficientem w;. Aby se stale jednalo o afinni kombinaci,
jsou vysledné koeficienty normovany:

Zn:o Bin(t) ~w; - P
C(t) = =5—)
Zj:O Bjn(t) - w;

Intuitivné plati, ze vétsi vaha pfridava bodu na ,dtlezitosti“ a krivka se tak
k danému bodu vice pfimyka. Dokud jsou vSechny vahy kladné, lezi cela kiivka
v konvexnim obalu kontrolnich bodi. Se zdpornymi vahami to vSak jiz neplati.
Oba tyto jevy jsou dobfe pozorovatelné na obrazku

Pokud jsou vSechny vahy w; jednotkové, dostavame predpis z definice [1}, tedy
obycejné Bézierovy kiivky (obcas se jim kvili absenci vah ¥ikd neraciondlni Bé-
zierovy kiivky).

Obrazek 1.2: Racionalni Bézierovy kiivky se shodnymi kontrolnimi body a vahami
wy = wy = w3 = 1 a proménlivou véhou w; € {—0,4;0;1;2;7}

Racionalni Bézierovy ktivky dokazi presné reprezentovat libovolné kuzelo-
secky. To neracionalnimi neni mozné. Pokud ma neracionalni Bézierova kfivka
kreslit ¢ast kruznice/elipsy, vzdy se jedné pouze o aproximaci.

1.2 Cesta

Jako cestu oznacujeme posloupnost na sebe postupné navazujicich primitiv,
jako jsou tusecky, eliptické oblouky a Bézierovy kfivky. U jednotlivych navazani
definujeme t¥idu geometrické spojitosti fadu k, znac¢ime ji G*, viz Hoschek! (1988)).

Parametrické kiivky A(t),0 < ¢t < 1 a B(s),0 < s < 1 spliiuji podminky
spojitosti:

e tiidy G°, pokud A(1) = B(0), tj. na sebe ,navazuji“,

e tiidy G', pokud navic A’(1) = I, - B'(0), tj. kiivky maji stejnou smérnici,
vysledny spline je hladky,

e tiidy G?, pokud navic A”(1) =1} - B"(0) + Iy - B'(0), tj. kiivky maji stejny
polomeér kfivosti,

kde I; jsou libovolné parametry. V tomto piipadé ¢arkou znacime derivaci. Tyto
parametry kompenzuji skutecnost, ze parametrizace kiivek mohou byt libovolné.
Pri stejné zméné parametru ¢ a s mohou kiivky A a B urazit zcela odlisnou
vzdalenost.

U cesty vyzadujeme spojitost G°, spojitosti vyssich fadd jsou jiz volitelné.
Casto se jesté setkame se spojitosti G, protoze ta zarucuje, Ze na kiivce nejsou
zadné ostré zlomy (rohy). Je samoziejmé mozné definovat t¥idy i pro vyssi fady,
ale nejsou pro nas prili§ zajimavé, protoze nejsou pouhym okem rozpoznatelné.

1.3 PouZivané formaty

1.3.1 Scalable Vector Graphics (SVG)

Obdobné jako je tomu u rastrovych obrazkt, existuje fada riznych formatiu
(SVG) (Dahlstrom a kol., |2011). Je totiz jeho vychozim vystupnim formatem.
SVG bézné pouziva napiiklad open-source editor vektorovych obrazkt [Inkscape
a je také podporovan vSemi (s vyjimkou jediného) vektoriza¢nimi nastroji uka-
zanymi v nasledujici kapitole. Jedné se o format zalozeny na XML (Extensible
Markup Language).

Forméat umoziiuje kromé vSech zakladnich primitiv popsanych vyse (s vyjim-
kou racionalnich Bézierovych kiivek) také jednotlivé objekty slucovat do skupin,
transformovat je, nastavovat jim pruhlednost ¢i na né kreslit barevné prechody.
Cesty pak lze napriklad vykreslovat pferusované. Do obrazku je také mozné vlozit
rastrovy obrazek, ¢i text, ktery je nasledné stale reprezentovan jako text. Nema
smysl zde vyjmenovavat vSechny moznosti formatu. My vyuzivame pouze cesty
slozené z Bézierovych kiivek. Pro ladici uicely program také umoznuje vlozit na
pozadi vektorového obrazku libovolny jiny (tfeba rastrovy) obrazek. Mizeme si
tak snadno zobrazit v jednom souboru jak predlohu, tak vysledek vektorizace.

8

Za povSimnuti jesté stoji, Ze SVG je definovano konsorciem W3C (World
Wide Web Consortium), které vyviji standardy pro web. Format SVG je totiz
bé&zné podoporvan ve vSech (grafickych) webovych prohlizecich. Obrazky v SVG je
dokonce mozné na webu animovat pomoci kaskadovych styli, ¢i je ptimo vkladat
do kédu stranky. Lze tedy ocekéavat, ze tento format v blizké budoucnosti jen tak
nezmizi.

Pro nas je jedinou nevyhodou SVG (ale i ostatnich forméti), Zze nepodpo-
ruje promeénlivou sitku ¢ary. Pri vektorizaci vSak obcas nachézime c¢ary, jejichz
tloustka stopy se v pribéhu méni. Pfed ukladdnim se musime s timto nedostat-
kem vyporadat. Detaily jsou popsané v kapitole [3.5.3] Je mozné, ze v ptisti verzi
formatu bude proménliva sifka jiz podporovana — viz navrh (Birtles, 2014]).

1.3.2 PostScript, PS

Druhy podporovany formét je PostScript (PS) (Adobe Systems Inc., [1999),
ktery je vyrazné starsi. Ve skutecnosti se jedna o zasobnikovy, turingovsky tplny
programovaci jazyk. PostScript pomoci pfikazt jako moveto (premisti se na po-
zici) a curveto (nakresli kubickou Bézierovu kiivku vedouci ze soucasné pozice
na novou pozici s pouzitim dvou dalsich kontrolnich bodi) postupné vykresluje
vysledny vektorovy obrazek.

Bézné se v PostScriptu popisuje vzhled jedné stranky. PS se totiz pouziva pii
tisku, kdy tiskarny (pfipadné tiskové servery) v sobé obsahuji jeho interpret.

Ve skutecnosti je vystupem programu soubor typu EPS (Encapsulated Post-
Script). Ten se od obycejného PS lisi jen v drobnostech. Pfedné definuje obdél-
nikovou oblast, ve které se kresleny obrazek nachazi (u PostcSriptu tato oblast
odpovida jedné strance). Na EPS jsou kladena dalsi omezeni — napfiklad musi
zachovat aktudlni pozici. Protoze nas export vyuziva jen zlomek z funkcionality,
na opravdové rozdily nenarazime.

1.3.3 Dalsi formaty

Existuje mnoho dalsich vektorovych formati. Nékteré z nich jsou dobte do-
kumentované, jiné jsou (nevetfejné) definované vyrobcem softwaru, ktery tento
formét pouziva. Mezi ty dokumentované spada format DXF (Drawing Exchange
Format) urceny pro software CAD (Computer aided design, tj. programi na ry-
sovani technickych vykresi).

V tomto formétu (ale i v jinych) se hladké kiivky reprezentuji pomoci B-splintt
(¢i dalsich variant jako tfeba NURBS — Non-uniform rational Basis spline). NS
nastroj vSak tuto reprezentaci nepouziva, nebudeme ji proto ani definovat. Prii-
padné zajemce odkdZeme na podrobnou knihu The NURBS Book (Piegl a Tiller,
1997)).

2. Metody vektorizace a existujici
nastroje

Vektorizace oznacuje cely proces pfevodu z rastrového obrazku na vektorovy.
Sklada se zpravidla z predzpracovani dat jesté v rastrové podobé, trasovani linii
(sledovani utvaru v rastru a jejich pfevod na vektorovou podobu) a volitelné
z dalsich dprav jiz vektorové podoby.

Jednotlivé pristupy k trasovani se lisi podle toho, jak a k ¢emu chceme zvek-
torizovana data pouzivat. Vektorizace najde uplatnéni naptiklad pti automatické
digitalizaci map (Léana, [2001)), kdy se snazime spravné rozpoznat mapové zna-
cky. V takovém pripadé je vektorizator zavisly na konkrétni tloze a pro dobré
vysledky by mél znat sémantiku dat.

Déle se vektorizace vyuziva v 1ékafstvi, napt. pfi zpracovani trojrozmérnych
skenti. Tim, Ze se automaticky podari najit stiedy cév ¢i stiev, se nasledné usnadni
prace lékaium. BliZze se timto problémem zabyva Clanek Bittera a kol. (Bitter
a kol., [2000)).

Hledéani stfedt car se také vyuziva pii praci s technickymi vykresy, protoze
software pro CAD c¢asto umi pracovat pouze s vektorovymi podklady. Jelikoz
bézné vykresy jsou slozené z tsecek a kruznic, nékteré vektorizacni néstroje,
naptiklad |[RasterVect, hledaji pouze tato primitiva.

Jak jsme jiz nastinili v ivodu, je mozné obrazek reprezentovat i pomoci ploch.
S tim se pfi vektorizaci setkdvame castéji, protoze je jednak snazsi a mnohdy
rychlejsi najit hranice objekti nez jejich stredy, a jednak pii trasovani stredt car
potiebujeme vstupni obrazek slozeny pravé z car. Trasovani ploch neklade tak
prisné omezeni na vstup, protoze pomoci ploch lze dobfe reprezentovat libovolny
obrazek.

2.1 Trasovani ploch

Obecné se snazime sledovat a pribézné popisovat hranice souvislé (jedno-
barevné) plochy. Tuto metodu vyuzivd napiiklad open-source néstroj Potrace
(Selinger, 2015) a v prvni fazi také komeréni Vector Magic (Cedar Lake Ventures
Inc.; Diebel, 2008)). Detaily metody si ukazeme na ptikladu programu a knihovny
Potrace, protoZze k nému existuje velmi dobra dokumentace (Selinger, |2003) a jsou
také verejné dostupné zdrojové kody.

2.1.1 Potrace

Potrace je primarné knihovna, nicméné je k ni dodavan i stejnojmenny kon-
zolovy program. Jako knihovnu jej vyuziva tfeba open-source vektorovy editor
Inkscape.

Vstupni obrazek je nejprve pfeveden na binarni, v piipadé knihovny tento
prevod musi provést volajici program. Z toho plyne, ze Potrace sam od sebe
nepodporuje vicebarevné obrazky.

Funguje v nékolika krocich. Prvné obrazek rozlozi na uzaviené oblasti. Sleduje
hranici mezi ¢ernou a bilou a jakmile se dostane zpét do pocatecniho bodu, nalezl

10

novou uzavienou plochu. Hodnoty vSech pixelti uvnitt této oblasti invertuje, diky
¢emuz postupné najde kontury vSech objektt v obrazku.

Nasledné nalezenou plochu aproximuje mnohothelnikem a v dalsi fazi jej vy-
hladi pomoci hladkych Bézierovych kiivek. Zde se program snazi detekovat ostré
rohy, aby zistaly zachovany. Kfivky se pak volitelné jesté snazi zjednodusit tim,
ze sousedni tseky propojuje.

Vlastnosti

Napftiklad v programu Inkscape jsou po vektorizovani knihovnou Potrace bilé
plochy chapany jako samostatné bilé objekty a nejsou odecteny od cerné, na které
lezi. Tim se zhorsuje editovatelnost obrazkii.

Dalsi nevyhodou je, ze samotné trasovani hranic ploch je cisté lokalni zalezi-
tost, tj. pracuje jen v malém okoli. Pokud je obrazek slozeny z relativné tenkych
¢ar, pozname, ze kazdy z okraji ¢ary je trasovan zcela nezavisle. Vytvori se totiz
prvni vektorizacni artefakty: tseky ¢ary s proménlivou sitkou. Pfi trasovani vzni-
kaji drobné odchylky od ideadlniho sméru. Tim, Ze se objevuji nezavisle, se Sifka
¢ary ve vystupu meéni, aniz by takovato zména byla na vstupu.

Dalsi artefakty se objevi naptiklad pri kiizeni dvou car. Pfi trasovani rastro-
vého obrazku po obvodu se ndm nemusi podafit najit jeden konkrétni bod, ve
kterém se méa okraj ostfe zalomit. Misto toho mize dojit ke sliti (a tedy opét lo-
kalné k rozsifeni ¢ar na obrazku). Toto se Potrace snazi eliminovat detekei roh,
ale neni to zcela spolehlivé.

2.1.2 Vector Magic

Komerc¢ni vektorizacni program Vector Magic navazuje na na Diebelovu di-
sertacni praci (Diebel, 2008) zabyvajici se pravdépodobnostni vektorizaci. V ni
popisuje algoritmus, ktery je témér jisté v programu Vector Magic stale pouzi-
vany.

K vektorizaci pristupuje jakozto k inverznimu problému rasterizace pomoci ba-
yesovské statistiky. Hleda nejpravdépodobnéjsi podobu vektorové predlohy, ktera
se vykreslenim do rastru prevede na vstupni obrazek. Pti tomto vykreslovani pred-
poklada zapnuty anti-aliasing. Problém vektorizace tedy prevadi na optimalizac¢ni
problém.

Celou ulohu tesi tak, ze nejprve nalezne pfiblizné pozice vSech utvard a na-
sledné je upfesni metodou konjugovanych gradientii. Teprve poté jsou hranice
jednotlivych objektii prevedeny na kubické Bézierovy ktivky.

Vlastnosti

Vector Magic podporuje plné automatickou vektorizaci, kdy sdm urc¢i vSechny
parametry a obrazek prevede. V této konfiguraci pracuje s libovolnym poctem
barev. Uzivatel tedy pfimo nemtize ovlivnit ani to, kolik barev se objevi na vy-
stupu.

V pokrocilém rezimu si uzivatel mtze zvolit pouzivanou paletu barev. Dalsimi
parametry lze ladit slozitost objekti, filtrovani drobnych chyb a miru odstrario-
vani artefakttt vzniklych slévanim car. Dale je mozné obrazek rucné upravit jesté

11

v bitmapové podobé a opravit tak chyby pfi segmentaci — ptridéleni nejpravdépo-
dobnéjsi barvy danému pixelu. V posledni ¢asti — ziejmé odpovida prevodu na
Bézierovy kiivky z Diebelovy prace (Diebel, 2008) — je mozné nastavit hladkost
a jednoduchost car a pripadné zapnout detekci rohti.

Pro snazsi nastavovani parametrt ma Vector Magic jesté zjednoduseny rezim,
ve kterém uZivatel vybira typ vstupu (fotografie, obrazek s ostrymi hranami a an-
tialiasovany), jeho pfibliznou kvalitu a mnozstvi barev. Barevnou paletu je mozné
libovolné upravit. Tim neupravujeme pouze mapovani barev ve vystupu, ale rov-
nou vybereme, které barvy se ma Vector Magic snazit hledat. Na konci mé uziva-
tel moZnost obrazek drobné ru¢né upravit (napiiklad smazat jednotlivé objekty
a odstranit tak pozadi).

