6th problem set for Probability and Statistics — April 1/2

Recall that the cumulative distribution function F_X is defined by

$$F_X(x) = P(X \le x).$$

If X is continuous, then

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

for a non-negative function f_X (the density of X). Then

$$P(X \in A) = \int_A f_X(t)dt$$
, thus $P(a \le X \le b) = \int_a^b f_X(t)dt$

Also, $\mathbb{E}(X) = \int_{-\infty}^{\infty} x \ f_X(x) dx$ and in general

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(t) \ f_X(t) dt.$$

Just as for discrete random variables, here also holds that $var(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$.

Before solving the problems, you might want to recall how to compute definite integrals using primitive functions.

PDF & CDF

1. For a random variable X with the distribution function F_X , express

(a)
$$P(X \in (0,1])$$

(b)
$$P(X > 0)$$

(c) *
$$P(X < 0)$$

(d) *
$$P(X \in [0,1])$$

2. For a random variable X, express the above probabilities in terms of the density function f_X .

3. Let X be a random variable satisfying P(X = x) = 0 for every x. (Actually, there is nothing strange about this, and in fact it happens for every continuous random variable.)

Express the distribution function of the following random variables using F_X

(a)
$$-X$$
.

(b)
$$X^+ = \max(0, X),$$

(c)
$$|X|$$
.

4. Let X be a random variable with density $f_X(t) = 1/t^2$ for $t \ge 1$ and $f_X(t) = 0$ otherwise.

- (a) Verify that this is a probability density function.
- (b) Determine $\mathbb{E}(X)$.
- (c) Compute the cumulative distribution function F_X .
- (d) Determine $P(2 \le X \le 3)$.
- (e) Let Y = 1/X. What is the cumulative distribution function of the random variable Y?
- (f) Determine the probability density function of the random variable Y.

5. We say that X has an exponential distribution, $X \sim Exp(\lambda)$, if

$$f_X(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$, otherwise 0.

Find $F_X(x)$. * Show that $\mathbb{E}(X) = 1/\lambda$.

Continuous distributions

- **6.** Let's assume that at a post office counter, the time for serving one customer follows an exponential distribution with an average of 4 minutes.
 - (a) What is the parameter λ ?
 - (b) Describe the distribution function.
 - (c) What is the probability that we will wait for more than 4 minutes?
 - (d) What is the probability that we will wait between 3 and 5 minutes?
- 7. Mr. Chen visited Prague and at a uniformly random time (0:00-24:00), he appears in the Old Town Square. Every hour from 9:00 to 23:00, 12 apostle figures appear on the astronomical clock.
- (a) What is the probability that Mr. Chen will see the apostles without waiting for more than 15 minutes?
- (b) What if Mr. Chen arrives at the Old Town Square at a uniformly random time after noon, i.e., 12:00–24:00?
- 8. We will model the amount of snow that will lie on the ground in a Krkonoše ski resort, on New Year's eve. We will use normal distribution with a mean of 40 (centimetres) and a standard deviation of 10.
 - (a) What is the probability that the model will give us a negative value for the snow cover?
 - (b) What is the probability that the snow cover will be between 50 and 70 cm?
- **9.** We break a one-meter stick into two pieces, at a uniformly random point. Let X be the length of the longer piece.
 - (a) What is the distribution of X?
 - (b) Determine $\mathbb{E}(X)$.

More practice problems

- 10. The average lifespan of a hard disk is 4 years. Let's assume that this time is described by a random variable with an exponential distribution. (This is not a realistic assumption, see e.g., https://www.backblaze.com/blog/how-long-do-disk-drives-last/.)
 - (a) What is the probability that the disk will fail within the first three years?
 - (b) What is the probability that it will last at least 10 years?
 - (c) After what time will the disk have failed with probability 10%?
- 11. Plutonium-238 has a half-life of 87.7 years. We will model its decay using an exponential distribution: for each atom, we consider the time until decay as an independent random variable with the distribution $Exp(\lambda)$.
 - (a) What is λ ?
 - (b) What is the average lifespan of a plutonium-238 atom?
 - (c) After how much time will 90% of the atoms decay?
- (d) What percentage of atoms will decay after 50 years? (Some cardiac pacemakers use plutonium-238 as an energy source. https://en.wikipedia.org/wiki/Plutonium-238#Nuclear_powered_pacemakers)
- 12. The time until we see a meteor is exponentially distributed with a mean of 1 minute.
 - (a) What is the probability that we will have to wait more than 5 minutes?
 - (b) What is the probability that we will see it within at most one minute?
- (c) * What is the distribution of the time when we see the second meteor? The third, ... (We assume that individual meteors are independent.)