KT graph orientations

B. Dohnalova, J. Kalvoda, G. Kucheriya Mentor: Sophie Spirkl

DIMACS REU 2023

5 June 2023

Contents

- Introduction
- 2 Motivation
- Openion of the second of th
- Plan of action and applications
- References

Orientation of a digraph

Definition

Let G = (V, E) be a graph. We say H = (V', E') is an orientation of G if V' = V and for all $(x, y) \in E$ either $(x, y) \in E'$ or $(y,x) \in E'$. A digraph is a graph with an orientation.

Coloring of a graph

Definition

A (proper) vertex n-coloring of a graph G=(V,E) is a function $f:V\to\{1,...,n\}$ such that for all $(x,y)\in E$, $f(x)\neq f(y)$.

Parameters of a graph

Definition (Chromatic number)

The *chromatic number* of a graph G (denoted $\chi(G)$) is the minimum number of colors required to obtain a proper coloring of G.

Parameters of a graph

Definition (Chromatic number)

The *chromatic number* of a graph G (denoted $\chi(G)$) is the minimum number of colors required to obtain a proper coloring of G.

Definition (Girth)

The girth of a graph G (denoted g(G)) is the number of vertices in the shortest cycle in G.

Parameters of a graph

Definition (Chromatic number)

The chromatic number of a graph G (denoted $\chi(G)$) is the minimum number of colors required to obtain a proper coloring of G.

Definition (Girth)

The girth of a graph G (denoted g(G)) is the number of vertices in the shortest cycle in G.

Definition (Clique number)

The *clique number* of a graph G (denoted $\omega(G)$) is the number of vertices in a maximum clique (subgraph in which every pair of vertices have an edge) of G.

Background

Observation

$$\chi(G) \ge \omega(G)$$
.

Background

Observation

$$\chi(G) \ge \omega(G)$$
.

Definition (χ -boundedness)

A graph G is χ -bounded if there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that $\chi(H) \leq f(\omega(H))$ for each induced subgraph H of G.

0000

Observation

$$\chi(G) \ge \omega(G)$$
.

Definition (χ -boundedness)

A graph G is χ -bounded if there exists a function $f:\mathbb{N}\to\mathbb{N}$ such that $\chi(H)\leq f(\omega(H))$ for each induced subgraph H of G.

Examples

Perfect graphs, i.e., graphs G for which $\chi(G) = \omega(G)$. (Eg: Triangle graph K_3 .)

History

Question

Are all graphs χ -bounded?

Question

Are all graphs χ -bounded?

NO! Erdős, Mycielski, Tutte (separately) constructed graphs Gwith large girth and large chromatic number, i.e., $\omega(G) \leq 2$, and $\chi(G) = t$, for any $t \in \mathbb{N}$.

Question

Are all graphs χ -bounded?

NO! Erdős, Mycielski, Tutte (separately) constructed graphs Gwith large girth and large chromatic number, i.e., $\omega(G) < 2$, and $\chi(G)=t$, for any $t\in\mathbb{N}$.

Conjecture (Gyárfás-Sumner)

All forests are χ -bounded.

For the digraph variant of the Gyárfás-Sumner conjecture, Kierstead and Trotter considered the following orientation:

Definition

Let G be a graph. The *natural orientation* of G is the colored digraph NG=(V,A,f), with arc set $A=\{(x,y):xy\in E \text{ and } f(x)< f(y)\}.$

KT orientation

Definition

Let G be a graph, and D be an orientation of G. We say that D is a KT-orientation if for all u, v in V(G), D contains at most one directed path between u and v.

KT orientation

Definition

Let G be a graph, and D be an orientation of G. We say that D is a KT-orientation if for all u,v in V(G), D contains at most one directed path between u and v.

Observation

D contains no directed cycle!

Problem

Problem

Which graphs G have a KT-orientation?

Basic examples

Bipartite graphs.

Basic non-examples

Graphs containing K_3 .

Grötzsch graph without a vertex.

To find more non-examples and the underlying pattern for classifying the graph families admitting a KT orientation.

To find more non-examples and the underlying pattern for classifying the graph families admitting a KT orientation.

The KT orientations have already found applications in:

- Constructing a counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number.
- Separating polynomial χ -boundedness from χ -boundedness.

References

- H. A. Kierstead and W. T. Trotter, **Colorful induced** subgraphs, *Discrete Math.* 101 (1992) 165–169.
- A. Scott and P. Seymour, A survey of χ-boundedness, Journal of Graph Theory 95 (2020) 473–504.
- É. Bonnet, R. Borneuf, J. Duron, C. Geniet, S.Thomassé and Nicolas Trotignon, A tamed family of triangle-free graphs with unbounded chromatic number, manuscript, arXiv:2304.04296.

- M. Briański, J. Davies and B. Walczak, **Separating** polynomial χ -boundedness from χ -boundedness, manuscript, arXiv:2201.08814.
- A. Carbonero, P. Hompe, B. Moore and Sophie Spirkl, A counterexample to a conjecture about triangle-free induced subgraphs of graphs with large chromatic number, manuscript, arXiv:2201.08204.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823748.