2.2 Céarova vektorizace

Alternativou k trasovani ploch je vektorizace obrazku sledovanim stiedu jed-
notlivych objektti (centerline-tracing). Algoritmy pouZivajici tuto metodu by
v idealnim pripadé mély byt schopné se vyse popsanym vektoriza¢nim artefakttim
vyhnout.

Pti vektorizaci totiz nepracuji jen s jednou hranici, ale predpokladaji, ze cely
obrazek je slozen z car. Ty se nasledné snazi vyhledat. Protoze obrazek repre-
zentuji pomoci ¢ar a nikoli ploch, mohou snadno zabranit nezadoucim vykyvim
v jejich sifce. Teoreticky nemusi ani dochazet k problémtm se slévanim car svi-
rajicich ostré tihly, protoze dvé kiizici se cary jsou vektorové reprezentované jako
dvé samostatné s pevnou sitkou.

Libovolnou c¢aru pak ve vektorové podobé mizeme snadnéji upravovat. Pii
jejim otaceni, ohybani a prodluzovani se rovnou zachovava jeji sitka.

Cérovéa vektorizace vSak nemusi dobfe fungovat, pokud vstup neni sloZeny
z Car. Mtzeme si polozit otazku, jak bychom spravné meéli pomoci ¢ar reprezen-
tovat jeden plny ctverec?

Jelikoz problém c¢arové vektorizace neni snadny a vyhody se projevi jen na
uréitém typu vstupu, prirozené neexistuje ani tolik nastroja.

2.2.1 RasterVect

RasterVect| je komerc¢ni nastroj, ktery nabizi ¢tyfi typy reprezentace — obdél-
niky (Solids), obrysy (Outlines), vyplnéné obrysy (Filled outlines), ¢ary (Center-
lines). Prvni je sice dostupnd i v bezplatné verzi, ale neudéla nic vic, nez preve-
deni kazdého pixelu na ¢aru o Sifce jednoho pixelu. To sice piisobi jako zbytecna
funkce, ale mtize to byt praktické pro uzivatele CAD softwaru, ktery nepodporuje
bitmapové formaty. Tteti reprezentace jsou jiz zminéné plochy. Druha se oproti
tomu lisi jen v tom, Ze u nalezeného obvodu plochy neni ve vystupu nastavena
barva vyplné. Pro nas nejzajimavéjsi je vSak posledni z variant, protoze se naseho
tématu tyka nejuzeji.

Program RasterVect poskytuje také editacni nastroje jak pro rastrové obrazky,
tak po natrasovani pro vektorové. Protoze program je cileny pravé na technické
vykresy, pouziva pri metodé centerline pouze tsecky a oblouky.

Vystupy porovname s nasimi v kapitole

12

3. Navrh algoritmu

N4&s vektorizacni algoritmus pracuje v nékolika krocich. Nejprve dojde k pred-
zpracovani v rastrové podobé. Obrazek prevedeme na binarni — ¢ernobily. Aby
nazvy operaci ve druhé fazi odpovidaly svému intuitivhimu vyznamu, budeme
pracovat s Gernym pozadim (hodnota 0) a objekty v popfedi budou bilé (hod-
nota 1). Protoze lze predpokladat ¢astéji vstupni obrazky s bilym podkladem,
barvy jsou v implementovaném programu na zacatku invertovany. Toto nasta-
veni lze snadno zrusit.

Druhym krokem je hledani morfologické kostry (v tuto chvili jiz vzdy bilych)
objekti. Kostra odpovida v rastrové podobé stfedtim hledanych car. V této fazi
(béhem hledani) také pfedpocitame Sitky ¢ar. To vSe stéle v rastrové podobé.

Teprve poté dojde k samotné vektorizaci. Metoda se snazi trasovat (stopo-
vat) jednotlivé ¢ary. Vyjdeme z jednoho bodu kostry a snazime se pokracovat
po care tim, Ze sledujeme jeji kostru. Pouzité pixely z kostry si pribézné zna-
¢ime, abychom zabranili opakovanému priichodu stejnymi misty. Pokud nemame
kam pokracovat, nalezli jsme konec jedné c¢ary. Tento postup opakujeme, dokud
v kostte zbyvaji néjaké body. Tim dostaneme prvni hrubou vektorovou podobu
linii.

Nyni prijde na rfadu ¢tvrty krok, ve kterém se pracuje jiz s vektorovou repre-
zentaci. Navazujici iiseky miizeme spojit, pokud jsou dostatecné monoténni. Tim
snizime velikost vystupu, aniz bychom se odklonili od podoby originélu. (Vypus-
time ty kontrolni body, které nepfinaseji novou informaci.) Ptvodni k¥ivku tedy
aproximujeme s pomoci jiné s nizsim poctem tuseki, tedy i kontrolnich bodt.

Posledni fazi je samotny export dat do zvoleného formatu. Ani jeden z pouzi-
vanych (SVG a PS) totiz neumi piimo reprezentovat cesty s proménlivou Sifkou.
Vectorix vsak v pribéhu trasovani pocita s tim, ze se $itka muze ménit. Algorit-
mus se snazi sdm rozhodnout, jaka reprezentace je vhodna pro danou c¢aru a sirky
bud zpriméruje, nebo kiivku prevede na jeji obvod.

3.1 Faze 1: Prahovani a filtrovani

Pro hledani morfologické kostry potiebujeme, podobné jako knihovna Potrace,
Cisté bitonalni (dvoubarevny) obrazek. K jeho ziskéni se zpravidla pouziva praho-
véani (thresholding) obrazku, ktery je v odstinech Sedi. Pixely s jasem nad danou
hodnotu prahu oznac¢ime za bilé a ostatni za cerné. Potfebujeme k tomu jen
znat vhodné nastaveni prahu. Ten samoziejmé muze byt pro rtizné obrazky rtizné
velky.

3.1.1 Otsova metoda

Velikost optiméalniho prahu lze pro dany obrazek vypocitat napriklad pomoci
Otsovy metody (Otsu, (1979). Ta prepoklada, Ze hodnota kazdého pixelu ma od-
povidat jedné ze dvou barev a jenom je navic zatizena Sumem. Hledame prah —
hodnotu jasu, ktera pixely rozdéluje na dvé tridy.

Otsova metoda nejprve pro obrazek uréi jeho histogram[l] Nésledné vyzkousi

'Histogram obrazku udavé Getnosti pixelt s jednotlivymi Girovnémi jasu.

13

vSechny mozné hodnoty prahu tj. rozdéleni histogramu na dvé t¥idy. Ttidy ozna-
¢ime ¢isly 0 (pixely s jasem mensim nebo rovnym prahu) a 1 (jas vétsi nez prah).
Protoze jsme u obrazku limitovani zpravidla 256 moznymi jasy a cely vypocet
muizeme provadét na histogramu, neni toto zkouseni prili§ naroc¢né.

Otsu ve zminéné praci ukazuje, ze optimalni hodnota prahu je ta, pro kterou
vychézi nejmensi vaZzeny soucet rozptylt v ramci kazdé z t¥id (kazdy rozptyl je
prenasobeny vahou odpovidajici velikosti dané t¥idy):

o (t) = wo(t) - o5 (t) +wi(t) - 07 (1),

kde wy(t) a wi(t) jsou postupné cetnosti pixelit z t¥id 0 a 1; o2(t) a oi(t) jsou
rozptyly jednotlivych trid.
Ty se na obrazku s jasy z mnoziny {0, 1, ... L} definuji nasledovné:
t (i) - (i)
: 2 : 2
op(t) =) (i — no(t)) ot(t) =Y (i—m(t))

Y
i=0 i=t+1 w1 <t>

kde po(t) a p1(t) znaéi stfedni hodnotu jasu piexlt v dané tf¥idé a p(i) je Cetnost
pixeltd s jasem i. (Je-li nékterd z cetnosti wy(t) nulova, zadefinujeme odpovidajici
rozptyl jako o2 (t) = 0.) P¥iklad histogramu a jemu odpovidajicich rozptyld vidime
na obrazku [B.1l

3.1.2 Adaptivni prahovani

Ani Otsova metoda si vSak neporadi s obrazky, které jsou v riznych castech
osvétlené odlisné, a s jednim nastavenim prahu nedostaneme nikdy dobry vy-
sledek. Ptikladem mutize byt nekvalitné vyfotografovany a proménliveé osvétleny
papir. Pro takové vstupni obrazky potrebujeme zafidit, aby hodnota prahu za-
visela na primérném jasu v dané oblasti. Toho lze docilit s pomoci adaptivniho
prahovani.

Funguje tak, ze v kazdém pixelu vybereme jako prah priimérnou hodnotu
z okolnich pixel posunutou o urcitou konstantu. Velikost okoli pfitom potiebu-
jeme dobfe zvolit. Pokud je pfili§ malé (celé se vejde do objektu na obrazku),
muize se nam stat, ze nékteré pixely z vnittku bilého objektu oznac¢ime jako cerné
(pfipadné naopak ¢erné oznacime jako objekt). Proti tomu velké okoli zptisobi,
ze pro urceni prahu se prumeéruje velka ¢ast obrazku a tedy se prah nezméni pri
vyhodnocovani pixeld v tmavsich a svétlejsich ¢astech.

V programu si pozadovany typ prahovani vybird uzivatel. Pokud neurci jinak,
pouzije se fixni prah spocteny Otsovou metodou. Pro méné kvalitni vstupy ale
muze byt potfeba zvolit pravé adaptivni prahovani.

3.1.3 Filtrovani nedokonalosti

Protoze vstupni obrazek mtize byt zasumély, je mozné, ze bilé objekty v sobé
obsahuji malé cerné tecky. V dalsi fazi vSak potfebujeme, aby objekty zadné
nedokonalosti neobsahovaly. Zacelime proto vSechny diry, které jsou mensi nez
dvojnasobek zadané konstanty, ktera urcuje jak vzdalené pixely povazujeme za
sousedni. Toho docilime morfologickou operaci uzavieni. Abychom se také zba-
vili Sumu opac¢ného typu (bilé tecky), provedeme nasledné jesté operaci otevrend.
Podrobnéji si obé popiseme hned v nasledujici fazi.

14

Histogram

0.04 : |

0.035 - |

0.03 - |

2 0.025 - |
o

G 002 |
=

g 0.015 |

0.01 - |

0.005 - |

0 N | ‘
0 50 100 150 200 250
Jas
Rozptyly
2500 | : ‘
Tfida O (jas =t) ——
Tfida 1 (jas > t)

2000 + Vazeny soucet |

— 1500 |
2
o
N
o

< 1000 |

500 - |

0 ‘ - | ‘
0 50 100 150 200 250
Prah (t)

Obréazek 3.1: Histogram a jemu odpovidajici rozptyly t¥id pouzivané Otsovou
metodou pro vypocet prahu. Jeho optiméalni hodnota je v tomto pripadé t = 126

15

3.2 Faze 2: Morfologicka kostra

U cernobilych obrazki miizeme hovotit o takzvané morfologicke kostre. Jedna
se o mnozinu stfedd vepsanych kruznic, pfipadné jinych geometrickych objekti.
vepisovat kruznice, jelikoz jsou invariantni vzhledem k rotaci. Z toho divodu
také ve vystupu vykreslujeme cary s kulatymi konci. Nemusime tak konce nijak
specialné Tesit, protoze jsou vzdy spravné orientované.

Vepisovani kruznic by tedy bylo pro dalsi zpracovani idealni. Diky ctvrté
fazi (post-processing) vSak nepotifebujeme najit kostru zcela presné. Vystacime
si vétsinou s vepisovanim osmithelniku, ¢tverce, ¢i diamantu — ¢tverce otoceného
o thel 7/4, tedy postaveného na $picku. Toto zjednoduSeni ndm ptinese hlavné
zrychleni celého vypoctu.

3.2.1 Morfologické operace

Nejprve si zavedeme pouzivané obrazové operace na binarnim obrazku. Prvni
z nich je eroze (erosion). Pfi erozi zménime vSechny bilé pixely, které maji alespon
jednoho cCerného souseda, na cerné. Tim bilé objekty obereme o jejich krajni
pixely.

Opacénym zpusobem se chové dilatace (dilation): vSechny sousedni pixely bi-
Ijch obarvime také na bilo. Dilatace tedy zméni ty stejné pixely, které by zménila
eroze na invertovaném obrazku. Piiklad obou operaci vidime na obrazku [3.2]

Bézné se za sousedy povazuji vSechny pixely, které s danym sousedi hranou
¢i rohem. Jednd se o takzvané osmiokoli — kazdy pixel s vyjimkou krajnich sou-
sedi s osmi pixely. Druhou nejcastéjsi variantou je ¢tytokoli, kdy sousedni pixely
musi mit spole¢nou hranu. Podle toho, jak presné definujeme sousedni pixely pro
tyto dvé operace, dostaneme nakonec bud kostru vzniklou vepisovanim ¢tverct
(osmiokoli), nebo diamantt (Etyfokoli).

Dalgimi operacemi jsou otevieni (open) a uzavieni (close). Podivame se, co
se s obrazkem na vstupu stane pii operaci otevieni, coz je ekvivalentni s prove-
denim eroze a nasledné dilatace. Otevienim smazeme ty bilé pixely, které byly
osamocené, tedy zmizely pri erozi a dilatace je jiz neméla jak obnovit. Uzavieni
je naopak nejprve dilatace a poté eroze, tj. ,zacelime® hranice objektil a odstra-
nime vnitini diry. Pro filtrovani nedokonalosti v predchozi fazi pouzivame pro
tyto operace jako sousedni pixely vSechny, které jsou vzdalené maximalné zada-
nou konstantu.

3.2.2 Vypocet morfologické kostry — skeletonizace

Pted vypoctenim morfologické kostry (skeletonizaci) jiz mame z predchozi faze
binarni rastrovy obraz, tedy vstup po prahovani a filtrovani. Vystup skeletonizace
budeme uchovéavat také v rastrovém obrazku, ktery bude na zac¢atku prazdny
(tj. Cerny).

V kazdém kroku skeletonizace provedeme otevieni, které nékteré pixely smaze.
Tyto pak tvofi kostru tenkych objektt, naptiklad v prvnim kroku to budou jed-
nopixelové ¢ary. Proto je pridame do vystupniho obrazku s kostrou. Nyni vstup
zerodujeme, ¢imz vSechny bilé objekty ztencime, a cely postup opakujeme.

