Probability and Statistics 1. Exercises 9

- 1. Check if the estimator of expectation, $\hat{\Theta}$ for a sample of random variables X_1, \ldots, X_n for exponential distribution, is unbiased. Is it consistent? Compute the MSE for this parameter.
- 2. Consider the estimator for the cdf defined by $\hat{F}_n(k) \coloneqq \frac{1}{n} \sum_{i=1}^n I(X_i \leq k)$, where $I(X_i \leq k)$ is 1 if $X_i \leq k$, and 0 otherwise. Estimate the bias, variance and MSE of $\hat{F}_n(k)$.
- 3. Prove that \hat{S}_n^2 (the corrected sample variance, i.e. the sample variance times n/(n-1)) is a consistent estimator. More generally, if an estimator is unbiased and has a vanishing variance (with n going to infinity) then show that the estimator is consistent.
- 4. Assume a sample of continuous random variables: X_1, X_2, \ldots, X_n , where $E[X_i] = \mu$, $\operatorname{Var}[X_i] = \sigma^2 > 0$. Consider the following estimators: $\hat{\mu}_{1,n} = X_n$, $\hat{\mu}_{2,n} = \frac{1}{n+1} \sum_{i=1}^n X_i$.
 - 1. Are $\hat{\mu}_{1,n}$ and $\hat{\mu}_{2,n}$ unbiased?
 - 2. Are $\hat{\mu}_{1,n}$ and $\hat{\mu}_{2,n}$ consistent?
- 5. Consider a sample of random variables: X_1, X_2, \ldots, X_n , where n > 10, $E[X_i] = \mu$, $\operatorname{Var}[X_i] = \sigma^2 > 0$ and the estimator $\hat{\mu}_n = \frac{1}{n-10} \sum_{i=11}^n X_i$. Then calculate:
 - 1. The bias of $\hat{\mu}_n$.
 - 2. The variance of $\hat{\mu}_n$.
 - 3. The MSE of of $\hat{\mu}_n$.