16

(a) Eroze (b) Dilatace

Obrazek 3.2: Priklad eroze a dilatace na c¢tyfokoli, vstupni obrazek je zobrazen
bile, vystup operace polopriithlednou ¢ervenou. Pro urceni sousednosti pixelt zde
pouzivame ¢tytokoli

Pokud ve vstupnim obrazku neni zadny bily pixel, jsme hotovi a na vystupu
mame celou morfologickou kostru.

Algoritmus tedy vypada néasledovné:

e In<+ Vstup // O - Cerny pixel, 1 - bily pixel (objekt)

e Vynuluj Out

e Opakuj, dokud In obsahuje bily pixel:

— T « dilate(erode(In)) // operace open
— D+ and(In,not(T)) // smazané pixely (€ In AN ¢ T)

— Out < or(Out, D) // ptidani do kostry
— In < erode(In) // zmenSeni biljch objektd
e Vrat Out

Zde také poznamenejme, zZe ve vystupnim obrazku mtizeme rovnou zazname-
navat informaci o tom, v kolikaté iteraci jsme dany bod do kostry pridali. Tim
mame ulozenou informaci o vzdalenosti daného bodu od nejblizsiho okraje, a tedy
i polovinu sitky cary, ktera timto bodem vede.

Aby byl algoritmus konec¢ny, potfebujeme mit na vstupu alespon jeden c¢erny
pixel. Ten snadno ziskame tak, ze kolem celého vstupu pridame jednopixelovy
cerny ramecek. Zaroven tim také zafidime, ze kostra ¢ary vedouci podél okraje
bude opravdu v jejim stfedu, protoze tuto ¢aru budeme ztencovat z obou stran
stejné. Kdybychom ramecek nepridali, tak pixely na hranici nebudou mit cerné
sousedy, a eroze s nimi nic neude€la.

Pokud jako sousedni pixely oznacime ty, které maji spole¢nou jednu hranu
(¢tyfokoli), dostaneme kostru po vepisovani diamati. Alternativnim pohledem
tuto kostru tvoiri body, které jsou od hranice nejvzdalenéjsi (tj. stiedy vepsa-
nych kruznic) v manhattanské metrice £'. Pokud jako sousedy oznac¢ime i pixely
sousedici rohem (osmiokoli), budeme vkladat ¢tverce — kruznice v metrice £°°.

17

Obrazek 3.3: Kostra po odprahovani Obrazek 3.4: Vzdélenostni mapa

Klasické eukleidovské metrice £? se miizeme o trochu piiblizit tim, Ze budeme
obé dvé varianty pravidelné stiidat. Tim efektivné dosdhneme vkladani osmitihel-
nikt. Tento zptsob vypoctu kostry byl inspirovan algoritmem Diamond-Square
(Fournier a kol., [1982) na generovani ndhodného terénu. Ukazka skeletonizace je
na obrazku 3.3l

Slozitost vypocétu

Oznacme rozméry obrazku, r vysku a s sitku. Po pfidani rdmecku probéhne
maximalné min(r, s)/2 iteraci, protoze nejpozdéji v i-té umazeme tadky i a r — i
a sloupce 7 a s —1. V kazdé iteraci provedeme nejvyse konstantni pocet operaci na
jedno policko. V pfipadé zcela bilého vstupniho obrazku (pouze s ¢ernymi okraji)
na tento limit narazime. Celkova ¢asova slozitost tedy je O(r - s - min(r, s)).

Teoreticky by bylo mozné algoritmus zrychlit az na slozitost O(r - s), protoze
morfologické operace méni pouze ty pixely, které jsou na hranici ¢ernych a bilych
objektid. Neni proto potieba v kazdém kroku prochazet cely obrazek, ale staci
pracovat na bilych pixelech, které maji ¢erného souseda. Takovéto pixely nikdy
nebudeme zpracovavat ve vice iteracich, protoze jsou na konci aplikovanim eroze
smazany. Toto zrychleni mizeme implementovat pomoci fronty.

Vepisovani euklidovskych kruzZnic

Pokud bychom chtéli do obrazku vepisovat opravdové kruznice, algoritmus
musime drobné upravit. Erozi nebudeme aplikovat na zerodovany obrazek z pred-
chozi iterace, ale vzdy vezmeme pocatecni vstup a zerodujeme jej tak, ze za sou-
sedni pixely povazujeme vSechny ve vzdalenosti rovnajici se poc¢tu jiz probéhlych
iteraci. V k-té iteraci (¢islovano od 0) tedy nejprve ,oloupeme® k vrstev a poté
do kostry pridame ty pixely, které jsou osamélé — zmizi operaci open na ¢tytokoli.

Problém je, ze tato varianta algoritmu je pomala. Jen samotna eroze v k-té
iteraci trva O(r - s - k?) operaci, protoze pro kazdy pixel musime piekontrolo-
vat fddové k% sousednich pixeltt. VSechny kroky dohromady maji proto éasovou
slozitost O(r - s - min(r, s)), protoze omezeni na pocet iteraci je opét stejné jako
v pfedchozim pfipadé, nejvyse min(r,s).

18

Vzdalenostni mapa

Podobné jako pocitame Sitku ¢ary pro body kostry, tedy jako ¢islo iterace,
ve které jsme bod pridali do kostry, mtizeme vzdéalenost od okraje pocitat pro
vsechny body. Staci si pro kazdy zapamatovat, v kolikaté iteraci jsme jej ode-
brali ze vstupu pomoci eroze. (V piipadé vepisovani kruznic jde pouze o prvni
odebrani.) Ukazka vzdalenostni mapy je na obrazku

3.2.3 Zhangiuv-Suentiiv algoritmus

Vystup vyse uvedeného algoritmu na hledani kostry nezarucuje, ze je vysledna
kostra souvislého tseku také souvisla. Souvislost kostry nam vsak pomiize v dalsi
fazi vektorizace. Ukdzeme proto jesté Zhanguv-Suentv algoritmus (Zhang a Suen),
1984), ktery souvislost zachovava.

Zhangtv-Suentiv algoritmus obdobné jako pfedchozi popsany v jednotlivych
krocich odebira z okraje objektu pixely. Odmitne vSak odstranit ty pixely, které by
kostru mohly rozdélit (artikulace). Jakmile jeden krok nezmeéni obrazek, zistala
algoritmu kostra obrazku.

Sousedni pixely pixelu P; si pojmenujeme podle nasledujici tabulky:

Py Py Pj
B P Py
P s b5

Odstranéni pixelt v kazdém kroku probiha paralelné. Nejprve si tedy vSechny
pixely k odstranéni oznacime a teprve poté je smazeme. Jsou dva typy kroki,
které se pravidelné stiidaji. Pixel P, oznacime v lichém kroku ke smazani, pokud
plati nasledujici podminky:

(a) Py je bily, (Cerné pixely nemusime mazat vicekrat)
(b) 2 < B(P), (pixel neni soucésti kostry)

(c) B(Py) <6, (pixel je na okraji objektu)

(d) A(P) =1, (pixel neni artikulace)

(e) alespoii jeden z pixela {Ps, Py, Ps} je Cerny,

(f) alespon jeden z pixelt { Py, Ps, Ps} je Cerny,

kde B(P;) je pocet bilych pixelid v mnoziné { Py, Ps, ... Py} a A(P;) je pocet vzort
Cerna, bila v cyklické posloupnosti Ps, Ps, ... Py, P,. Sudy krok je stejny, jenom
se zméni podminky (e) a (f) na nésledujici:

(e’) alespori jeden z pixeli {P», Py, Py} je ¢erny,

(f’) alespori jeden z pixela {P,, Ps, Py} je Cerny.

U Zhangova-Suenova alogritmu si sice také miizeme pamatovat ¢islo kroku, ale
neodpovida zde jako u predchoziho algoritmu poloméru néjakého vlozeného ob-
jektu. Z toho divodu jsou v programu implementovany oba algoritmy. Zhangtiv-

Suentiv se pouziva na nalezeni kostry a pro vypocet vzdalenostni mapy se vyuziva
vkladani osmithelnik stiidanim diamantu a ctverce.

19

3.3 Faze 3: Trasovani

Tretim krokem je samotny prevod z rastrové podoby morfologické kostry
na vektorovou. Vétsina pixelii na kostie sice odpovida stfediim hledanych car,
ale obcas z kostry vybocuji vybézky k hranicim bilého objektu. Tyto vybézky
muzeme od bézného stfedu cary odlisit tim, ze pixely na vybézcich maji mensi
a postupné klesajici vzdalenosti od okraji. Vzdalenostni mapu i kostru mame jiz
spocitanou z predchoziho kroku.

Abychom nejprve zpracovali delsi tseky a nezabyvali se takovymito odboc-
kami, zacneme s trasovanim v téch bodech kostry, které maji nejvétsi vzdalenost
od okraji. Pii samotném trasovani si pak pribézné udrzujeme smér, ve kterém
by ¢ara méla pravdépodobné pokracovat. Tuto informaci ziskdvame z toho, kudy
vedla v naposledy vektorizované casti kiivky. Na pocatku trasovani jedné cary
zaddny smér nemame a vSem moznym smeértum davame stejnou pravdépodobnost.
VSechny pouzité body kostry si oznacujeme, abychom stejné casti netrasovali
vicekrat.

3.3.1 Vybér pocatecniho bodu

Kazdou cestu zac¢iname trasovat v bodé kostry, ktery je ze vSech neoznacenych
nejvzdalenéjsi od okraje objektu. Souradnice jesté upfesnime tim, ze se podivame
i na okolni pixely. Zadefinujeme si k tomu miru vhodnosti. Cim je vyssi, tim je

bod vice uprostied objektu, a tedy je vhodnéjsi jako stfed cary. Pro konkrétni
(necelociselny) bod C' uréime miru vhodnosti jako

kde @ je mnozina pixel v okoli bodu C, dist(P) je vzdalenost pixelu P od
okraje objektu (vyctend ze vzdalenostni mapy) a o2 je parametr funkce. Urcuje
rozptyl odpovidajicitho normalniho rozdéleni. Diky vlastnostem tohoto rozdéleni
nam staci pro dostate¢né presnou miru vhodnosti zapocitat pouze pixely do vzda-
lenosti 30 od bodu C'. Jako startovni bod pouzijeme takovy, ktery miru vhodnosti
maximalizuje.

Ze startovniho bodu nasledné hledame cestu. Jakmile ji najdeme, otoc¢ime ji
a pokracujeme v hledani. Tim zafidime, Ze cesta startovnim bodem prochézi,

Aby startovni bod z ¢ary nikterak nevybocoval, po otoceni ¢ary jej nejprve
smazeme. Zaruc¢ime tim lepsi hladkost hledané k¥ivky a také nepotiebujeme poca-
tecni bod hledat dokonale pfesné. Pti hledani maxima zkousime jen nékteré moz-
nosti.

3.3.2 Vybér nasledujiciho bodu

V kazdém okamziku trasovani méame nalezeny souvisly tsek ¢ary (posloupnost
bodil) a snazime se najit nasledujici novy bod. Vybirame z nékolika moznosti,
kudy by ¢ara mohla vést. Varianty nachézeji dva riizné prediktory, které si zahy
popiSeme. Pro kazdou z variant spocteme jeji fitness a vybereme tu nejlepsi,
tj. maximalizujici ohodnocujici fitness funkci.

20

Timto zptisobem bychom vsSak ohodnoceni pocitali pouze lokalné pro novy
segment. Bylo by tak mozné, Ze prestoze vybereme lokalné nejvhodnéjsi variantu,
nebude mozné na dany tsek rozumnym zptisobem navazat. Pritom alternativni
bod mohl byt pro dalsi pokracovani ¢ary vyhodnéjsi. Abychom tento problém
omezili, vyzkousime pro kazdou variantu provést vzdy nékolik krokidi dopredu
a ohodnocujeme az celé delsi tiseky. Timto zptisobem se program brani prednost-
nimu trasovani popsanych vybézki.

Hladké sledovani a rohy

Nejcastéji se snazime vybrat bod tak, aby novy tisek co nejpresnéji pokryval
vSechny mezilehlé pixely lezici v kostie a zaroven byla ¢ara co nejhladsi.

Zacneme tak, ze si vybereme stejny smér, jaky méla ¢ara v predchozim tseku.
V tomto sméru nakreslime tsecku s délkou urcenou parametrem nearby_limit.
Pro ni spoc¢itame jeji miru vhodnosti podobné, jako jsme pocitali miru vhodnosti
pti hledani pocatecniho bodu. Jediny rozdil je, zZe zapocitavame druhou moc-
ninu vzdalenosti pixelu od tsecky (misto od bodu). Nyni vybrany smér postupné
upravujeme, abychom miru vhodnosti maximalizovali.

Tento prediktor se sam podle nastaveni parametru smoothness (maximalni
povoleny rozdil mezi thly) rozhodne, jestli nové nalezeny usek navazuje dosta-
tecné hladce, nebo mé radéji vygenerovat ostré zalomeni ¢ary (roh). Pokud je
odchylka predchoziho a nového sméru mensi nez tento parametr, povazuje se
usek za hladky. Pokud jsme vSak Gpravami sméru tusecky tento limit prekrocili,
povazujeme misto za roh.

Pokud je tisek hladky, obdobné najdeme také kontrolni body pro Bézierovu
kiivku. Hleddme ve vzdéalenosti nearby_limit - nearby_control_smooth.

V pripadé detekovaného rohu jej jesté musime presné najit. Vime jen, Ze se
nachazi nékde mezi poslednim bodem a tim nové vzniklym. Stejnym zptisobem,
jakym hledame vhodny tihel k pokracovani, uré¢ime v nové vzniklém bodé smérnici
kostry. Za roh pak povazujeme priisecik této nalezené smérnice se smérnici ¢ary
v pfedchozim natrasovaném useku.

Pokracovani z rohu a prvniho bodu

Pokud vychazime z rohu ¢i prvniho bodu ¢ary, nemame zatim urcenou zadnou
smérnici. V takovém piipadé zkousime hledat ve vSech moznjch smérech. Uhel
27 rovnomérné rozdélime na angle_steps dilt. V kazdém sméru pak zkousime
pokracovat stejnym zptisobem, jako v predchozim piipadé.

Detekce koncu

Prediktory vyse se snazi vybrat nejlepsi varianty. Pokud vSak c¢ara konci, je
mozné, ze prediktor vybere sice spravny smér, ale neodhadne vzdalenost a kostra
skonc¢i drive, nez je prediktorem nalezeny novy bod. V tom ptipadé bychom jej
chtéli posunout blize ke kraji kostry a oznacit jako koncovy. Z koncového bodu
jiz. nehledame dalsi pokracovani.

21

3.3.3 Tipovani a priichod do hloubky

Jak jiz bylo naznaceno, samotné prediktory funguji lokélné a mohlo by se nam
stat, ze se na kfizovatce kostry vydame nevhodnym smérem a ¢ara zdhy skonci.
Abychom tento piipad minimalizovali, algoritmus provede az allowed depth
krokt dopfedu, nez dany smeér oznaci za finalni.

Pokud by néktery z krokt nebyl dostateéné vérohodny (porovnavéani s para-
metrem depth_auto_choose), je to pravdépodobné zptsobeno tim, Ze z néj neni
jak pokracovat dal. Algoritmus se proto vrati zpét a vybere dalsi lokalné nejle-
psi smér, ktery uz globalné miize mit vétsi vérohodnost. Ze vsech otestovanych
moznosti si pak pamatujeme nejlepsi moznou.

Kdyz najdeme dostatecné vérohodnou posloupnost krokt, déle jiz zbylé moz-
nosti neprohledédvame a rovnou se v daném sméru posuneme o jeden krok a cely
proces hledani opakujeme.

Tim se dokdzeme vyhnout slepym cestam na ktizovatkach v pripadé, ze exis-
tuje lepsi varianta. Na druhou stranu castéjsi tipovani dokaze vektorizaci velmi
zpomalit.

P1i pouziti Zhangova-Suenova algoritmu na hledani kostry tipovani nepotte-
bujeme zapinat. Kostra je dostatecné jednoducha na to, abychom si vystacili
s vysledkem prvniho pouzitého prediktoru.

3.3.4 Zajisténi konecnosti

Snaha o dodrzeni sméru sice zabranuje tomu, abychom se v jednom bodé
otocili a vyrazili zpét po stejné casti kostry, po které jsme piisli, ale nezabrani
cykleni. Potfebujeme zafidit, abychom jednu ¢aru netrasovali vicekrat.

Po natrasovani ¢ary bychom mohli pouzité pixely vytadit z kostry. Tim vSak
nevyfesime zacykleni v rdmci trasovani jedné ¢ary (predstavme si obrazek s kru-
Znici, tu by bylo mozné neustale obchazet dokola). Proto pixely kostry oznacu-
jeme za pouzité ve chvili, kdy je vyuzijeme pro né€jakou ¢ast cary. Pokud jsme
pixely oznacili v ramci tipovani, musime je zase pii navratu odoznacit. Abychom
spravné pixely poznali, budeme jim pfirazovat ¢iselné popisky s aktualni hloubkou
zanoreni.

Tim zabranime cykleni, ale zarovenn umoznime plynulé trasovani kiizicich se
¢ar, které maji cast kostry spolecnou. Nezakazeme tedy pouziti oznacenych pixelt,
ale pouze vynutime, aby vzdy alespon jeden pouzity pixel kostry byl neoznaceny.

3.4 Faze 4: Vyhlazovani

Po natrasovani mame sice jiz vektorovou podobu obrazku, ale kazda jeho
cesta je slozena z velkého mnozstvi bodl. Takovy obréazek pak pii ulozeni zabira
zbytetné mnoho mista a ani se s nim v editoru nepracuje snadno. Cesty proto
zjednodusime a tim i vyhladime drobné nedokonalosti.

V programu pred timto krokem jesté prevadime cary s proménlivou Sitkou
stopy na obvodovou reprezentaci, protoze pri zjednodusovani sitku nejprve zpri-
mérujeme. Pokud bychom ji nepriimeérovali, stejné by k tomu doslo pii exporto-
vani. Timto si vSak zjednodussime kéd.

22

Algoritmus vyhlazovani je popsan v ¢lanku Approzimate conversion of spline
curves (Hoschek| 1987)). My jej pouzivame v lehce upravené podobé. Puvodni
algoritmus nejprve kazdou Bézierovu kiivku rozdéli v nékolika bodech. Vznikne
tim lomené cara, kterou nésledné aproximuje pomoci jedné kiivky. Pokud se
aproximace nepodari, resp. aproximacni kiivka je prilis vzdalena od téchto bodt,
rozdéli ji v bodé s nejvétsi chybou a na obé ¢asti se zavola rekurzivné.

V nasem programu postupujeme obracené. Zac¢neme se dvéma segmenty a po-
kusime se je aproximovat jednim. Pokud se to podari, pridame dalsi segment
a zkusime aproximovat vSechny dohromady. Jakmile jednou selzeme, vratime se
o jeden krok zpét.

Tento zptisob sice neni tak efektivni, ale je mnohem snazsi na implementaci.
Vystupem ptivodniho algoritmu je totiz hladka cesta (spojitost t¥idy G'). My
jsme vsak pri trasovani mohli nalézt rohy, které vyhladit nechceme. Nas zptisob
je tak miize snadno rozpoznat a v pridavani dalsich segmentti se zastavi.

Zbyva popsat, jak se hledd aproximacni krivka, mame-li jiz mnozinu bod.
Krajni body by mély byt shodné s krajnimi body lomené c¢ary, nemusime je
tedy hledat. Stejné tak pro zachovani spojitosti mame v téchto krajnich bodech
urc¢ené smérnice. Zbyvaji ndm dva volné parametry — vzdalenosti kontrolnich
bodt Bézierovy kiivky (podle znaceni z kapitoly [L.1| to jsou vzdélenosti | Py — P |
a |Py — Psl.)

Ty mtzeme urcit metodou nejmensich ¢tvercli, pokud zname spravné casy
bodti, které jsou na hledané kiivce nejblizsi k bodéim lomené cary. Na zacatku
vSak Casy nezname. Odhadneme je proto ze vzdalenosti jim odpovidajicich bodu
na lomené ¢are (tj. souctem délek vSech usekt pred bodem vydéleny délkou celé
lomené ¢ary). Pro tyto Casy spocitdme nové vzdalenosti kontrolnich bodu.

Nyni mizeme definovat chybové vektory:

5, = A(t;) — P,

kde A je nalezena Bézierova kiivka, P; body na lomené c¢afe a t; ¢asy odpovi-
dajici jednotlivym bodim. Spravnou parametrizaci mame pouze tehdy, kdy jsou
chybové vektory kolmé na tecny ke kiivce.

Casy proto posuneme ve spravném sméru a tim parametrizaci vylepsime. Poté
znovu metodou nejmensich ¢tvercii nalezneme vzdalenosti kontrolnich bodi a celé
to nekolikrat zopakujeme.

Algoritmus se zastavi ve chvili, kdy je velikost nejvétsiho chybového vektoru
mensi nez konstanta dand parametrem approximation error. (Pfipadné se za-
stavi s neuspéchem, pokud je pfekrocen maximéalni povoleny pocet iteraci).

3.5 Faze 5: Export

Po celou dobu vektorizacni algoritmus pocita s tim, Ze ¢ara mize mit proménli-
vou $itku. To ovSem neni mozné primo zapsat do vystupnich formati. Proménliva
sitka Bézierovy kiivky neni podporovana ani v SVG, ani v PS.

Méme néekolik moznosti, jak se s problémem vyporadat. Kazda z nasledujicich
metod je vhodna v jiné situaci. Nejucinnéjsi tedy je vystupni metody zkombinovat
a kazdou ¢aru vypisovat pro ni nejlepsim zptisobem. Neni vSak snadné strojove
poznat, kterd z variant je pro danou ¢aru nejvhodnéjsi. Program se toto snazi

23

odhadnout spocitanim rozptylu sitky kazdé c¢ary. Pokud piekroc¢i mez urcenou
parametrem auto_contour variance, pouzije se radé€ji obvodova reprezentace.
Nastavenim extrémné velké / zaporné hodnoty mizeme vynutit danou reprezen-
taci u vSech car.

3.5.1 Prumeérna Sirka

Prvni moznosti je sitku jednotlivych segmentii ¢ar zprimeérovat a poté uz
exportovat celou ¢aru s jednotnou sitkou. Tim v nékterych pripadech ztratime
dilezitou ¢ast informace. Zabranime ale prvnim vektorizacni artefakttim — bez-

divodné se ménici Sitce. Tento druh exportu je vsak vhodny pro obrazky, které
obsahuji pouze cary s konstantni sirkou.

3.5.2 Rozdéleni cest na useky

Druhou variantou je ¢ary rozdélit po jednotlivych segmentech na samostatné
objekty. U formatu SVG si mtizeme pomoci tim, ze objekty vzniklé z jedné cary
vlozime do spole¢né skupiny. Rozdélenim se vsak nasledna prace s vystupem stane
narocnéjsi. Stale timto zpisobem nedokézeme dokonale reprezentovat libovolna
data, naptiklad jednu obycejnou rozsitujici se tsecku. I proto se tento druh ex-
portu nepouziva, prestoze je v programu implementovany. Mizeme jej vynutit
pro vSechny ¢ary nastavenim parametru export_type na 1.

3.5.3 Obvodova reprezentace

Treti variantou je pfevedeni ¢ar na plochy. Editovatelnost dané ¢ary pak bude
obdobna jako u algoritmt hledajicich plochy. Pii spravném nastaveni parametru
vsak timto zptisobem budou reprezentovany pouze ty ¢ary, u kterych je to nutné.

Samotny prevod ovSem neni zcela jednoduchy problém. Obvod Bézierovy
kiivky (dvé offsetovéE] kiivky a zakonceni na obou koncich) nelze presné repre-
zentovat Bézierovymi kiivkami. Je tedy nutné najit vhodnou aproximaci.

V nasem pfipadé je problém jesté komplikovanéjsi, protoze se sitka kiivky
méni. Musime si dat také pozor na presny vyznam sitky v daném bodé. Bézna
interpretace je, ze pokud ma kiivka v daném bodé X sitku w, potom existuje
obvodovy bod, ktery lezi na normale prochéazejici bodem X a zaroven je od néj
vzdéleny w/2.

V nasi interpretaci vSak sitka odpovida praméru vlozené kruznice (osmitihel-
niku) se stfedem v daném bodé. P¥i ménici se Sifce se tento pramér kruznice
nerovna kolmé vzdalenosti k okraji. Rozdily mezi obéma vyznamy Sifky jsou pa-
trné z obrazku 3.5

Offsetovani Bézierovy krivky

Jednu z moznych metod offsetovani popisuje ¢lanek Spline Approximation of
Offset Curves (Hoschek, 1988)). Ta je v mnohém podobna aproximovani, které
pouzivame v pfedchozi fazi. Lisi se tim, ze pfed samotnou aproximaci body, ve
kterych pocitame chyby, posuneme ve sméru kolmém k offsetované krivce. Tuto

20ffsetovou kiivkou rozumime kiivku, kterd je od ptvodni v kazdém bodé stejné vzdélena.

24

S

Obrazek 3.5: Usecka s proménlivou sitkou stopy: modfe je zakreslen obvod tsecky
v pripadé, ze sitka urcuje priameér kruznice; oranzovy obvod odpovida castéjsi
kolmé vzdalenosti

ulohu vsak nepotfebujeme fesit, protoze ¢ary s konstantni sitkou nemusime pie-
vadét na obvodovou reprezentaci.

Zajima nas vsak prevod cCar s proménlivou sitkou. Zacatek algoritmu k tomu
drobné upravime. Nemiizeme pouze posunovat kazdy bod X po normalovém vek-
toru o vzdalenost odpovidajici prislusné sifce — vzhledem k nasi interpretaci sirky
musime normalu nejprve spravné natocit.

Natoceni (a tedy i spravnou polohu posunutého bodu X’) mizeme spocitat
pfesné. Pti (nekonecné) malé zméné ¢asu d; se bod X = C(t) po kiivce C lehce
posune a drobné se zméni jemu odpovidajici sitka w(t). Hledany offsetovy bod X’
pak lezi na spolecné te¢né kruznic o prumeérech w(t) a w(t + d;) se sttedy v C(t)
a C(t+ 0p).

Aby byl vypocet numericky stabilnéjsi, feSeni si zjednodusime. Do kazdého
z aproximovanych bodt na ptvodni (neoffsetové) kiivce si umistime kruznici se
spravnym prumérem a nasledné najdeme spolecné te¢ny pro kazdé dvé sousedni
kruznice. Z kazdé te¢ny pouzijeme bod, ktery lezi na vétsi z kruznic.

25

4. Srovnani vysledk

Zhodnoceni navrzeného algoritmu a porovnani jeho kvality s jinymi neni u vek-
torizace snadné tloha, obzvlast pokud bychom toto chtéli vyjadiit ¢iselné.

4.1 Meéritka kvality

Miizeme tieba pro kazdy testovaci obrazek urcit pocet pixeld, v nichz se vek-
torova podoba lisi od originalu. S takovymto méfitkem kvality by ale vyhraval
vektorizér, ktery kazdy pixel na vstupu vektorove reprezentuje jako ¢tverec stejné
barvy o rozmérech 1 x 1. Cely obrazek by pak byl slozen pravé z takovychto
¢tvercu.

Vystup miizeme také hodnotit podle toho, z kolika primitiv se sklada. Pocet
objekti pfimo souvisi s velikosti vystupniho souboru, takze pro nas toto kritérium
muize byt dulezité. V nastrojich vsak zjednodusovani a vyhlazovani kiivek casto
byva jako jedna z poslednich fazi vektorizace, navic ovlivnitelnd parametrem.
Napftiklad u programu Potrace se odpovidajici parametr nazyva opttolerance.
V naSem programu mame tomu podobny approximation_error. Nelze tedy jed-
noduse Fict, Ze program A vytvari mesi vystup nez program B a je proto lepsi.

Dveé popsané metriky bychom mohli spojit do jedné: ur¢ime odchylku od pred-
lohy pro takové nastaveni parametri, kdy oba porovnavané programy produkuji
stejné mnozstvi bodl. Potom si musime polozit otazku, zda timto zptisobem
opravdu hodnotime cely program, nebo pouze ¢ast starajici se o vyhlazovani.

4.1.1 Typ reprezentace

Pro nés je mnohem ditilezitéjsi jesté jeden faktor. Tim je zcela odlisna repre-
zentace ¢arové a plosné grafiky. Carové vektorizéry nejsou piilis obvyklé. Mnohem

vz

Castéjsi je reprezentace objektti plochami.

4.2 Porovnani s existujicimi nastroji

Porovnavat budeme vysledek naimplementovaného programu Vectorix s exis-
tujicim volné dostupnym programem Potrace (Selinger, 2015) a komer¢énimi na-
stroji Vector magic (Cedar Lake Ventures Inc.) a|RasterVect. U poslednich dvou
se jesté musime vyporadat s tim, ze k dispozici méame pouze zkusebni verze pro-
gramtl, které oproti plnym neumoznuji vysledek ukladat.

Nebudeme porovnavat vysledky s dalsim volné dostupnym néstrojem Auto-
trace (Weber} 2004). Protoze ma podle nés znatelné horsi vysledky nez Potrace.

Nesmime zapomenout, ze celou dobu pracujeme s obrzovymi daty a ze i vy-
sledny vektorovy obrazek je urcen k tomu, aby se na néj divali lidé. Kvalita
vektorizace nemusi byt ani nijak matematicky popsatelna. Mizeme se rozhodo-
vat subjektivné podle toho, ktery obrazek je ,hez¢i“. (Pfipadné ktery obrazek se
,Snaze“ upravuje.)

Nastroje tedy nechame zvektorizovat stejny obrazek a nasledné popiseme, ¢im
se vysledky kterého od sebe lisi.

26

Na nasledujicich strankach vidime vysledky jednotlivych vektorizatort. Pro-
gram Vectorix si neporadi dobfe s o¢ima hrocha, protoze se jiz jedna o plochu.
Oproti vystupu z Potrace se vSak cely obrazek sklada z vyrazné méné uzli. Ve
Vectorixu totiz bylo nastaveno pomérné silné zjednodusovani, i proto jsou ¢ary
kostrbaté;jsi.

Vystup z Vector Magicu na prvni pohled vypada velmi podobné originalu. Pii
bliz§im pohledu si vSimneme nedostatkii jako prekryvajici se ¢ar (Sedd a Cernd)
a jejich proménlivé sitky.

Potrace zvlada oproti Vector Magicu lépe detaily oc¢i, ale naopak ma kostr-
batéjsi cary.

Metodou vektorizace jsou vSak Potrace a Vector Magic od zbylych dvou pro-
gramt odlisné. Pouze Vectorix a RasterVect reprezentuji objekty pomoci Car.
Barevné obrazky RasterVect nezvlada carové trasovat vibec. Pokud z néj nej-
prve udélame cernobily, objekty jiz kresli 1épe. Skladaji se vSak pouze z mnoha
malych tsecek. Pocty tsecek/uzli u RasterVectu a Vector Magicu jsou bohuzel
neznamé, protoze tuto hodnotu programy neuvadi.

Rychlost jednotlivych vektorizatori je srovnatelna. Probiha fadoveé do minuty.

Obrazek 4.1: Vyfotografovany vstupni obrazek

27

—

Obrazek 4.2: Vystup z programu Vectorix: Je slozeny ze 173 objekti a dohromady
obsahuje 1007 uzlt

Obréazek 4.3: Detail vystupu z programu Vectorix: Z obrazku jsou patrné nedo-
statky na ostrych rozich ¢ar a u vyplnénych oblasti

28

Obrazek 4.4: Vektorizace nastrojem Vector Magic: Obrazek byl rozpoznan jako
fotografie

Obrazek 4.5: Detail vystupu z programu Vector Magic

Obrazek 4.6: Vektorizace programem Potrace: Obrazek obsahuje 6590 uzli

Obrazek 4.7: Detail vystupu z programu Potrace

30

s
7 “"’d%h!

oy
o
PN e e

e

Obrazek 4.8: Barevna vektorizace nastrojem RasterVect: S barevnymi obrazky si
program pii metodé centerline pfilis nerozumi

Obréazek 4.9: Vektorizace nastrojem RasterVect: Uspésna vektorizace ¢ernobilého
obrazku, modré cary jsou nalezena vektorova reprezentace

31

5. Uzivatelska dokumentace

V této kapitole se s jednotlivymi ¢astmi programu seznamime v poradi, které
odpovida predpokladanému béznému pouzivani.

5.1 Instalace

Program Vectorix je psany v jazyce C++11, je tedy nezbytné mit piekladac,
ktery tento dialekt podporuje. Nejsou vSak vyuzivany vSechny nové funkce, takze
by mél poslouzit kterykoli dnes bézny. Vyvoj probihal s prekladacem GCC (Stall-
man a kol., [2014)) ve verzi 4.9.2.

Déle program vyzaduje knihovnu na zpracovani obrazu OpenCV| (2015, Open
Source Computer Vision). Je mozné vyuzit jak fadu 2.4.x, tak 3.0.x. Pokud
knihovna neni nainstalovana v systému, je mozné si ji stdhnout a nainstalo-
vat lokalné do podadresafe programu Vectorix. Zdrojovy balicek verze 3.0.0 pro
Linux/Mac je rovnou pfilozen.

Volitelné je mozné pouzit také vektorizaci pomoci knihovny Potrace. V tako-
vém pripadeé je nutna i jeji instalace. PTi bézném pouzivani programu neni potieba
a ani se v soucasnosti nevyuzivaji vSechny jeji moznosti. Jeji pritomnost je spise
priprava do budoucna na mozné rozsiteni (viz kapitola .

Zdrojovy bali¢ek nejprve rozbalime:

> tar -xzf vectorix.tar.gz

Pred instalaci knihovny OpenCV je vhodné se presvédcit, ze mame vse po-
tfebné pro jeji kompilaci. Zde je nejvhodnéjsi odkézat na podrobné navody na
webovych strankach knihovnyﬂ Na Linuxu (Debian a Ubuntu) by mély byt po-
tfeba nasledujici balicky:

build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev
libavformat-dev libswscale-dev libjpeg-dev libpng-dev libtiff-dev
libjasper-dev

Nyni jiz knihovnu nainstalujeme. Abychom ji nemuseli stahovat, pouze jeji
zdrojovy balicek prekopirujeme k programu. Tento krok (prvni fadek) mizeme
preskocit, knihovna se pak stahne v nasledujicim kroku sama.

> cp opencv-3.0.0.zip vectorix/opencv/

> cd vectorix/opencv

> make opencv-3.0.0.zip include-3.0.0 1ib-3.0.0
(ptipadné)

> make opencv-2.4.11.zip include-2.4.11 1ib-2.4.11

Pouzivame-li OpenCV ve verzi 3.0.0 (tj. pfiloZzenou), mizeme rovnou zkom-
pilovat program:

> cd ..
> make

'http://opencv.org/quickstart.html

32

http://opencv.org/quickstart.html

Ostatni verze OpenCV

Chceme-li pouzit jinou verzi OpenCV, staci upravit dva fadky v souboru
vectorix/Makefile. Druhd varianta predpoklada, ze OpenCV je nainstalovana
v systému.

select OpenCV library version
L_OPENCV=${L_OPENCV_2.4.11}
C_OPENCV=${C_OPENCV_2.4.11}
(nebo)
L_OPENCV=${L_OPENCV_SYSTEM}
C_OPENCV=${C_OPENCV_SYSTEM}

Pouziti knihovny Potrace

Pro kompilaci knihovny Potrace staci spustit v adresafi vectorix/potrace
prikaz make. Knihovna se sama stahne.

> cd vectorix/potrace
> make

Aby se knihovna Potrace v programu pouzila, je po jejim nainstalovani potieba
odkomentovat nasledujici dva fadky v souboru vectorix/Makefile:

L_FLAGS+=-L potrace/lib/ -lpotrace
C_FLAGS+=-D VECTORIX_USE_POTRACE

5.2 Ovladani programu

Vektorizaci je mozné prizptisobovat parametry, které lze specifikovat v konfi-
gura¢nim souboru a nékteré i v grafickém rozhrani. Pokud program spustime bez
parametri, zepta se nas na nazev konfigura¢niho souboru a ulozi do néj vychozi
hodnoty parametrii.

> ./vectorix
No config file given, new will be created, please enter name:

5.2.1 Konfiguraéni soubor

Konfiguraéni soubor méa velmi jednoduchou strukturu. Kazdy fadek je bud
komentar (zac¢ina znakem #), nebo obsahuje dvojici <k1i&> <hodnota> oddélenou
mezerou. Hodnota je bud ¢islo (celé / desetinné s teckou), nebo Fetézec. Pokud
se néktery kli¢ vyskytuje v konfiguracnim souboru vicekrat, vzdy se pouzije jeho
posledni vyskyt.

P1i ukonceni programu je konfigurac¢ni soubor ulozen do souboru urceného
parametrem file parameters, pokud je specifikovany. Ukladaji se pouze para-
metry relevantni pro dany béh programu. To napriklad znamend, ze pokud vek-
torizujeme pomoci knihovny Potrace, neulozi se parametry tykajici se vektorizace

33

nasim algoritmem. Toto lze obejit tak, ze parametry nechame pfipisovat na konec
souboru (parameters_append 1).

Pro zacatek vsak potrebujeme nastavit jen jméno souboru se vstupnim rastro-
vym obrazkem a souboru s vystupnim vektorovym. Vstupni obrazek je urcen pa-
rametrem file_input a mize byt v libovolném formatu podporovaném OpenCV
(z nejznaméjsich BMP, PNM, JPEG, TIFF a PNG). Vystupni obrazek je ulozen
do souboru dle parametru file vector_output. Standardné se vystup uklada ve
formatu SVG. Pro PostScriptovy vystup je tieba nastavit output_engine 1.

Cteni obrazku pomoci knihovny OpenCV je mozné obejit. N4 program imple-
mentuje na¢itani obrazka ve formatu PNM (Henderson, 2013). K tomu se pou-
zivd parametr file pnm input. Tento parametr je dilezity pro experimentalni
vektoriza¢ni metody (napf. knihovnou Potrace), protoze ty knihovnu OpenCV
nepouzivaji.

5.2.2 Grafické rozhrani

Mame-li v konfigura¢nim souboru specifikovany vstupni soubor, miizeme pro-
gram spustit znovu. Tentokrat mu jako parametr ddme pfipraveny konfiguracni
soubor.

> ./vectorix konfigurace.conf

Program se spusti v interaktivnim grafickém rezimu. K dispozici mame 4 okna.
Prvni je nazvané Original. V ném vidime (zmenseny) ptivodni obrézek s Gerve-
nym rameckem oznacujicim viditelnou oblast obrazku ve vSech ostatnich oknech.
Pomoci posuvniku Zoom pak mtzeme obrazek ptiblizit, ¢i oddalit, mysi vybirame
pozici zobrazeného vyiezu.

P¥{ nejvétsim piiblizeni (100) odpovidé pfiblizeni pivodni velikosti obrazku —
jeden pixel na obrazovce je tedy jeden pixel obrazku. Z toho plyne, ze posuvnik
Zoom nemd zadny vliv pii zobrazeni obrazku mensiho, nez je velikost oken.

Prahovani

Jako druhé nas bude zajimat okno Grayscale. V ném je mozné invertovat
vstupni barvy. V dalsi fazi potfebujeme, aby ¢ary byly bilé a pozadi ¢erné. Protoze
oc¢ekavany bézny obrazek ma bilé pozadi a tmavé linie, je inverze ve vychozim
nastaveni zapnuta.

Tieti okno Threshold umozinuje ladit parametry prahovani. Pii nastaveni typu
prahu (Threshold type) na 0 se pouziva Otsova metoda (kap. pro uréeni
efektivniho prahu a zbylé dva posuvniky tak nemaji zadny vliv na vysledek.
Chceme-li zvolit fixni prah (posuvnikem Threshold), musime nastavit Threshold
type na 1.

Zbylé dva typy prahovani vyuzijeme pfi nerovnomérném rozlozeni jasu v ob-
razku. Typicky to potfebujeme u fotografii (nikoli vSak skenti) obrazka nakresle-
nych na papir. Vétsinou chceme pouzit typ 3, ktery odpovid4d adaptivnimu pra-
hovani, kde hodnota prahu je pro kazdy pixel spoctena z primérné hodnoty na
okoli o poloméru Adaptive threshold pixelu (s pfi¢tenym offsetem podle posuvniku
Threshold).

34

Zbyvajici typ 2 funguje obdobné, jenom okolni pixely zapocitava s vahou podle
normalniho rozdéleni. Pozor na to, Ze tato varianta je pro vétsi okoli pomala.
Pro obrazky s rozméry kolem tisicti pixelt je vhodné udrzet posuvnik Adaptive
threshold pod hodnotou 100. Tato varianta vSak neposkytuje vyrazné kvalitnéjsi
vysledky nez typ 3, takze ji vétSinou nevyuzijeme.

Obecné pri prahovani chceme vybrat takové parametry, aby vSechny linie byly
co nejzretelnéjsi. Mély by pokud mozno obsahovat co nejméné ,dér*. Zaroven je
vhodné minimalizovat mnozstvi Sumu, ,,bilych tecek”, v obrazku.

Filtrovani Sumu

V poslednim ze ¢tyf oken (Filled) muzeme Cary zacelit posuvnikem Filling
size. Pozor na to, ze pfi vyssich hodnotach se mohou zacit slévat blizké cary.
Miru odstranéni bilych tecek lze ovlivnit pomoci Dust removal size. Zde si naopak
musime dat pozor, abychom neodstranili i néjakou ¢aru.

Jakmile jsme s vysledkem spokojeni, mizeme stisknutim klavesy Enter prejit
do dalsi faze vektorizace.

Kontrola skeletonizace

Objevi se ndm dvé novéa okna, jedno s kostrou (Skeleton) a jedno se vzdale-
nostni mapou (Distance). Jedingm posuvnikem Skeletonization si miizeme vybrat
z péti variant algoritmu hledani kostry. Typ 0 vklada st¥idaveé diamant a ¢tverec,
typ 1 ¢tverec, typ 2 diamant. Nasledujici typ ¢islo 3 je nejpomalejsi, protoze do-
chazi k vkladani kruhti. V praxi se od typu 0 kvalitou vystupu témér nelisi, ale je
vyrazné pomalejsi. Této varianté je dobré se vyvarovat, pokud obrazek obsahuje
Sirsi ¢ary (¢i vyplnéné objekty).

Ve vétsiné pripadi pouzivame vychozi hodnotu (4), kterda odpovida Zhangovu-
Suenovu algoritmu a vzdalenostni mapé pocitané vkladanim stiidavé diamantu
a Ctverce.

Kazdou zménu parametrti je potfeba potvrdit stiskem klavesy Enter, jinak se
kostra nepfepocita. Dalsim stisknutim prejdeme do faze trasovani. Parametry této
faze jsou vétsinou necelociselné. Grafické rozhrani tvorené knihovnou OpenCV
bohuzel neumoznuje jejich nastavovani. Nastésti tyto parametry neni pro vétSinu
obrazkt potfeba nijak prenastavovat.

5.2.3 Dalsi dulezité parametry

Ptehled vsech existujicich parametri s jejich struénym vysvétlenim se nachazi
v pfiloze[l] Zde nasleduje popis Sesti parametri, u kterych je nejpravdépodobnéjsi,
ze je potfebuje uzivatel ménit.

e interactive: Nastavenim hodnoty 0 se vypne interaktivni rezim a nebudou
zobrazena zadna okna. Program je nasledné pouzitelny pro spousténi ze
skriptti a vektorizuje zcela bez dalsich zasaht uzivatele.

e max window_size: Nastavuje maximalni rozméry oken (poc¢itano bez posuv-
niki). Vychozi hodnotu (640 pixelt) mize byt vhodné na mensich monito-
rech snizit. Ze vSech obrazkt je néasledné zobrazen vytfez nebo zmensenina.

35

force black: Pokud je tento parametr nenulovy, vSechny ¢ary jsou obar-
veny na Cerno. Ve vychozim nastaveni je tento parametr zapnut, protoze
predpokladame cernobilé obrazky.

auto_contour_variance: Parametr upravuje typ exportovani. S nizsi hod-
notou parametru je vice car ve vystupu reprezentovano pomoci jejich ob-
vodu.

approximation _error: Hodnota tohoto parametru urcuje maximalni povo-
lenou chybu pii zjednodusovani car, vétsi ¢islo znamena vétsi miru zjedno-
dusovani, a tedy cary slozené z mensiho poctu tsekt.

approximation preserve corners: Pokud je parametr nenulovy, jsou pii
vyhlazovani vSsechny rohové body zachovany.

36

6. Vyvojova dokumentace

Program Vectorix, jehoz zdrojovy kod se nachéazi v elektronické piiloze této
préace, je psan v jazyce C++ a vyuziva nékteré novinky z verze C++11. Pro praci
s obrazovymi daty je pouzita knihovna |OpenCV| (2015). VSe z knihovny OpenCV
se nachazi v namespace cv. Kromé standardni knihovny jazyka jiz program neni
z&visly na zadnych dalsich. (S vyjimkou volitelného rozsifeni o Potrace.)

OpenCV poskytuje velké mnozstvi rtiznych obrazovych operaci a algoritmii,
takze s jeji pomoci si lze usettit spoustu prace pfi zpracovani rastrovych obrazku
a zejména pii implementovani a zkouseni novych algoritmti. Obcas je vSak vyhod-
néjsi nepouzit knihovni funkci a naimplementovat si vlastni, protoze mizeme tézit
z dalsich predpokladi, které v nasem pripadé plati. Prikladem je skeletonizace
(kap. , kde pfima implementace algoritmu mize vyuzivat operace dilatace
a eroze z knihovny. Nebo muzeme cely proces zrychlit, omezime-li operace jen na
nékteré pixely (optimalizace pomoci fronty).

6.1 Déleni na funkéni bloky

Algoritmicky navrh je popsan v kapitole [3, nebudeme jej tedy zbyteéné opa-
kovat. Zamérime se misto toho na zajimavé ,implementacni detaily” a celkové
¢lenéni kédu na jednotlivé funkéni bloky. Ty zaroven koresponduji s rozdélenim
kédu do zdrojovych souborii.

Parametry (parameters.cpp)

Jednotlivé ¢asti jsou Casto parametrizovatelné uzivatelem. Ten parametry za-
dava do jednoho spole¢ného konfiguracniho souboru. O jeho spravu se stara trida
parameters, kterou si objekty mezi sebou predavaji. (Je tedy mozné mit vice
ruznych instanci, nicméné v praxi se to nedéje.) Tato t¥ida pfitom sama zadné
konkrétni parametry nedefinuje; ostatni ¢asti programu si je u ni postupné re-
gistruji za béhu. Pokud si fekneme (napfiklad z dvou ruznych mist) o stejné
pojmenovany parametr, dostaneme vzdy ukazatel na stejnou proménnou.

Diky tomu je velmi snadné piidat kdekoli v kédu novy parametr. Staci zavo-
lat funkci bind param(ukazatel, nazev, defaultni hodnota), kterd do uka-
zatele ulozi odkaz na proménnou s hodnotou parametru odpovidajiciho nazvu.
Pokud jsme prvni, kdo si fekl o proménnou s tim to nazvem a tato neni v konfi-
gurac¢nim souboru specifikovana, je do proménné ulozena defaultni hodnota.

Konfiguraci mtzeme kdykoli nacist ze souboru nebo do néj naopak ulozit
(funkce load params a save_params). Pfi nacteni se zaktualizuji vSechny jiz za-
registrované parametry. Doposud neregistrované se pak samy nactou az s prvni
registraci. Ukladani parametri probihd v tom potadi, v jakém byly (poprvé) regis-
trovany. Diky tomu je mozné piidavat do konfigurac¢niho souboru k jednotlivym
parametrim také komentére (v souboru zacinaji znakem #). Pfidame je funkci
add_comment (komentar).

37

Grafické rozhrani (zoom window.cpp)

Program vyuziva pouze funkcionalitu knihovny OpenCV, ktera v tomto sméru
nenabizi pfili§. Funkci imshow(jméno okna, obrdzek) vytvorime okno a zobra-
zime v ném dany obrazek. Do oken lze dale pfidavat posuvniky. Okna vSak nelze
rozumnym zpusobem zmensovat. Vétsi obrazky se tak viibec nemusi vejit na
monitor, obzvlast, pokud chceme mit otevienych nékolik oken soucasné.

Nedostatek fesime funkci zoom imshow(jméno okna, obrazek, prehled =
false), ktera zobrazi jeho vyfez, jenz néasledné dle potieby zmensi. Aby se dalo
v ramci obrazku navigovat, potfebujeme jedno specialni okno s prfehledem celého
obrazku a se zakreslenym umisténim vytfezu. To také obsahuje posuvnik nasta-
vujici uroven priblizeni. Pfehledové okno lze vytvorit zavolanim zoom_imshow
s tfetim parametrem nastavenym na true.

O vse potfebné se stara tiida zoom window, ktera je singletonem a jeji instanci
zbylé ¢asti programu nikdy neziskaji. Protoze velikost okna lze urcit parametrem,
je potfeba pfed prvnim vytvofenim okna pfedat tfidu s parametry (zavolanim
funkce zoom set_params).

Textové hlasky (logger.h)

S vypisem rtznych typt hlasek pomaha tiida logger s metodou log<typ
hlasky> fungujici ve stylu klasického printf. Vypisuji se vSak pouze hlasky,
které maji dostatecnou zavaznost. Pfed vypsanim se pfekontroluje, ze hlaska je
vzhledem k aktualnimu nastaveni upovidanosti dostatecné dulezita. Aby nas pri
norméalnim béhu programu nezdrzovaly ladici hlasky (a ani jejich kontrola dulezi-
tosti), je v souboru config.h definovana konstanta VECTORIX_MAX_VERBOSITY
udavajici nejvyssi povolenou tfidu hlasek. Pokud ji nastavime napiiklad na tdro-
ven warning, miize kompilator rovnou vsechny vypisy typu info a debug zahodit
pri prekladu.

6.1.1 Datové struktury

Program parcuje jak s rastrovymi, tak vektorovymi daty. Rastrové obrazky se
vyskytuji ve dvou zdkladnich podobach. Bud jsou ulozené ve tiidé cv: :Mat, nebo
pnm_image. Prvni je tfida z knihovny OpenCV, ktera umi reprezentovat libovolna
maticova data. V tomto formatu jsou ukladana data uvnitt vektorizéru.

Rastrové obrazky (pnm_image.cpp)

Druh4 tfida pnm_image slouzi pro praci s obrazky typu Netpbm (Henderson,
2013). Jedné se jiz o vlastni implementaci. Protoze obrazovy formét je velmi
jednoduchy, neni ani tato implementace slozita. Obrazky se rozlisuji na barevné,
v odstinech Sedi a ¢ernobilé bitmapy. Kazda z téchto varinat mize byt ulozena
binarné, ¢i textove.

Zajimavosti je, ze v ¢ernobilé podobé reprezentuje hodnota 0 bilé pixely a 1
¢erné. P1i binarnim ulozeni cernobilych obrazkt se jeden byte skldda z osmi po
sobé jdoucich pixeli.

Obrazky ve tfidé pnm_image lze nacitat ze souboru (funkce read), zapisovat
(write) ¢i mezi sebou prevadét (convert). Neni implementovan pouze pievod

38

z binarni ¢ernobilé bitmapy. Tento forméat vsSak stejné neni prilis casty. Vétsinou
mame obrazky barevné.

Vektorové obrazky (v_image.cpp)

Vektorové obrazky vyzaduji necelociselné hodnoty. Je pro né zadefinovany
datovy typ p, ktery ve skutecnosti odpovida typu double. Teoreticky je tak mozné
presnost reprezentace snadno zménit. (V praxi to vSak asi nijak nevyuZijeme.)

Samotné vektorové obrazky se v programu reprezentuji pouze pomoci kubic-
kych Bézierovych kiivek. Jednomu obrazku odpovida t¥ida v_image. Kazdy obra-
zek ma svou §ifku a vysSku (width a height) a seznam (std::1list) cest (line).
Pro ladici tcely si u obrazku jesté pamatujeme cestu k souboru, ktery miize byt
zobrazeny na pozadi (underlay_path) a seznam cest, které byly do obrazku pfi-
dény pti ladéni (debug_line). Tento seznam lze pfipodobnit ke grafickym ladicim
vypistim.

Kazda cesta (datovy typ v_line) pak obsahuje seznam jednotlivych usekd,
resp. kontrolnich bodu (segment), typ (type-) urcujici, zda se jednd o ¢aru ¢i
vyplnénou plochu a typ skupiny (group-). Nastavenim typu skupiny lze nékolik
po sobé jdoucich ¢ar v SVG vystupu sloucit do jedné skupiny. U obvodové re-
prezentace maji skupiny specidlni vyznam. Prvni cesta odpovida tmavé oblasti
a vSechny nasledujici dirdm v ni.

Kontrolni body (t¥ida v_point) odpovidaji jednotlivym pfedéltim mezi seg-
menty Bézierovych kiivek. Ty se setkdvaji v bodé main, ktery je zdroven pro
prvni kiivku ¢tvrtym, tj. poslednim kontrolnim bodem a pro druhou kiivku prv-
nim kontrolnim bodem. Druhy, resp. tfeti kontrolni bod kazdého segmentu je
uloZeny v control next, resp. control prev. Pokud se na data podivame z po-
hledu jednoho segmentu, jsou jeho prvni dva kontrolni body ulozeny v jednom
objektu t¥idy v_point (jako main a control next) a dalsi dva ve druhém objektu
(control prev a main). TFida v_point v sobé dale uchovava informaci o barvé,
Sifce ¢ary a priihlednosti (color, width a opacity).

Jednotlivé body v prostoru pak jsou reprezentovany typem v_pt, ktery ma
soufadnice x a y. Barvy si pamatujeme tfislozkové ve t¥idé v_co.

Manipulace s vektorovymi daty (geom.cpp)

Nékteré geometrické operace tematicky nespadaji pod zadnou konkrétni t¥idu.
(Napftiklad protoze pracuji s jednim segmentem Bézierovy kiivky, ktery je repre-
zentovan dvéma objekty v_point.) Tyto operace jsou proto ve vlastnim name-

vvvvvv

e bezier chop_in t: Tato funkce rozpuli Bézierovu kiivku v bodé uréeném
parameterem t.

e bezier maximal length, bezier minimal length: Funkce odhaduji délku
Bézierovy kiivky délkou kontrolniho polygonu, resp. vzdalenosti prvniho
a posledniho kontrolniho bodu.

e bezier_ intersection: Jako vstup bere dvé Bézierovy kiivky a vrati true,
pokud mezi nimi existuje prisecik. Ten se nachazi na pozici urcitelné podle
nalezenych parametri t.

39

e auto_smooth: Nastavi vSechny body control_prev a control next na cesté
tak, aby vysledna ktivka byla hladka.

6.1.2 Vektorizace

V préci je implementovana vektorizace pomoci popsaného vektoriza¢niho al-
goritmu. Mimo to je také mozné pouzit knihovnu Potrace (pokud ji mame na-
instalovanou a povolime jeji pouzivani pfi prekladu). V soucasnosti se vSak ne-
daji nijak ladit jeji parametry, takze moznosti jsou znacné omezené. Piitomnost
knihovny je pfiprava na jedno z moznych rozsifeni programu, kde by se mohla
pouzit na vektorizaci nékterych objekt.

Aby se jednotlivé vektorizéry prili§ nelisily a byly pouzitelné ve stejnych pii-
padech, byl zde (a na dalsich podobnych mistech) pouzit navrhovy vzor Template
method. Existuje proto abstraktni tfida vectorizer (vectorizer. cpp) definujici
rozhrani vektorizérii (metoda vectorize).

V praci navrzeny postup je pouzit ve vektorizatoru vectorizer vectorix.
Ten postupné provadi jednotlivé faze algoritmu. Pokud pracuje v interaktivnim
rezimu, stara se také o navrat na spravné misto v pripadé zmény parametru
nékteré diivejsi faze.

Jednotlivé faze pak maji velmi podobna rozhrani. Pro samotny vypocet slouzi
funkce run s argumenty odpovidajicimi potfebam daného kroku. Pouziva-li dana
faze ladéni parametri v grafickém rozhrani, méa také metodu interactive. Ta
prijima jako parametr funkeci, ktera je zavolana pii zméné libovolného parametru.
Jedné se o stejny zptusob, jaky pouziva knihovna OpenCV pro oznadmeni o zméné
hodnoty posuvniku. To neni ndhoda, v soucasnosti se predavana funkce vola prave
pouze pres posuvniky OpenCV.

Prahovani (thresholder.cpp)

Prahovani je velmi jednoduché, protoze na vSechny operace tohoto kroku se
pfimo pouzivaji funkce z OpenCV.

Skeletonizace (skeletonizer.cpp a zhang suen.cpp)

Pro hledani morfologické kostry je potieba nejprve obrazek doplnit o ¢erny
ramecek, nasledné provést vybrany algoritmus a na zavér miizeme ramecek ode-
brat. Algoritmus vkladéani ¢tverce a/nebo diamantu je implementovany s pomoci
fronty pixelti lezicich na hranici. Ve fronté jsou ty pixely, které jsou bilé a maji
¢erného souseda. Protoze se stifidanim krokt definice sousednosti méni, jsou ve
fronté ty pixely, které maji ¢erného souseda podle osmiokoli (étverec).

V pripadé vkladani diamantu tedy jesté nejprve znovu kontrolujeme barvu
sousedtl. Pixel se tak ve fronté nemusi objevit pouze jednou, ale maximalné dva-
krat.

U Zhangova-Suenova algoritmu se pouziva obdobnéa fronta. Jeji vyznam se
vsak malicko lisi. Pixel je zde ve fronté, pokud je bily a v jedné ze dvou predchozich
iteraci se mu zménil soused (v prvnim kroku: alespori jeden z jeho sousedu je
¢erny). Abychom jeden pixel neptidavali do fronty vicekrat, znacime si navic
pixely v pomocné matici inq (in queue).

40

Znaceni pixela pfFi trasovani (tracer_helper.cpp)

V pribéhu trasovani si potifebujeme jednotlivé pixely kostry znacit. Aby se
nam se znackami a kostrou lépe pracovalo, pouzivame tfidu labeled _Mat ze sou-
boru tracer_helper.cpp. Té na zacatku funkei init pritadime obrazek s kostrou.

Na cteni pixelt pak pouzivame funkce safeat a apxat. Obé funkce mohou
dostat libovolné soutadnice a vraci hodnotu odpovidajiciho pixelu. Pokud ¢teme z
oblasti mimo obrazek, dostaneme nuly. Dale také pfijimaji parametr unlabeled,
pokud je nastaven na true, jsou u oznacenych pixeli misto jejich ptivodnich hod-
not vraceny nuly. Funkce se lisi v tom, Ze safeat pracuje vyhradné s celoc¢iselnymi
soufadnicemi, ale apxat prijima i necelociselné. Necelociselné soutradnice jsou pak
pocitany z okolnich celociselnych bilinearni interpolaci.

Pixely 1ze oznac¢ovat funkcemi (1abel near pixels a label pix) a piipadné
podle potfeby mtzeme znacky zase zahazovat (drop_smaller or_equal labels,
drop_smaller labels equal or higher make permanent). Druha funkce pfena-
stavi vSechny znacky vétsi nebo rovné zadané hodnoté na 255. Touto hodnotou
znacime ty pixely, které jsme se uz pri trasovani rozhodli definitivné pouzit. In-
terné si za ucelem znaceni tiida udrzuje obdélnik, ve kterém se nachéazeji vsechny
oznacené pixely. Pti zahazovani znacek pak pouzivame funkce OpenCV urcené
k prahovani.

Posledni diilezitou vlastnosti je, ze tfida umoznuje efektivné ziskat pozici ne-
oznaceného pixelu s nejvyssi hodnotou (get_max unlabeled).

Trasovani (tracer.cpp)

Na trasovani neni mnoho zvlastnosti. K provedeni jednoho kroku se pouziva
funkce do_prediction. Ta vyzkousi podle povoleného poc¢tu zanotfeni nékolik vari-
ant a vrati tu nejlepsi z nich. Funkce je volana z trace_part, ktera je zodpovédna
za natrasovani jedné cesty, otoceni, smzani prvniho bodu a dotrasovani zbytku.
Prvni bod znac¢ime v labeled Mat Cislem 254.

Vyhlazovani a zjednoduSovani (approximation.cpp)

vvvvv

std: :1list segmentt cesty zkusi nahradit jednou Bézierovou kiivkou.

Pro pouziti stejného kédu pti hledani obvodové reprezentace se pouziva funkce
optimize_control _point_lengths. Ta dostane kontrolni body Bézierovy krivky
a seznam bodt, které ma touto kiivkou aproximovat. Pokud se ji to povede,
upravi podle toho vzdalenosti kontrolnich bodi.

Metoda nejmensich ¢tvercu (least _squares {simple,opencv}.cpp)

V programu je mozné pouzit jednak vlastni implementaci metody nejmensich
¢tverct a jednak implementaci vyuzivajici knihovnu OpenCV. Protoze metodu
nejmensich ¢tverci pouzivame jen pro dvé nezname, na rozdily vétSinou nena-
razime. Vlastni implementace vsak neni tolik odladéna jako knihovni a mtize zde
castéji dochazet k zaokrouhlovacim chybam.

41

Vykreslovani Bézierovych k¥ivek ({opencv_, }render.cpp)

Volitelné je mozné natrasovany obrazek opét vykreslit do rastrového. Verze
nevyuzivajici OpenCV pouziva fixni sitku ¢ary a je také ponékud nepfesna. Druha
varianta nejprve kazdy segment rozsekd na dostatecné kratké casti, které pak
vykresli jako tsecky.

Export (exporter{, ps,_svg}.cpp)

V soucasnosti je export mozny do dvou formétt. Kazdy je implementovany
zv1ast, pritom vSak pouzivaji jednotné rozhrani exporter. To predpokladd, Ze se
vystup sklada z hlavicky, nasledné jednotlivych cest a na zaver paticky. Konkrétni
tfida tedy nemusi prochazet pres vSechny cesty sama. Toto prochazeni je vSak
mozné v piipadé potfeby nového exportéru mozno nevyuzit a cely export provést
tfeba uz ve funkci vypisujici hlavicku.

Prestoze je SVG format zalozeny na XML, nevyuzivame k jeho uklddani zad-
nou specialni knihovnu a konstruujeme si cely vystup sami. Knihovnou pro praci
s XML bychom si totiz ani prili§ nepomohli, protoze nejvice prace mame s kon-
strukei fetézce reprezentujiciho jednu cestu a nepotiebujeme nacitat zadny vek-
torovy vstup.

42

7. Rozsireni algoritmu

V nésledujici kapitole rozebereme nékolik moznych doporucenych rozsiteni,
ktera vsak v praci nebyla implementovana.

7.1 Barevné obrazky

Ackoli byl vektorizacni algoritmus navrzeny na nebarevné obrazky, dokaze
si do urcité miry poradit i s barevnymi. Problém vsSak nastava jiz pii prahovani
a hledani morfologické kostry. Morfologickou kostru lze hledat jen pokud o kazdém
pixelu umime urcit binarni informaci, zda je soucasti objektu, ¢i nikoli. To je
nejsnazsi s binarnim obrazkem.

N4&s program v této ¢asti predpoklada, Ze obrazek je skutecné cernobily a vek-
torizované c¢ary jsou vici pozadi dostatecné kontrastni i po prevedeni obrazku do
odstinti Sedi, jinak o né prijdeme jiz pii prahovani.

Na barvy se dostava az pfi trasovani. Kazdému kontrolnimu bodu je prifa-
zena barva odpovidajici barvé pixeli ptivodniho obrazku, které jsou na stejném
misté jako odpovidajici ¢ast morfologické kostry. Tento zptisob ziskavani barvy
mé vyhodu, Ze barvu vzorkuje v mistech, kterd nebyvaji prili§ rusena okolim —
stfedy objekti vs. okraje objekti.

Dalsi problém je, ze vystupni formaty nepodporuji pfimo promeénlivou barvu
(obdobné jako u sitky). Proto nedokdzeme dokonale podchytit jakékoli zmény
barvy uvnitf objektu a barva celé cesty je tedy v soucasnosti pied exportem
pramérovana. Pokud jsou barevné ¢ary oddéleny, dokdzeme obrazek vektorizovat
veérneé.

Alternativni ptistup, ktery vsak nebyl implementovan kvili netrivialnosti prv-
niho kroku, by prahovani nahradil segmentaci na omezeny pocet barev. Hledani
kostry by potom bylo mozné zobecnit tim, Ze eroze by nahrazovala vSechny pixely
sousedici s pixely s odlisSnou barvou za ¢erné a dilatace by barvu rozsitovala pouze
na diive ¢erné pixely. Pti nekvalitnim osvétleni je vSak obcas i u jinak cernobilych
obrazki problém se spravnym prahovanim.

Ptipadné je mozné inspirovat se tim, jak funguje barevné trasovani pomoci
Potrace v programu Inkscape. Barevny obrazek je nejprve rozdélen na b binar-
nich. Nésledné je kazdy z nich vektorizovan samostatné. Vysledek pak vznikne
slozenim jednotlivych rozdilné obarvenych vrstev pres sebe. Stacilo by tedy vzdy
vybrat jednu konkrétni barvu a vSechny ostatni ztotoznit s pozadim. Stale vsak
potfebujeme spolehlivé vytesit problém segmentace na barevné plochy.

Nelze obecné urcit, ktery z pristupi je lepsi. V pripadé, Ze je ve vstupnim
obrazku maly pocet dostatecné odlisitelnych barev, vyplati se pro kazdou z nich
pocitat kostru zvlast. Pokud vSak barvy prechazeji plynuleji, vznikly by nam
rozdélenim falesné hranice mezi kostrami.

Nicméné problém barevnych pfechodi je opét samostatna tloha, ktera se tyka
predevsim barevnych ploch, a tedy u ¢arové grafiky neméa takové vyuziti.

43

7.2 Necarova grafika

Pokud obrazek obsahuje i necarové objekty, jsou stale prevadény na svou
morfologickou kostru a nasledné reprezentovany pomoci sirokych car. Ty navic
velmi ¢asto méni svoji sitku, protoze u krajt objektu nelze vepsat vétsi kruznice
se stfedem v kostte. P¥ikladem necarového objektu je obycejny vyplnény ¢tverec.
Jeho kostru tvori dvé thlopficky s pribézné se ménici sitkou stopy. Na jejich
krajich je tato sitka nulova, rovnomérneé se rozsituje az do prostied, kde odpovida
velikosti hrany ¢tverce. Néasledné se opét symetricky zuzuje.

Vysledny obraz tak sice bude v mnohém odpovidat nasim ptvodnim poza-
davkim (vérnad podoba vektorové verze s origindlem, stfedové reprezentace car,
dostatecné maly vystup), ale velmi se bude lisit od reprezentace, kterou bychom
oc¢ekavali na prvni pohled ¢i vytvorili ru¢né. Nutno podoktnout, ze kostra ¢tverce
je slozena z thlopricek pouze za predpokladu, ze pouzivame skeletonizaci vklada-
jici diamanty, osmithelniky, nebo kruznice. Zhangiv-Sueniv algoritmus i vkla-
dani ¢tverci oznaci za kostru pouze jeden prostiedni pixel.

Vhodnym rozsifenim by tedy bylo naimplementovat také trasovani ploch a au-
tomaticky mezi obéma zptisoby prepinat dle potieb objekti. Chystané vylepSeni
muze vyuzivat knihovnu Potrace.

7.3 Uzivatelské rozhrani

Chovani jednotlivych krokt vektorizatoru lze ovliviiovat pomoci parametri.
omezenim pouzité knihovny OpenCV, ktera na uzivatelské rozhrani neni za-
meéfena. Bylo proto zvoleno jednodussi uzivatelské rozhrani, diky kterému ale
program neni zavisly na dalsich knihovnach. Na lepsi navrh uzivatelského rozhrani
je vhodné nejprve nasbirat zkusenosti s pouzivanim c¢arového vektorizatoru.

7.4 Plugin do Inkscape

Pokud se program Vectorix v praxi osvédci, bylo by praktické, aby jej mohlo
snadno pouzivat vice lidi. Protoze cilem bylo vytvorit open-source vektorizacni
nastroj, chtéli bychom o néj rozsitrit funkcionalitu open-source vektorového editoru
Inksapce. Inkscape jiz pouziva vektorizaci pomoci knihovny Potrace, ale ¢arovou
dosud nenabizi.

7.5 Vylepseni skeletonizace

Vétsina v soucasnosti pouzivanych metod skeletonizace je pomeérné rychlé.
Pouze Zhangtiv-Sueniiv algoritmus produkuje souvislou a jeden pixel Sirokou
kostru. Pokud kostra neni siroka jeden pixel, klademe tim vétsi naroky na traso-
vani, které si musi umét z vice pixelli spravné vybrat a vSechny je oznacit jako
pouzité. V opacném piipadé by totiz hrozilo, Ze se dva pixely Siroky tsek natra-
suje dvakrat. Pokud kostra neni souvisla, mtiize se snadno stat, ze si ji trasovani
nespoji v jednu a ¢ara je potom ve vektorovém vystupu zbytecné rozdélena na
dvé (¢ vice).

44

Obrazek 7.1: Nedostatek Zhangova-Suenova algoritmu: na tomto obrazku algorit-
mus najde pouze prazdnou kostru, cervené pixely algoritmus oznacil ke smazani
v dalsim prichodu

Zhangiv-Sueniv algoritmus vSak ma jinou nevyhodu. U objektt ve tvaru di-
amantu se sudym rozmérem zadnou kostru nenajde (viz obrazek . V kazdé
iteraci totiz odebere vSechny pixely, které sousedi s nékterym cernym hranou.
Libovolné velky objekt tak miize pti vektorizaci zcela zmizet. V praxi tato situ-
ace nenastava, protoze nemame takto pravidelné obrazky. Pti zméné libovolného
pixelu jiz dostavame neprazdnou kostru.

7.6 Grafova interpretace kostry

Pokud by kostra byla kvalitnéjsi, bylo by mozné na ni nahlizet jako na kom-
binatoricky graf. Jednotlivé pixely by byly vrcholy a hrana by vedla mezi témi
sousednimi. Tim bychom mohli trasovani zjednodusit na prochazeni grafu.

Pokud by to podporoval vystupni format, mohli bychom do néj piidat infor-
mace o kiizovatkach car. Tyto informace by pak mohl vyuzivat vektorovy editor
a mohl tak umoznit pohybovani s celou kfizovatkou naraz.

45

Z.avér

Jako soucast prace vznikl program Vectorix, ve kterém jsou v praci popsané
metody implementovany a demonstruje tim jejich pouzitelnost. Prokazujeme tim,
ze soucasny nedostatek volné dostupnych carovych vektorizatort neni zpisoben
netesitelnosti tlohy.

Kvalita vystupu naseho programu je srovnatelna s bézné dostupnymi vekto-
rizatory. Nas§ vektorizator si poradi i s trasovanim c¢arového obrazku, ktery byl
pofizen nekvalitné (napt. fotoaparatem).

Protoze nasim cilem byla vektorizace ¢arové grafiky, neni prekvapivé, ze pro-
gram nezvlada tak dobfe casti s vétsimi vyplnénymi objekty. Jelikoz predpo-
kladame, ze obrazek bude nadale upravovan ruc¢né v pocitaci, nepovazujeme za
zasadni nedostatek, ze nékteré detaily obrazku bude nutné po vektorizaci opravit.

46

Seznam pouzité literatury

ADOBE SYSTEMS INC. (1999). PostScript Language Reference (3rd Edi-
tion). Addison-Wesley. ISBN 0-201-37922-8. URL http://www.adobe.com/
products/postscript/pdfs/PLRM. pdf.

BIRTLES, B. (2014). SVG Proposals: Variable width stroke. URL https://wuw.
w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke.

BITTER, 1., SATO, M., BENDER, M., MCDONNELL, K. T., KAUFMAN, A. a
WAN, M. (2000). Ceasar: A smooth, accurate and robust centerline extraction
algorithm. pages 45-52, Salt Lake City, 2000.

CEDAR LAKE VENTURES INC. Vector magic. URL http://www.vectormagic.
com/. Software.

COMPUSERVE INC. (1990). Graphics Interchange Format, Programming Refe-
rence. URL https://www.w3.org/Graphics/GIF/spec-gif89a.txt.

DAHLSTROM, E. A KOL. (2011). Scalable Vector Graphics (SVG) 1.1 (Second
Edition). World Wide Web Consortium. URL https://www.w3.org/TR/SVG/.

DIEBEL, J. R. (2008). Bayesian Image Vectorization: The Probabilistic Inver-

sion of Vector Image Rasterization. Diserta¢ni préace, Stanford, CA, USA.
AAI3332816.

FOURNIER, A., FUSSELL, D. a CARPENTER, L. (1982). Computer rendering of
stochastic models. Commun. ACM, 25(6), 371-384. ISSN 0001-0782. doi: 10.
1145/358523.358553. URL http://doi.acm.org/10.1145/358523.358553.

HENDERSON, B. (2013). Portable Any Map. San Jose. URL http://netpbm.
sourceforge.net/doc/pnm.html.

HosCHEK, J. (1987). Approximate conversion of spline curves. Computer Aided
Geometric Design, 4(1-2), 59-66. ISSN 0167-8396. doi: 10.1016/0167-8396(87)
90024-0. URL http://www.sciencedirect.com/science/article/pii/
0167839687900240.

HoscHEK, J. (1988). Spline approximation of offset curves. Computer Aided
Geometric Design, 5(1), 33—40. ISSN 0167-8396. doi: 10.1016/0167-8396(88)
90018-0. URL http://www.sciencedirect.com/science/article/pii/
0167839688900180.

INKSCAPE. URL https://inkscape.org/. Software.

LANA, J. (2001). Digitalizace mapy. Diplomova prace, Univerzita Karlova v
Praze, Matematicko-fyzikalni fakulta.

OPENCYV (2015). The OpenCV Reference Manual. Itseez. URL http://opencv.
org/.

OTsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Transactions on Systems, Man and Cybernetics, 9(1), 62—66.

47

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke
https://www.w3.org/Graphics/SVG/WG/wiki/Proposals/Variable_width_stroke
http://www.vectormagic.com/
http://www.vectormagic.com/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://www.w3.org/TR/SVG/
http://doi.acm.org/10.1145/358523.358553
http://netpbm.sourceforge.net/doc/pnm.html
http://netpbm.sourceforge.net/doc/pnm.html
http://www.sciencedirect.com/science/article/pii/0167839687900240
http://www.sciencedirect.com/science/article/pii/0167839687900240
http://www.sciencedirect.com/science/article/pii/0167839688900180
http://www.sciencedirect.com/science/article/pii/0167839688900180
https://inkscape.org/
http://opencv.org/
http://opencv.org/

PENNEBAKER, W. B. a MiTcHELL, J. L. (1993). JPEG: Still Image Data
Compression Standard. Springer-Verlag, US. ISBN 0-442-01272-4.

PiEGL, L. a TILLER, W. (1997). The NURBS Book. Second Edition. Springer-
Verlag, Berlin. ISBN 3-540-61545-3.

RASTERVECT. URL http://www.rastervect.com/. Software.

SELINGER, P. (2003). Potrace: a polygon-based tracing algorithm. URL http:
//potrace.sourceforge.net/potrace.pdf.

SELINGER, P. (2015). Potrace. URL http://potrace.sourceforge.net/. Soft-
ware.

STALLMAN, R. M. A KOL. (2014). Using the GNU Compiler Collection. Boston.
URL https://gcc.gnu.org/.

VECTORIZENOW. URL http://www.vectorizenow.com/. On-line sluzba.

W3C (2013). Portable Network Graphics (PNG) Specification (Second Edition).
World Wide Web Consortium. URL https://www.w3.org/TR/PNG/.

WEBER, M. (2004). Autotrace. URL http://autotrace.sourceforge.net/.
Software.

ZHANG, T. Y. a SueN, C. Y. (1984). A fast parallel algorithm for thinning
digital patterns. Commun. ACM, 27(3), 236-239. ISSN 0001-0782. doi: 10.
1145/357994.358023. URL http://doi.acm.org/10.1145/357994.358023.

48

http://www.rastervect.com/
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/
https://gcc.gnu.org/
http://www.vectorizenow.com/
https://www.w3.org/TR/PNG/
http://autotrace.sourceforge.net/
http://doi.acm.org/10.1145/357994.358023

Seznam obrazku

(1 Priklad prevodu navrzenym algoritmem|. 3
(1.1 Postupna redukce Beézierovy krivky tretiho stupnéf 6
(1.2 Racionalni Bézierovy krivky| 7
[3.1 Histogram s rozptyly trid|. 15
[3.2 Priklad eroze a dilatace na ctyrokolif. 17
[3.3 Kostra po odprahovani) 18
3.4 Vzdalenostnimapal 18
3.5 Usecka s proménlivou &fikou stopyl. 25
[4.1 Vytotogratovany vstupni obrazek| 27
[4.2 Vystup z programu Vectorix| 28
[4.3 Detail vystupu z programu Vectorix| 28
[4.4 Vektorizace nastrojem Vector Magic|. 29
[4.5 Detail vystupu z programu Vector Magic| 29
[4.6 Vektorizace programem Potrace| 30
[4.7 Detail vystupu z programu Potrace| 30
[4.8 Barevna vektorizace nastrojem RasterVect| 31
[4.9 Vektorizace nastrojem RasterVect| 31
[7.1 Nedostatek Zhangova-Suenova algoritmu| 45

49

P¥ilohy

Priloha 1 — Prehled parametru

Zakladni nastaveni

vectorization method: Pouzita vektoriza¢ni metoda, 0: navrzeny algorit-
mus, 1: Potrace, 2: ladici vektorovy obrazek.

parameters_append: Pokud je nenulovy, parametry se pti ukladani prida-
vaji na konec souboru.

file parameters: Nazev souboru, do kterého se budou uklddat parametry.
file pnm_input: Specifikuje nazev vstupniho PNM souboru.

file_input: Vstupni soubor v libovolném formatu podporovaném OpenCV
(lze pouzit pouze pro vectorization method 0).

show_rendered window: Pokud je parametr nenulovy, zobrazi se okno s vy-
renderovanym vektorovym vystupem.

output_engine: Format vektorového vystupu, 0: SVG, 1: PostScript.
file_vector_output: Nazev vystupniho souboru s vektorovym obrazkem.

file pnm output: PNM soubor, do kterého bude vystupni vektorovy obra-
zek vyrenderovan (pomalou a nepfesnou metodou).

file opencv_output: Libovolny rastrovy soubor, do kterého bude vystupni
vektorovy obrazek vyrenderovan (rychlejsi a presnéjsi metoda).

Grafické rozhrani

interactive: Pokud je parametr nenulovy, bude zapnut graficky interak-
tivni rezim.
max window_size: Maximalni rozméry obrazku v okné, vétsi obrazky budou

ofiznuty /zmenseny.

zoom_level: Uroven piiblizeni obrazkt v okné, 0: zmensené obréazky, 100:
skutecna velikost, obrazky jsou pred zobrazenim oriznuty dle limitt velikosti
okna.

Prahovani

invert_colors: Invertovani barev na vstupu (shodné s posuvnikem Invert
input).

threshold_type: Typ prahovani (posuvnik Threshold type), 0: Otsova me-
toda, 1: binarni prah se zadanou hodnotou, 2: adaptivni prah s vahami dle
norméalniho rozdéleni, 3: adaptivni prah s primeérem okoli.

50

threshold: (Posuvnik Threshold) hodnota prahu. Pro adaptivni prahovani
urcuje posun prahu o threshold - 128.

adaptive_threshold size: Velikost okoli pro adaptivni prahovani (posuv-
nik Adaptive threshold).

file_threshold_output: Soubor pro ulozeni mezivysledku po prahovani.
fill holes: Mira zaplnéni dér (posuvnik Filled).
dust_size: Mira odstranéni bilych tecek (posuvnik Filling size).

file filled output: Soubor pro ulozeni mezivysledku po filtrovani odpra-
hovaného obrazku.

Skeletonizace

skeletonization type: Parametr udava typ skeletonizace (stejné jako po-
suvnik Skeletonization), 0: diamant-Ctverec, 1: ¢tverec, 2: diamant, 3: vkla-
dani kruznic, 4: Zhangtv-Suentiv algoritmus.

files_steps_output: Soubory, do kterych budou ulozeny jednotlivé kroky
skeletonizace. Znak # bude nahrazen poradovym cislem iterace.

file skeleton: Soubor pro ulozeni kostry.

file distance: Soubor pro uloZeni vzdalenostni mapy (hodnota pixelu
pfimo odpovida vzdalenosti od okraje objektu).

file skeleton norm: Soubor s kostrou normalizovanou pro zobrazeni.

file_distance norm: Soubor se vzdalenostni mapou normalizovanou pro
zobrazeni.

Trasovani

max_dfs depth: Pocet trasovacich kroki, které program zkousi pred vybra-
nim finalni varianty.

depth_auto_choose: Maximalni pocet nepovedenych trasovacich krokt, pii
kterych je varianta vybrana bez zkouseni dalsich moznosti.

distance_coef: Parametr 202 definujici velikost okoli pii hledani stiedu
car.

nearby_limit_gauss: Vzdalenost v pixelech, ve které se zapocitavaji pixely
pfi hledani stredu car.

gauss_precision: Presnost v pixelech, se kterou se hleda bod urcujici stied
cary.

51

angle_steps: Pocet sméri, ve kterych se hleda dalsi pokracovani segmentu
z rohového bodu.

param min nearby_straight: Body ve vzdalenosti do této konstanty se ne-
zapocitavaji do ohodnoceni rovného tseku.

nearby_limit: Vychozi vzdalenost v pixelech, ve které je hledan nasledujici
trasovaci bod.

angular _precision: Pfesnost se kterou se dourci tihel k nasledujicimu seg-
mentu.

size nearby_smooth: Vychozi vzdalenost, ve které se zapocitavaji body pfi
hledani hladkych tsekt. Je vhodné, aby tento parametr odpovidal ptiblizné
tfetiné parametru nearby_limit.

max_angle_search_smooth: Uhel v radidnech urcujici maximalni odchylku,
ve které se hleda hladce navazujici ¢ara.

nearby_control_smooth: Vychozi vzdalenost, ve které je hledan prvni kont-
rolni bod hladce navazujici ¢ary. Vhodné nastaveni se pohybuji okolo tietiny
az poloviny hodnoty parametru nearby_limit.

smoothness: Maximalni tihel v radianech, o ktery muze kfivka béhem jed-
noho segmentu zménit smér, aniz by byla oznacena za roh.

Zavérecéné vektorové upravy

false _colors: Obarveni jednotlivych ¢ar v obrazku posloupnosti barev pro
snazsi rozpoznani nespojitosti ¢ar. Parametr udava rozdil téonu barev ve
stupnich mezi nasledujicimi barvami (dle barevného modelu HSV).

force black: Pokud je nenulovy, vSechny ¢ary jsou obarveny na Cerno.

force width: VSechny ¢ary budou exportovany s touto sitkou (pokud je
nenulovd).

force_opacity: VSechny ¢ary budou exportovany s touto prithlednosti (po-
kud je nenulovd).

underlay_image: Cesta k obrazku, ktery bude vlozen na pozadi vystupu,
vhodné pro ladéni. Tato volba ma vyznam pouze pii vykreslovani do for-
matu SVG.

debug_lines: Ptidani ladicich (Cervenych) ¢ar do vektorového vystupu.
V soucasnosti tyto ¢ary zndzornuji chybové vektory pii prevodu na ob-
vodovou reprezentaci.

52

Prevody reprezentaci a aproximace

e offset_error: Maximalni povolend chyba aproximace pro obvodovou re-

prezentaci.

offset_iterations: Maximalni pocet iteraci pro fitovani segmentu Bézie-
rovou kfivkou.

render_max_distance: Pfesnost renderovani v pixelech.

export_type: Zpusob reprezentace dat ve vystupu, 0: primérovani sirky,
1: rozdéleni na kratké segmenty, 2: obvodova reprezentace, 3: automaticka
detekce dle rozptylu.

auto_contour_variance: Cary s rozptylem sitky vétsim nez tento parametr
budou pievedeny na obvodovou reprezentaci.

1sqmethod: Vybér implementace metody nejmensich ¢tverct, 0: OpenCV,
1: vlastni.

approximation_error: Maximalni chyba povolené pfi zjednodusovani car,
veétsi c¢islo znamend vétsi miru zjednodusovani.
approximation_iterations: Maximalni pocet iteraci algoritmu na aproxi-

maci useku.

approximation preserve_corners: Vynuceni zachovani rohovych bod.
Aproximace tyto body nikdy nezahodi.

Textové vypisy

Program produkuje na standardni chybovy vystup informacni hlasky ¢ty ka-
tegorii: chyby (0), upozornéni (1), informace (2), ladici hlasky (3). Nésledujicimi
parametry se urcuje upovidanost jednotlivych c¢asti programu. Jsou vypisovany
vsechny hlasky ze stejné a nizsi kategorie.

pnm_verbosity: nacitani, ukladani a konverze obrazki ve formatu PNM
vectorizer_verbosity: vektorizér

approximation verbosity: aproximace car

1sq_verbosity: metoda nejmensich c¢tverct

offset_verbosity: pievod ¢ar na obvodovou reprezentaci

53

	Úvod
	Reprezentace vektorových dat
	Bézierovy křivky
	Vlastnosti
	Racionální Bézierovy křivky

	Cesta
	Používané formáty
	Scalable Vector Graphics (SVG)
	PostScript, PS
	Další formáty

	Metody vektorizace a existující nástroje
	Trasování ploch
	Potrace
	Vector Magic

	Čárová vektorizace
	RasterVect

	Návrh algoritmu
	Fáze 1: Prahování a filtrování
	Otsova metoda
	Adaptivní prahování
	Filtrování nedokonalostí

	Fáze 2: Morfologická kostra
	Morfologické operace
	Výpočet morfologické kostry – skeletonizace
	Zhangův-Suenův algoritmus

	Fáze 3: Trasování
	Výběr počátečního bodu
	Výběr následujícího bodu
	Tipování a průchod do hloubky
	Zajištění konečnosti

	Fáze 4: Vyhlazování
	Fáze 5: Export
	Průměrná šířka
	Rozdělení cest na úseky
	Obvodová reprezentace

	Srovnání výsledků
	Měřítka kvality
	Typ reprezentace

	Porovnání s existujícími nástroji

	Uživatelská dokumentace
	Instalace
	Ovládání programu
	Konfigurační soubor
	Grafické rozhraní
	Další důležité parametry

	Vývojová dokumentace
	Dělení na funkční bloky
	Datové struktury
	Vektorizace

	Rozšíření algoritmu
	Barevné obrázky
	Nečárová grafika
	Uživatelské rozhraní
	Plugin do Inkscape
	Vylepšení skeletonizace
	Grafová interpretace kostry

	Závěr
	Seznam použité literatury
	Seznam obrázků
	Přílohy
	Příloha 1 – Přehled parametrů

